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INTRODUCTION

At the end of 2018, Faris and colleagues published an article in Cancers entitled “Endolysosomal
Ca2+ signaling and cancer hallmark: two pore channels on the move and TRPML1 lags behind!”
emphasizing the emerging role of two pore channels (TPC) in cancer, in contrast to that of
comparable transient receptor potential mucolipin channel 1 (TRPML1) the role of which in cancer
was still obscure (1).

TPCs and TRPMLs are endolysosomal channels regulating the autophagy/lysosome
system, which is strongly associated both with cancer progression and cancer escape from
immunosurveillance. A role for TPCs in cancer cell invasiveness and metastasis has been
established (2–4). Instead, regarding the TRPML channels, the evidence for their role in cancer
was scarce until recently. At present this gap has been filled and findings until now are summarized
in Table 1.

TRPML CHANNELS

TRPML1, TRPML2, and TRPML3 are non-selective cation channels belonging to the TRP channel
family. These channels are encoded by MCOLN genes (MCOLN1, MCOLN2, and MCOLN3)
located, respectively, on human chromosome 19 (19p13.2-13.3), chromosome 1 (1p22.3) and
chromosome 1 (1p22.3).

The founding member TRPML1 is expressed in a number of tissues including adrenal gland,
lung, bladder and placenta as well as in thymus, spleen and immune cells (16, 17). Mutations
in this channel have been identified as responsible for the phenotype of Mucolipidosis type IV,
a severe lysosomal storage disorder that displays cognitive, linguistic, visual and motor deficits
(18–20). TRPML2 mRNA is mainly detected in lymphocytes and other cells of the immune system
(21–24). No human or mouse disease phenotype has been demonstrated for this channel. TRPML3
is expressed in cochlear and vestibular sensory hair cells and melanocytes (25). Two spontaneous
gain-of-function mutations in TRPML3 cause hearing loss and coat color dilution in mice (26–30).
These mutations are known as varitint-waddler mutations (A419P and I362T).

TRPML1 is mainly localized in the lysosomes, where it promotes the cation efflux into the
cytosol (31). In this way TRPML1 is involved in lysosomal storage, transportation and pH
homeostasis. Indeed, TRPML1 mutations affect lysosomal storage and lysosomal impairment is
responsible for autophagy defects. TRPML1 can also be negatively regulated by the target of
rapamycin (TOR) with a consequent autophagy decrease supporting a central role of TRPML1
in this process (32). Moreover, oxidative stress through TRPML1 activation triggers autophagy
to re-establish cellular redox homeostasis (33). TRPML1 regulates exocytosis of intracellular
contents via the endosomal-lysosomal pathway (34, 35). In addition, TRPML1 plays a role in
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TABLE 1 | TRPMLs and cancer.

Tumor type Effect Reference

TRPML1

High expression Head & Neck

Bladder

HRAS activity ↑

Patient

prognosis ↓

(5)

High expression Melanoma MAPK and

mTORC1 ↓

Survival and

proliferation ↑

(6)

High expression High grade NSCLC Migration,

proliferation and

autophagy ↑

(7)

High expression PDAC OS and PFS ↓ (8)

High expression TNBC Cancer growth ↑ (9)

High expression Endometrial
Lysosomal pH ↑

Imidazole

cytotoxicity ↓

(10)

Loss expression

or reduction

GBM OS ↓ (11)

Activation GBM Cell viability ↓

Apoptosis ↑

(11)

TRPML2

High expression GBM Cell viability ↑

Apoptosis ↓

(12)

Concurrent gene

in 16-gene

signature

Breast Survival ↑ (13)

Downregulation

due to DNA

methylation

Acute Lymphoblastic

Leukemia

Pro-tumoral

effects ↑

(14)

TRPML3

Decreased gene

expression

High-risk PDAC patients,

KIRK

Protective role,

OS ↑

(15)

