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Abstract: A general framework describing the statistical discrimination of an ensemble of quantum
channels is given by the name quantum reading. Several tools can be applied in quantum reading to
reduce the error probability in distinguishing the ensemble of channels. Classical and quantum codes
can be envisioned for this goal. The aim of this paper is to present a simple but fruitful protocol for
this task using classical error-correcting codes. Three families of codes are considered: Reed–Solomon
codes, BCH codes, and Reed–Muller codes. In conjunction with the use of codes, we also analyze
the role of the receiver. In particular, heterodyne and Dolinar receivers are taken into consideration.
The encoding and measurement schemes are connected by the probing step. As probes, we consider
coherent states. In such a simple manner, interesting results are obtained. As we show, there is a
threshold below which using codes surpass optimal and sophisticated schemes for any fixed rate
and code. BCH codes in conjunction with Dolinar receiver turn out to be the optimal strategy for
error mitigation in quantum reading.

Keywords: quantum reading; cyclic codes; Reed–Muller codes; heterodyne receiver; Dolinar receiver

1. Introduction

Quantum state discrimination composes an important part of several quantum com-
puting protocols [1]. Quantum communication relies upon the ability of the receiver to
distinguish between a set of information carriers [2,3]. The security of quantum key distri-
bution protocols is based on the impossibility of perfectly distinguishing non-orthogonal
states [1]. In both situations, where one needs to show that states are distinguishable or
not, the set of quantum states are fixed and an analysis over the minimum achievable
error probability is performed. In order to decrease the error probability, the only possible
method is optimizing the measurement apparatus. There are paradigms giving more
freedom and, therefore, increasing the complexity for analyzing them.

A natural extension of the task of discriminating quantum states is envisioned in
quantum channel discrimination [4–13], and, more generally, quantum reading [14]. Quan-
tum reading task is important for modeling and quantifying quantum memories as a
useful resource. Information-theoretically bounds, communications protocols, and error
probability results can be applied to quantum reading. Quantum reading considers the use
of input and output quantum resources to enhance the retrieval of classical information
stored in quantum channels. Actually, it considers that one can record bits of information
in memory cells by storing a quantum channel picked from a given ensemble. The goal in
quantum reading is to optimize the probing strategy as well as the encoding and decoding
protocols to reduce the error probability in the discrimination process.

Efficient paths to quantum reading can be foreseen by the use of coding
techniques [15–17]. On the first hand, quantum error-correcting codes give interesting
candidates to probe the memory cells. The structure of their Hilbert subspace makes them
reliable to some dissipator noise due to system-environment interaction [18]. On the other
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hand, the encoding process can be implemented using classical error-correcting codes in
order to add redundancy and increase error mitigation. Focusing on error probability
mitigation as the figure of merit and using short-length classical codes, we consider three
families: Reed–Solomon codes, BCH codes, and Reed–Muller codes [19]. These families
have a large diversity of parameters, and their values can be easily controllable. Addition-
ally, the existing low-complexity encoding and decoding algorithms make the protocol
proposed in this paper realizable with the current technology.

Following the previous reasoning, we consider a quantum reading task where the
ensemble is composed of two quantum channels. Each quantum channel is modeled by
a pure-lossy bosonic channel with different transmissivities. For the analysis, we will
consider the three families of codes mentioned before, two types of receivers, and a probing
state. The first receiver is a heterodyne receiver [2]. The use of heterodyne receiver is
justifiable due to the phase-insensitivity property of pure-lossy channels. The second
one is a Dolinar receiver [2]. This is an adaptive receiver that can achieve the Helstrom
bound on distinguishing two quantum states [2]. There is an intrinsic complexity in
implementing this receiver, mostly due to the adaptive and fast response characteristics.
However, it has been implemented in practice, where its optimality was shown [20]. Lastly,
for the probing state, we consider coherent states. Therefore, we aim to show that the
improvements and results obtained in the proposed scheme is due to the classical codes
and receivers considered.

For any of the three families of classical error-correcting codes considered, we show
improvements when compared with optimal strategies using coherent or squeezed states.
We compute the average number of photons needed to surpass the optimal strategies
for fixed code, rate, and receiver. This value defines a threshold. There are strategies
giving a lower threshold. Using the heterodyne receiver, the best strategy is the BCH
codes. However, there are some values of rate where Reed–Muller codes have similar
performance. Using the Dolinar receiver, BCH and Reed–Solomon codes have almost the
same performance. For lower values of rate, the BCH codes perform better than Reed–
Solomon. The situation changes when the rate is above 0.45. For any of the codes, the best
performances are obtained using the Dolinar receiver. We are able to achieve thresholds
in this strategy for an average number of photons below 18. Furthermore, in order to
achieve the threshold for a large range of rates, one does not need more than 6 photons per
probing state.

This paper establishes an important basis for the use of classical codes in quantum
reading. In particular, it has taken the novel path of proposing an explicit use of short-
length classical codes and showing how much they impact error mitigation. These results
demonstrate the possibility of improving the current technology used on quantum mem-
ories by low complexity encoding and decoding schemes. The values of the threshold
obtained emphasize this statement. A relevant achievement of this paper is the explicit
characterization of error mitigation in terms of different code lengths and code families.
One can obviously expect error mitigation by increasing the number of photons used to
probe the memory cells, but what can happen when associating classical codes to the
scheme is answered quantitatively in this paper.

Due to the novel path taken in this paper by considering classical codes and the
error mitigation produced by them, there is not much to be said about the connection
with the existing literature. The only related work in the literature is Ref. [17], where the
authors proposed polar coding and decoding schemes to achieve the reading capacity.
However, the results in Ref. [17] can only be appreciated for large code lengths. One can
also find unrelated approaches to quantum reading, such as Ref. [21], where it is shown that
entanglement-assisted probing outperforms classical strategies on barcodes data, without
any explicit analysis of encoding and decoding schemes.

This paper is organized as follows. In Section 2, we present the main concepts used
throughout the paper. A description of the three families of classical codes is given.
Additionally, we explain the task of quantum reading and the quantum channel model
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considered. Next, in Section 3, we describe the proposed protocol. It is divided into three
parts: probing strategy, encoding scheme, and decoding scheme. The performance analysis
of the protocol is given in Section 4. Lastly, we draw our conclusions in Section 5.

2. Preliminaries

This section introduces the main concepts of classical codes and quantum reading
needed for this paper. We begin with a brief overview of cyclic codes and then specialize
in Reed–Solomon and BCH codes. Subsequently, we show a construction method for
Reed–Muller codes that is similar to Reed–Solomon codes. Lastly, the quantum reading
task is introduced. The general concept is given, followed by a detailed description of the
channel model adopted.

2.1. Classical Codes
2.1.1. Cyclic Codes

A linear code C over Fq with parameters [n, k, d]q is called cyclic if for any code-
word (c0, c1, . . . , cn−1) ∈ C implies (cn−1, c0, c1, . . . , cn−2) ∈ C. Defining a map from Fn

q
to Fq[x]/(xn − 1), which takes c = (c0, c1, . . . , cn−1) ∈ Fn

q to c(x) = c0 + c1x + · · · +
cn−1xn−1 ∈ Fq[x]/(xn − 1), we can see that a linear code C is cyclic if and only if it corre-
sponds to an ideal of the ring Fq[x]/(xn − 1). Since any ideal in Fq[x]/(xn − 1) is principal,
then any cyclic code C is generated by a polynomial g(x), which divides (xn − 1). These
polynomials are called generator polynomials.

A way to characterize the parameters of a cyclic code is by means of the generator
polynomial and its defining set. Roughly speaking, the defining set characterizes the
common zeros of all polynomials c(x) ∈ C. More precisely, let n and q be relative prime, so
qe ≡ 1 mod n, for some integer e. Fix an element β of order n in an extension Fqe of Fq.
We have that the defining set of C, which is denoted by Z(C), is Z(C) = {i ∈ Zn : c(βi) =
0 for all c(x) ∈ C}. The family of Reed–Solomon (RS) codes is a particular case of cyclic
codes, where the generator polynomial has some additional properties.

Definition 1. Let α be a primitive element of Fq. Let b ≥ 0, n = q− 1, and 1 ≤ k ≤ n. A cyclic
code RSk(n, b) of length n over Fq is a Reed–Solomon (RS) code if the generator polynomial is
given by

g(x) = (x− αb)(x− αb+1) · · · · · (x− αb+n−k−1).

Since the minimal distance of any cyclic code is bounded from below by the maximum
number of consecutive elements in Z(C) and the Singleton bound says that the minimal
distance of a [n, k] code is not greater than n− k + 1, we see that RS codes have minimal
distance equal to n − k + 1. Thus, for fixed length and dimension, they have maximal
possible minimal distance and, therefore, they are named maximal distance separable
(MDS) codes.

Even though the previous definition of RS codes describes them properly, there is a
more practical way to construct RS codes. Choose an enumeration P = (P1, . . . , Pn) of n
mutually distinct points in Fq. Let Fq[X] be the set of all polynomials in the variable X with
coefficients in Fq. The RS code is given by

RSk(n, b) = {evP ( f ) : f ∈ Fq[X], deg( f ) < k}, (1)

where ev is the evaluation map defined by

evP : Fq[X] → Fn
q , (2)

f (X) 7→ ( f (P1), . . . , f (Pn)). (3)
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For the decoding scheme, we apply the Berlekamp–Massey algorithm [22] (Section 5.4.2).
Since we are using small RS codes, meaning that the length of the RS codes is significantly
shorter than LDPC or Turbo codes, the Berlekamp–Massey algorithmic fulfills our needs.