Decreased gene

expression

Adenocortical, Breast

invasive, Endometrial,

Kidney Renal Papillary

Cell, Colon, Lung, Lung

Squamous Cell, Rectal,

Stomach,

Pheochromocytoma,

Paraganglioma,

Thymoma, Uterine

Carcinosarcoma

Not investigated (15)

(↑), increase; (↓) impairment.

metal ion homeostasis (36–39). TRPML2 and TRPML3 are
expressed in early endosomes, late endosomes and lysosomes
(40, 41); TRPML2 is also active in recycling endosomes (42, 43).
It plays a direct role in chemokine secretion and thus modulates
the inflammatory response. TRPML3 could be required for the
autophagic process. Indeed, it is suggested that this channel,
changing subcellular localization, provides Ca2+ during the
autophagosome formation but the underlying mechanisms are
not completely known (40, 44, 45).

TRPMLs are activated by one of the major components
of endolysosomal membranes, the phosphatidylinositol-3,5-
biphosphate (PtdIns(3,5)P2) (25, 46–49). Moreover, TRPML1

has an intraluminal loop whose protonation stimulates channel
activation (28, 37, 50). It is inhibited by phosphatidylinositol-
4,5-biphosphate (PtdIns(4,5)P2), sphingomyelins, and lysosomal
adenosine (48, 49). Na+ removal or less acidic/neutral pH
activates TRPML3 and TRPML2, respectively (42, 43). Among
the synthetic activators that are currently available, ML-SA1
activates TRPML1, TRPML2, and TRPML3 in humans; ML2-
SA1 is TRPML2 specific; MK6-83 activates TRPML1 and
TRPML3 (25, 43, 46, 48). There are several synthetic inhibitors
(ML-SIs); however, they are unable to discriminate the different
TRPML isoforms (33, 35).

TRPML1 AND CANCER

In the last year several reports have linked increased TRPML1
expression to cancer. Among all, Jung et al. (5) demonstrated
a correlation between human cancers with activating HRAS
mutations and increased TRPML1 expression. In head
and neck squamous cell carcinoma and bladder urothelial
carcinoma, that display high rates of HRAS mutations, TRPML1
expression inversely correlates with patient prognosis. It was
demonstrated that the enhancement in TRPML1 expression
and activity in HRAS-driven cancer cells is required for
localization of cholesterol in the plasma membrane. Indeed, its
mislocalization from the plasma membrane to endolysosomes
leads to loss of oncogenic HRAS from the cell surface and
inhibition of downstream signaling. At the same time, TRPML1
inhibition decreases extracellular signal-regulated kinase (ERK)
phosphorylation levels and cell proliferation.

The analysis of specific tumor types indicates that TRPML1
may exert different, and even opposite, functional activity in
controlling tumor growth and progression.

Kasitinon et al. (6) have demonstrated that melanoma cells
show a higher TRPML1 expression than normal melanocytes.
In vitro and in vivo experiments revealed that loss of TRPML1
reduces melanoma cell growth in a xenograft model, but does
not affect human melanocyte cell growth. However, in contrast
to Jung et al. (5), Kasitinon et al. (6) reported that loss of
TRPML1 leads to high phosphorylated MET and ERBB3 levels
and thus MAPK activation in melanoma cells. The deregulation
of these signaling pathways could be attributed to the reduced
lysosomal degradation of growth factor receptors and the unique
nature of melanomas. Moreover, TRPML1-deficient melanoma
cells show, as a consequence of activated mTORC1 signaling,
increased protein synthesis, unfolded protein response activation
and cell death.

Pancreatic ductal adenocarcinoma (PDAC) patients
characterized by worse overall survival and progression-free
survival express high TRPML1 levels (8). In support of TRPML1
pro-tumoral role, its knockdown blocks the proliferation of
PDAC cells in vitro and reduces the formation and growth of
tumors in in vivomouse models (8).