Before presenting BCH codes, we need to introduce the concept of minimal polyno-
mials. Let β ∈ Fqe . The minimal polynomial over Fq of β is the monic polynomial with
smallest degree, M(x), and coefficients in Fq such that M(β) = 0. If β = αi for some
primitive nth root of unity α ∈ Fqe , we denote the minimal polynomial of β by M(i)(x).

Definition 2. Let Fq be a finite field, n and q be relative prime, and α be a primitive nth root of
unity. A cyclic code BCH(δ, b) of length n over Fq is a Bose–Chaudhuri–Hocquenghem (BCH)
code of design distance δ if the generator polynomial is given by

g(x) = lcm{M(b)(x), M(b+1)(x), . . . , M(b+δ−2)(x)}, (4)

for some integer b ≥ 0. If n = qe − 1 then the BCH code is called primitive and if b = 1 it is called
narrow-sense.

The dimension of a BCH code is equal to k = n− deg(g(x)), similarly to the Reed–
Solomon code case. The minimal distance can also be computed using the defining set
of BCH(δ, b). However, there is no general formula for BCH codes. We would need to
introduce the concept of q-ary cyclotomic coset modulo n and analyze each code in order
to obtain the respective dimension. Therefore, it is beyond the scope of this paper. The
performance analysis of the code is based on error probability and rate.

The encoding algorithm used for BCH codes is implemented via matrix multiplication,
which has complexity O(n2). For the decoding algorithm, the Berlekamp–Massey algorithm
is also used.

2.1.2. Reed–Muller Codes

The construction of Reed–Muller codes is similar to the one presented for Reed–
Solomon codes using evaluation map. The difference relies on the set of polynomials
considered. Take a vector space Fm

q , where m is an integer. Choose an enumeration
P = (P1, . . . , Pn) of n mutually distinct points in Fm

q . The evaluation map is defined as

evP : Fq[X1, . . . , Xm] → Fn
q , (5)

f (X1, . . . , Xm) 7→ ( f (P1), . . . , f (Pn)), (6)

where Fq[X1, . . . , Xm] is the set of all polynomials in the variables X1, . . . , Xm with coeffi-
cients in Fq. We can define Reed–Muller codes by means of evaluating polynomials.

Definition 3. Let Fq be a finite field, and r, m be integers such that 0 ≤ r < m(q − 1). Let
n = qm and P = (P1, . . . , Pn) be an enumeration of all elements in Fm

q . A block code RM(r, m) of
length n over Fq is a Reed–Muller code of order or degree r in m variables if it is given by the set

RM(r, m) = {evP ( f ) : f ∈ Fq[X1, . . . , Xm], deg( f ) ≤ r}. (7)

It is possible to show that the dimension of a RM(r, m) over Fq is equal to the size of
the set [19] (Proposition 5.4.7)

Eq(r, m) = {e ∈ Nm
0 : 0 ≤ ei ≤ q− 1 for all i

and e1 + · · ·+ em ≤ e}. (8)
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The encoding algorithm used to construct the Reed–Muller codes is via generator
matrix. We use the standard majority logic vote method due to Irving S. Reed [23] in order
to decode the received string.

2.2. Quantum Memory Cell and Quantum Reading

We now provide a description of quantum memory cells and quantum reading suitable
for this paper. A quantum memory cell is defined as the set Φ = {W x, px}x∈X of quantum
channels. For a fixed x, quantum input and output Hilbert spacesHB′ andHB, respectively,
we have

W x : D(HB′) → D(HB) (9)

ρ 7→ W x(ρ), (10)

where D(HB′),D(HB) are the sets of input and output density states of the quantum
channelW x, and px = PX{X = x} is the probability distribution law of X. We call x ∈ X
the quantum memory cell index. We consider X binary and the distribution of the random
variable X describing the label of the quantum channels to be Bernoulli with probability
p = 1/2.

The quantum reading protocol consists in probing a memory cell in order to discrimi-
nate between its possible index values, i.e., between quantum channels. Additionally, and
more important to this paper, it is assumed that the encoder can use classical codes during
the writing process on the quantum channels arising from the quantum memory cell in
order to reduce the error probability. Let c be a codeword of a classical code. Then, the
encoder is able to choose the quantum memory cell index and, therefore, which channel is
to be placed, according to c. Since the encoder chooses the quantum memory cell index, we
can assume, without loss of generality, that a source code is performed on the information
bits to produce evenly distributed indexes. A schematic of the quantum reading protocol is
given in Figure 1.

01 1 0 0 1Memory
{r0, r1}

Transmitter Receiverρ

x

Decoder

Encoder

Φ = {Wx, px}

Figure 1. Quantum reading protocol.

For the quantum channel model, we use bosonic pure-lossy channels. They are a
reasonable basic continuous variables model for optical memories. Thus, the binary channel
ensemble is given by Φ = {W x, px}x=0,1, where p0 = p1 = 1/2, and W x represents a
pure-lossy channel with transmissivity 0 ≤ κx ≤ 1. The action of eachW x channel in the
Heisenberg picture is described by the map

âB →
√

κx âB −
√

1− κx âE, (11)

where âB is the annihilation operator of the probe mode and âE is that of an environmental
vacuum mode. We are considering that the two parameters κ0 and κ1 assume values in the
interval [0, 1], since it is considered that the optical memories are read by reflection.



Entropy 2022, 24, 5 6 of 14

Optimal Error Probability

In Ref. [15], the error probability under the optimization of the probe state and the
measurement apparatus used in the receiver is analyzed. The optimization considers
that the decoder can probe the memory cells as many times as necessary, and Helstrom’s
measurements are at its disposal. Using coherent states, they show that the optimal error
probability is

Pc =
1−

√
1− exp[−n(

√
κ0 −

√
κ1)]

2
, (12)

where n is the average number of photons. On the other hand, they also consider non-
classical probes described via Einstein–Podolsky–Rosen transmitter. It is composed of
s pairs of signals and references, entangled via two-mode squeezing. The squeezing
parameter ξ of the two-mode squeezing state and the parameter s are connected by the

expression ξ = arcsinh
√

n
s . Optimizing the error probability in terms of the parameter s,

the following expression of the error probability is obtained

Ps =
exp(−µn)

2
, (13)

where
µ =

κ0 + κ1 + 2
2

− 2
√

κ0κ1 −
√
(1− κ0)(1− κ1). (14)

In the following section, we are going to analyze the error probability derived from
the use of classical codes and compare it with the previous optimal error probabilities.

3. Proposed Protocol

This section is divided in two. Initially, we present the probing strategy applied
to the memory cells. Afterward, the encoding and decoding protocols implemented to
incorporate and retrieve information from the memory cells are shown. In particular, the
heterodyne and Dolinar receivers used to measure the output probe state are described.

3.1. Probing Strategy

Choosing the probing state is an important step in any metrological system. However,
our focus is on the improvement of using classical codes. Therefore, we have opted to
apply single-mode coherent states in the probing step. Their implementation is not so
complex as compared with squeezed states, and one can also use standard optical devices
to manipulate the phase and amplitude of the coherent state.

We are going to describe a single-mode coherent state via the basis of Fock states and
the Wigner function. The first characterization will help us to compute the probability
distribution obtained in the photodetector. The second characterization is important when
we consider the action of the displacement operator and the description of the probability
distribution in a heterodyne detection.

Let {|n〉}, n = 0, 1, 2, . . ., be the basis of Fock states. A single-mode coherent state |α〉
can be written as

|α〉 = e
1
2 |α|

2
∞

∑
n=0

αn
√

n!
|n〉. (15)

Its Wigner function reads

Wα(r) =
2
π

e−(r−r)T(r−r), (16)

where

r =
(√

2Re{α}√
2Im{α}

)
. (17)
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Since the Wigner function gives a quasiprobability description of a quantum state, we
see that a coherent state is Gaussian.

3.2. Encoding and Decoding Protocols

The encoding process consists in storing the information to be read in the future.
Suppose we have an information vector i to be stored. Due to imperfect storing or reading
of the information vector, the noise inherently prohibits us from reading the information
perfectly. We need to add redundancies in order to overcome this issue and, in our case,
use classical codes. Therefore, we first produce a codeword over F2 written in the memory
cell labels. Suppose the information vector is a K bits string, the encoder uses i to derive
the codeword c = (c1, . . . , cN) of length N. If the classical code is constructed over F2s ,
with s > 1 an integer, then it is needed to choose a basis of F2s over F2 and represent each
coordinate cj, 1 ≤ j ≤ N, in that basis. This basis expansion process will be implemented
when we use Reed–Solomon codes. After producing the codeword c over F2, we can move
to the second step, which consists of associating each coordinate of c to the corresponding
quantum memory cell index.

Observe that we are assuming that the quantum memory cell is composed of two
quantum channels. However, the same method can be extended to quantum memory cells
with cardinality ps, where p is a prime number and s ≥ 1 is an integer.