TRPML1 is upregulated in triple-negative breast cancer
(TNBC) and its genetic down-regulation or pharmacological
inhibition, suppresses TNBC growth. TRPML1 channel is
involved also in controlling TNBC development by regulating
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mTORC1 activity and lysosomal ATP release via purinergic
signaling pathways (9).

In human endometrial adenocarcinoma (HEC-1B) cells,
TRPML1 overexpression inhibits vacuole formation and cell
death induced by the lysosomotropic agent imidazole. In
contrast, TRPML1 knockdown increases cell death induced by
the same treatment (10). Thus, it was supposed that TRPML1 is
able to protect against this kind of drug by regulating the pH of
acidic organelles.

In contrast to the above-mentioned tumors, TRPML1
expression is decreased in human non-small-cell lung carcinoma
(NSCLC) tissues compared to normal lung tissues (7). However,
channel expression increases in advanced stages. These data
suggest that MCOLN1 gene deletion supports tumorigenesis
as a consequence of increased oxidative stress and genetic
instability, while TRPML1 may confer a survival advantage
in advanced tumors (7). In accordance with these findings,
in vitro studies have demonstrated that TRPML1 silencing
suppresses migration and proliferation of A549 and H1299
cancer cell lines. Instead, in transfected NSCLC cell lines,
TRPML1 overexpression promotes autophagy. Collectively these
findings indicate that, the loss of TRPML1 leads to a reduction
in autophagic activity, which is essential for NSCLC survival and
proliferation, while increase in TRPML1 expression is needed
to keep metabolism and energy requirements of the tumor in
balance (7).

In glioblastoma (GBM) patients loss or reduction of
TRPML1 correlated with short survival, thus acting as negative
prognostic factor (11). In vitro studies supported that TRPML1
activation, due to the agonist MK6-83, reduces cell viability
and induces apoptosis (11). Strong oxidative stress may
damage cellular constituents (e.g., mitochondria) permanently
hence acting as a death signal. However, the generation of
low ROS levels can act as survival signal, by triggering
autophagy (33). In this regard, since the primary source of
endogenous ROS are mitochondria, treating glioma cells with
carbonyl cyanide m-chlorophenylhydrazone (CCCP), that is
able to induce oxidative stress (33), stimulates a TRPML1-
dependent autophagy, as demonstrated by the ability of the
autophagic inhibitor bafilomycin-A1, the TRPML1 inhibitor
sphingomyelin, and MCOLN1 silencing, to inhibit the CCCP-
mediated effects (11).

TRPML2 AND CANCER

A link between TRPML2 expression and cancer has been
investigated in different tumor types. A 16-gene signature,
including MCOLN2 was found to be associated with distinct
survival patterns in breast cancer patients (13).

In acute lymphoblastic leukemia patients, aberrantmethylated
regions are associated with altered expression of a set of
genes (14). Among them, MCOLN2, affecting cell cycle
processes, lymphocyte activation and apoptosis, has been found
hypermethylated and downregulated. The function of TRPML2
in B lymphocytes is unclear; however, its transcriptional
regulation by the B-cell lineage activator PAX5 and its expression

in early immature B cells, may support for a role played by
TRPML2 in the development of acute lymphoblastic leukemia.

Furthermore, the analysis of the transcriptome in colorectal
cancer (CRC) showed that TRPML1 and TRPML2, detected in
both normal and cancer cells, are significantly decreased in CRC
cells. Noteworthy TRPML2 is dramatically down-regulated (51).

In GBM, TRPML2 was found to play different role
than TRPML1 (12). TRPML2 is expressed in astrocytes,
glioma tissues and high-grade glioma cell lines, with
increased expression in GBM compared to pylocitic
astrocytoma (grade I) (12). TRPML2 knockdown reduces
proliferation by abrogating protein kinase B (AKT)/ERK1/2
phosphorylation and induces apoptosis in glioma cell lines.
Overall, a pro-tumorigenic role of TRPML2 has been
suggested (12).