The decoding protocol consists of two parts. The first one is measuring the probing
state in order to estimate the quantum memory cell. After probing the set of N memory
cells, a noisy string or vector is obtained. Below we present in detail the measurement
apparatus used through the paper, the heterodyne and Dolinar receiver. After producing
the noisy vector, a decoding algorithm computes the best candidate of codeword for the
classical code in consideration. The decoding algorithms used for the codes used in this
paper have been discussed in Section 2.

3.2.1. Heterodyne Receiver with Maximum Likelihood Estimator

Suppose we plan to recover the information stored in the memory cells, then we
probe each memory cell with a coherent state. The output state contains the information
stored in the memory cell. The lossy channel will give |κxα〉, for x = 0, 1, once applied to
the coherent state |α〉. So, we need to retrieve the information about x. For this goal, the
heterodyne and Dolinar receiver are used. The heterodyne receiver is presented in this
subsection, and Dolinar receiver in the following.

Heterodyne receivers are used when one wishes to retrieve the information stored in
the parameter α of the coherent state [2]. See Figure 2. The POVM describing this receiver
is

Πβ =
1
π
|β〉〈β|. (18)

Thus, the probability distribution obtained after probing the memory cell in the j-th
position and using a heterodyne receiver is given by

pY(β) =
1
π
〈β|W cj(|α〉〈α|)|β〉, (19)

where β ∈ C and Y is the random variable describing the output probability distribution.
After this step, we need to divide the complex plane in order to estimate if cj is equal to
zero or one. This is implemented via the maximum likelihood estimator. The partition of
the complex plane and the decision rules are described by

ĉj =

{
1, if Λ(β) ≥ η,
0, if Λ(β) < η,

(20)
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where

Λ(β) =
pY|X(β|1)
pY|X(β|0) (21)

and
η =

p0

p1
, (22)

with p0 as the probability of 0 in a codeword c and p1 = 1− p0. From the Wigner function of
the coherent state, we see that the distribution of pY|X(β|x), x = 0, 1, is Gaussian. Therefore,
the partition of the plane can be made from the parameter of the coherent state and the
reflexivities of the memory cells.

PC

Photon Counter
|β(cj)〉

Local
Laser

]π

A

PC

Photon Counter

Figure 2. Heterodyne receiver schematic.

3.2.2. Dolinar Receiver

Dolinar receiver takes a different road than the heterodyne receiver [2]. It is an adap-
tive receiver. Suppose there are two coherent states, |α〉 and |γ〉, we want to distinguish.
Initially, the Dolinar receiver makes a guess of the true state and subtracts it from the state to
be determined. This leads to the state |ψ− φ〉, where ψ is the state to be determined and φ
is the guess. Next, the resulting state is measured in a photodetector. For the computational
simulation, we use

Q1 =
∞

∑
n=1

(1− η)n|n〉〈n|, (23)

where 1− η is the detection efficiency, Q1 is the click operator and Q0 = I− Q1 is the
no-click operator. If there is a click, then the guess is changed and the process is repeated
with the same state to be determined. Otherwise, the receiver declares that the true state is
the one it has guessed. An illustrative schematic is shown in Figure 3.

For numerical and analytical analysis of the above process, we need to clarify the
feedback process shown. First of all, we are considering that the feedback is fast. Consider
that the feedback runs l times and the incoming state is |α〉. Then, in each round, the receiver
has

∣∣∣ α√
l

〉
as the input state. This is the state that the receiver has to guess. Observe that

increasing too much the number of rounds, l, in the receiver will make it more susceptible
to errors. In particular, we will use l = 2 in the following.
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PC

Photon Counter
|β(cj)〉

Local
Laser

nt zt ⊕ 1
on click

zt ∈ {0, 1} zT = 0→ ĉj = 1
zT = 1→ ĉj = 0

eiπzt

|β(cj) + ut〉

]π

A

ĉj

Figure 3. Dolinar receiver schematic.

The second point is about the subtracted state |φ〉. To optimize the error probability,
|φ〉 needs to be of time-varying amplitude as shown in [2]. For simplicity, we are assuming
that |φ〉 can be instantaneously changed into one of the two possible states. Even though not
optimal, this strategy gives significant improvements when compared with the heterodyne
receiver. See the following section.

4. Analysis of Error Probability Using Classical Codes

Consider memory cells {W0,W1}, where p0 = p1 = 1/2, with reflexivities κ0 and
κ2, respectively. Suppose a string of memory cells is encoded via a classical code C. The
information stored in the string is retrieved by probing them via a coherent state. From the
result obtained, we analyze the error probability between the actual information i encoded
by C and the estimated information î after decoding the noisy string after the probing step.

A sample plot is shown in Figure 4. For a fixed rate R = K
N , where N and K are the

length and dimension of the classical code, respectively, we compute the error probability
for several values of the average number of photons. The receiver is also fixed. For the
particular case of Figure 4, we used a heterodyne receiver. The analysis described in detail
for the heterodyne and Dolinar receivers below focuses on the crosspoint or threshold
where using the classical code gives improvement compared to the optimal receiver using
coherent or squeezed states. As an example, the value of the threshold using RS code with
rate R = 25/255 and Dolinar receiver is equal to 3.2, as one can see in Figure 4. Notice
that the threshold depends on the slope of the error probability curve for each code and
receiver. Therefore, it depends on the family of the code, the parameters of the code, and
the receiver used. See below the error mitigation behavior analyzed under the perspective
of the threshold for three families of classical codes, with several rates, and two types
of receivers.

4.1. Heterodyne Receiver

For fixed values of transmissivities, κ0 and κ1, the analysis given in this paper consider
the behavior of error mitigation for different codes. Because of analytical difficulties in
deriving a closed formula for the error probability using classical codes, we adopted numer-
ical simulations as the means of comparison between our case of study and the literature.

The first characterization is presented in Figure 5. The behaviors of the three codes
are similar. First of all, as the rate increases, it also increases the value of the threshold.
Increasing the rate means that we have less redundancy and, therefore, the code has the
error-correction capability decreased, which imposes the need for probing with higher
energy in order to surpass the optimal strategies. Secondly, the threshold values go up
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to 45 photons. This means that we can keep in the quantum regime for surpassing the
optimal strategies when using classical codes.

0 5 10 15
Average number of photons
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Using [255,25]8 RS-code and Dolinar receiver
Probability of Error for perfect detection of Coherent states
Probability of Error for perfect detection of Squeezed states

1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

Figure 4. Error probability decay using [255, 25]8 Reed–Solomon code and Dolinar receiver for
κ0 = 0.1 and κ1 = 0.95.
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Figure 5. Error mitigation using Reed–Solomon, BCH, or Reed–Muller codes. All codes are consid-
ered in conjunction with a heterodyne receiver. The memory cells have transmissivities equal to
κ0 = 0.1 and κ1 = 0.95.

Comparing between codes, BCH codes and Reed–Muller codes have similar perfor-
mances. However, it is important to remember that there are some limitations in using
Reed–Muller codes since the choice of parameters does not have much freedom compared
with BCH and Reed–Solomon codes. For Reed–Solomon codes, we see that they request
probing with more energy, but such an increase of energy is less than 5 photons. Therefore,
in practical applications, one would choose the code that has an encoder and decoder at
the disposal with the lowest complexities.

Next, the behavior of the error mitigation is investigated for different values of trans-
missivities and using Reed–Muller codes. The first aspect one can see is that the per-
formance highly depends on the difference between the transmissivities κ0 and κ1. For
transmissivities where κ0 and κ1 are closer, the output probe states have position and
momentum which are closer. Therefore, the heterodyne receiver in conjunction with maxi-
mum likelihood estimator has a higher probability of estimating the value encoded in the
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memory cell erroneously. This will imply in a receiver output string with more errors. For
a code with the same rate to surpass the optimal receiver, it needs more probing energy so
that error probability decreases. This is the reason why one needs more energy for κ0 = 0.3
and κ1 = 0.75, and why the slope of the curve is higher than the case with κ0 = 0.1 and
κ1 = 0.95. See Figure 6. For Reed–Solomon and BCH codes, we have the same behavior.
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Figure 6. Comparison of performance using Reed–Muller codes for memory cells with different
transmissivities. Solid line refers to memory cells with trasmittivities given by κ0 = 0.1 and κ1 = 0.95.
Dotted line refers to memory cells with transmittivities κ0 = 0.3 and κ1 = 0.75.

4.2. Dolinar Receiver

The Dolinar receiver is a powerful receiver that can be used for achieving the Helstrom
bound on the error probability of distinguishing quantum states. As mentioned before,
it also comes with an inherited complexity due to its adaptive character. Nonetheless, it
can be implemented in practice [20]. For the analysis shown below, we need to impose
some defects on the Dolinar receiver, otherwise the results obtained would be unrealistic.
The structure and procedure for implementing the Dolinar receiver is the one explained
in Section 3. The defect imposed for the results below is over the efficiency of the pho-
todetector, which we consider to be equal to 0.9. This value is close to the one obtained
with the current technology for some photodetectors. One additional defect that could be
added is dark counting. However, to consider an experiment with dark counting would
need additional parameters, such as the rate of measurement over the memory cells. The
complexity in dealing with these details could fade the importance of the codes used and
mislead the analysis.