TRPML3 AND CANCER

The role of MCOLN3 in cancer has been poorly
investigated. By integrative analysis of multiple datasets,
the MCOLN3 gene has been included in a 9-gene
signature that is able to predict the overall survival of
pancreatic cancer patients. The high-risk group expressing
MCOLN3 is enriched with multiple oncological signatures
and pathways involved in cancer aggressiveness and
associated with significantly lower levels of CD4+ T cell
infiltration (15).

Moreover, the data analysis, using The Cancer Genome Atlas
(TCGA) database, showed that MCOLN3 is downregulated in
several cancer types, and it is associated with a relatively better
survival in kidney renal clear cell (15).

DISCUSSION

Heterogeneity of TRP channels expression is a feature of
cancer cells and changes in their expression and functions are
associated with neoplastic transformation and progression.
We have just started to understand the genetic and epigenetic
mechanisms controlling TRPML channel expression and
endolysosomal Ca2+ signaling which seem to regulate
cancer cell behavior. Nevertheless, several issues remain
unsolved. How are TRPML channels regulated in cancer cells?
TRPML homo/heteromerization or genic compensation is
physiologically relevant in normal cells (52, 53), but what about
in cancer cells? Currently it remains unclear in what aspects
such interactions are physiologically relevant and what the
physiological consequences would be when interfering with
these interactions (17, 54). Moreover, which are the main
TRPML ligands in cancer cells? Which is the contribution
of immune cells expressing the TRPML channels in tumor
microenvironment? And do the TRPML channels play a role in
tumor escape?

Several studies describe that TRPML1 and TRPML2 represent
suitable molecular targets in cancer. Thus, genetic manipulation
or pharmacological modulation of TRPML expression and
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function could be regarded as a promising alternative anti-
cancer therapy.

A genetic approach targeting TRPML expression could
represent a good strategy. However, there is a potential for
off-target effects linked with the ubiquitous expression of
TRPML1 and the involvement of TRPML2 in immune functions.
Moreover, loss of functionmutations inMCOLN1 are responsible
for the onset of neurological disorders. As suggested by Jung
and Venkatachalam, the use of antisense oligonucleotides,
unable to cross the blood-brain-barrier, may circumvent this
problem (55).

The therapeutic approach is also hampered by a relative
lack of TRPML selective agonists or antagonists; indeed,
TRPML channels share high sequence similarity of about 75%
at amino acid levels (56). Given the ability of PI(3,5)P2 to
activate TRPMLs, researchers have also focused their efforts
on the regulation of the PIKfyve/PI(3,5)P2 pathway in cancer.
Studies conducted on hepatic cancer cell lines demonstrated
the effectiveness of the inhibitor of PI(3,5)P2 biosynthesis,
YM201636, on attenuating cancer cell proliferation (57).
Treatment with the PIKfyve inhibitor apilimod is able to induce
cytotoxic effects in B-cell non-Hodgkin lymphoma and TFEB, the
master transcriptional regulator of lysosomal biogenesis involved
in a feedback loop with TRPML1 (58), regulates apilimod
sensitivity (59).

Another level of complexity is related to the molecular
mechanisms and signaling pathways acting both up- and down-
stream of TRPMLs. A role of mTORC1 and RAS-ERK as well

as Akt/PKB/ERK in TRPML1 (6, 60) and TRPML2-expressing
tumor cells (12) has been proposed, although there are divergent
findings in different cancer cell types. These opposite results
may reflect distinct effects of TRPML on different cancer cells
that could be due to distinctive mutations, for example HRAS
signaling is mutated in head and neck cancer cells but not in
melanoma cells (6, 61).

Overall, mucolipin targeting might represent a novel
and innovative approach in the prognosis and therapy
of different cancer types. Obviously, more in-depth
studies are needed to completely reveal their potential in
cancer therapy.
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