Let the reflexivities be κ0 = 0.1 and κ1 = 0.95. It is shown in Figure 7 the performance
using Reed–Solomon, BCH, or Reed–Muller codes in conjunction with a heterodyne or
Dolinar receiver. Reed–Solomon and BCH codes in conjunction with Dolinar receiver give
the best performance between them all. For low rates, BCH codes with heterodyne or
Dolinar receivers give similar results. In particular, for rates below 0.1, the threshold value
of using BCH codes with the heterodyne receiver is 3.2 and with Dolinar receiver is 1.9.
However, the difference between heterodyne and Dolinar receiver accentuates for a higher
rate. The performance using the Dolinar receiver is shown in detail in Figure 8.

The performance of using Reed–Solomon or BCH codes in conjunction with Dolinar
receiver is quite similar. For some rate R ∈ [0.4, 0.5], Reed–Solomon codes show better error
mitigation than BCH codes. However, for practical reasons, BCH codes may be the best
choice. The reason is that Reed–Solomon codes are constructed in an extended field F2s , for
some integer s, of F2. This imposes the need to constantly decompose the coordinates of the
codewords on a basis of F2s over F2. Such decomposition is implemented in the encoding
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and when writing the received string to feed the decoder. It is a not-so-demanding process,
but may be substantial for choosing in favor of BCH codes.
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Figure 7. Comparison between heterodyne receiver and Dolinar receiver when using Reed–Solomon,
BCH, and Reed–Muller codes. We are considering that the photodetector used in the Dolinar receiver
has efficiency equal to 0.9 and memory cells have transmissivities κ0 = 0.1 and κ1 = 0.95.
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Figure 8. Error mitigation using Reed–Solomon, BCH, or Reed–Muller codes in conjunction with
Dolinar receiver. We are considering that the photodetector used in the Dolinar receiver has efficiency
equal to 0.9 and memory cells have transmissivities κ0 = 0.1 and κ1 = 0.95.

There is a last point to consider. The accomplishments presented using Dolinar
receiver could be due to the receiver and, therefore, no code is needed. However, this is
not true. Since the efficiency of the photodetector is below one, we have that the error
probability without code but using Dolinar receiver is bounded from below. In particular,
for the efficiency of 0.9 considered in our simulation and for any value of the average
number of photons, the error probability is always above 0.12%. So, to improve further the
error mitigation, one needs to amend additional tools, such as classical codes.

5. Final Remarks

We have shown that classical error-correcting codes can be used as a tool to reduce
error probability in quantum reading. They have been applied in a short length range.
Even so, error mitigation is accomplished. Above all, they can exhibit improvements when
compared with optimal strategies using coherent or two-mode squeezed states once a



Entropy 2022, 24, 5 13 of 14

threshold is crossed. All of these for two types of receivers, heterodyne receiver or Dolinar
receiver. We also studied the situation when the channel transmissivities are closer. It
was shown that the error mitigation deteriorates but one can still surpass the optimal
strategies probing with a state with higher energy. The same conclusion is obtained for the
Dolinar receiver. As an overall conclusion of the analysis presented, BCH codes are the
optimal code choice for error mitigation in the quantum reading task among the families of
codes considered.

Several aspects could be further investigated in future works. Firstly, how the error
probability mitigation behaves using codes with larger lengths and different rates. Some
examples of possible choices of codes are LDPC and Turbo codes. It is expected that using
codes with larger lengths and lower rates reduces the error probability. However, we do not
know how this reduction will behave in this or in different scenarios. Secondly, analytical
upper and lower bounds need to be obtained for a broader understanding of the current
results. Lastly, it is expected that classical codes performance depends on the weight
distribution of the code. This result may help to derive the error bounds mentioned before.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors acknowledge the funding from the European Union’s Horizon 2020 research
and innovation program, under grant agreement QUARTET No 862644.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to warmly thank the reviewers who gave a careful reading
of this manuscript. Their very valuable remarks and suggestions led to the improvement of the
manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hirvensalo, M. Quantum Computing; Springer: Berlin/Heidelberg, Germany, 2003.
2. Cariolaro, G. Quantum Communications; Springer-Verlag GmbH: Berlin/Heidelberg, Germany, 2015.
3. Mancini, S.; Winter, A. A Quantum Leap in Information Theory; WSPC: Singapore, 2020.
4. Childs, A.M.; Preskill, J.; Renes, J. Quantum information and precision measurement. J. Mod. Opt. 2000, 47, 155–176. [CrossRef]
5. Acín, A. Statistical distinguishability between unitary operations. Phys. Rev. Lett. 2001, 87, 17. [CrossRef] [PubMed]
6. Gilchrist, A.; Langford, N.K.; Nielsen, M.A. Distance measures to compare real and ideal quantum processes. Phys. Rev. A 2005,

71, 6. [CrossRef]
7. Sacchi, M.F. Optimal discrimination of quantum operations. Phys. Rev. A 2005, 71, 6. [CrossRef]
8. Sacchi, M.F. Entanglement can enhance the distinguishability of entanglement-breaking channels. Phys. Rev. A 2005, 72, 1.

[CrossRef]
9. Wang, G.; Ying, M. Unambiguous discrimination among quantum operations. Phys. Rev. A 2006, 73, 4. [CrossRef]
10. Duan, R.; Feng, Y.; Ying, M. Perfect distinguishability of quantum operations. Phys. Rev. Lett. 2009, 103, 21. [CrossRef] [PubMed]
11. Hayashi, M. Discrimination of two channels by adaptive methods and its application to quantum system. IEEE Trans. Inf. Theory

2009, 55, 3807–3820. [CrossRef]
12. Harrow, A.W.; Hassidim, A.; Leung, D.W.; Watrous, J. Adaptive versus nonadaptive strategies for quantum channel discrimination.

Phys. Rev. A 2010, 81, 3. [CrossRef]
13. Rexiti, M.; Mancini, S. Discriminating qubit amplitude damping channels. J. Phys. A Math. Theor. 2021, 54, 165303. [CrossRef]
14. Pirandola, S. Quantum reading of a classical digital memory. Phys. Rev. Lett. 2011, 106, 9. [CrossRef] [PubMed]
15. Pirandola, S.; Lupo, C.; Giovannetti, V.; Mancini, S.; Braunstein, S.L. Quantum reading capacity. New J. Phys. 2011, 13, 113012.

[CrossRef]
16. Das, S.; Wilde, M.M. Quantum rebound capacity. Phys. Rev. A 2019, 100, 3. [CrossRef]
17. Pereira, F.R.F.; Mancini, S. Polar codes for quantum reading. arXiv 2020, arXiv:2012.07198.
18. Pereira, F.R.; Mancini, S. Stabilizer codes for open quantum systems. arXiv 2021, arXiv:2107.11914.
19. Pellikaan, R.; Wu, X.-W.; Bulygin, S.; Jurrius, R. Codes, Cryptology and Curves with Computer Algebra; Cambridge University Press:

Cambridge, UK, 2017.

http://doi.org/10.1080/09500340008244034
http://dx.doi.org/10.1103/PhysRevLett.87.177901
http://www.ncbi.nlm.nih.gov/pubmed/11690313
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1103/PhysRevA.71.062340
http://dx.doi.org/10.1103/PhysRevA.72.014305
http://dx.doi.org/10.1103/PhysRevA.73.042301
http://dx.doi.org/10.1103/PhysRevLett.103.210501
http://www.ncbi.nlm.nih.gov/pubmed/20366023
http://dx.doi.org/10.1109/TIT.2009.2023726
http://dx.doi.org/10.1103/PhysRevA.81.032339
http://dx.doi.org/10.1088/1751-8121/abed68
http://dx.doi.org/10.1103/PhysRevLett.106.090504
http://www.ncbi.nlm.nih.gov/pubmed/21405610
http://dx.doi.org/10.1088/1367-2630/13/11/113012
http://dx.doi.org/10.1103/PhysRevA.100.030302


Entropy 2022, 24, 5 14 of 14

20. Cook, R.L.; Martin, P.J.; Geremia, J.M. Optical coherent state discrimination using a closed-loop quantum measurement. Nature
2007, 446, 774–777. [CrossRef] [PubMed]

21. Banchi, L.; Zhuang, Q.; Pirandola, S. Quantum-enhanced barcode decoding and pattern recognition. Phys. Rev. Appl. 2020, 14, 6.
[CrossRef]

22. Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, UK, 2003.
23. Reed, I. A class of multiple-error-correcting codes and the decoding scheme. Trans. IRE Prof. Group Inf. Theory 1954, 4, 38–49.

[CrossRef]

http://dx.doi.org/10.1038/nature05655
http://www.ncbi.nlm.nih.gov/pubmed/17429395
http://dx.doi.org/10.1103/PhysRevApplied.14.064026
http://dx.doi.org/10.1109/TIT.1954.1057465

	Introduction
	Preliminaries
	Classical Codes
	Cyclic Codes
	Reed–Muller Codes

	Quantum Memory Cell and Quantum Reading

	Proposed Protocol
	Probing Strategy
	Encoding and Decoding Protocols
	Heterodyne Receiver with Maximum Likelihood Estimator
	Dolinar Receiver


	Analysis of Error Probability Using Classical Codes
	Heterodyne Receiver
	Dolinar Receiver

	Final Remarks
	References

