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Abstract

Numerical simulations for crashworthiness require the definition of material properties that are not always pre-
dictable with standard experimental tests. This paper deals with the numerical optimization of a thermoplastic com-
posite material model. The component is a vehicle impact attenuator made of an innovative All-PP (PolyPropylene)
composite material. The peculiar failure mechanism of this material makes the numerical simulation of the collapse
a difficult challenge to achieve with a trial-and-error calibration of the material card. Therefore, an optimization pro-
cedure is proposed to determine the material parameters. The optimization is implemented in LS-OPT, where the
mean square error between the experimental and numerical load-displacement curves is the objective function to be
minimized. Two test cases are considered: (1) optimization of the material card based on the full load-displacement
curve from the experimental tests and (2) optimization of relevant parameters of a numerical trigger added to control
initial contact instabilities between the impacting rigid wall and the component in the numerical simulations. The
optimization strategies Sequential Response Surface Method (SRSM) and Efficient Global Optimization (EGO) are
used. The results show that the presented methodology allows characterizing the studied composite material and thus
obtaining a more efficient numerical model.

Keywords: Crashworthiness, Composite impact attenuator, Finite element analysis, Efficient Global Optimization,
Sequential Response Surface Method, Surrogate models

1. Introduction

In recent years, fiber reinforced thermoplastic (FRTP) composites have been increasingly attracting the attention
of automotive manufacturers [1]. The demand for the development of FRTP composites arise from the need to respect
the always more strict environmental regulations in terms of CO2, waste recover, reuse and recyclability. Several
studies on the recyclability of thermoplastic materials and FRTP composites [2–8] demonstrate the advantages of
this class of materials due to the possibility of reuse or recovery of fibers or matrix at the end of the life cycle of
the components. In addition to recyclability, FRTP composites are of great interest due to their peculiar mechanical
properties and high damage tolerance compared to conventional fiber reinforced thermoset (FRTS) composites [9–16].
In terms of automotive application, crashworthiness is one of the most important aspects to be considered. It refers
to the ability of a component to absorb energy during an impact event. Conventional FRTS composites exhibit good
energy absorption properties in addition to their light weight and strength. However, compared to FRTS composites,
FRTP composites generally respond differently to a crush loading, with the interplay of multiple failure modes, such
as delamination, matrix cracking, matrix-fiber debonding, and fiber fracture [17, 18], making the crushing behavior
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less controllable and predictable compared to the plastic collapse mode. In this context, the development of Computer-
Aided Engineering (CAE) methods and the advances in numerical simulations using Finite Element Analysis (FEA)
can enable prediction of component response to external loading conditions in the design phase of new products.
Among others, the advanced multiphysics simulation software package LS-DYNA allows the modeling of a wide
range of physical events thanks to a highly nonlinear transient dynamic FEA with explicit time integration. The
material models available in the LS-DYNA software allow the simulation and prediction of the mechanical properties
of composite materials starting from parameters that can be extrapolated by standard experimental tests. However,
when these parameters are scaled up to simulate an entire component, the accuracy of the prediction decreases.
To capture certain behaviors, such as collapse mode or crush energy at larger scales (e.g., component scale), more
parameters are needed that typically cannot be defined by standard coupon tests. Moreover, polypropylene-based
matrix composites show progressive crushing mainly caused by delamination and plastic deformation [19, 20], and
these particular failure modes still make the finite element simulation of this class of materials an open issue [21, 22].
Therefore, many tests are usually necessary before a numerical model is obtained that agrees with the results from
experimental tests.

An alternative to the direct numerical approach is numerical optimization [23–27]. For example, geometry opti-
mization can be used to control the global crush behavior of a Carbon Fiber Reinforced Plastic (CFRP) component
by triggering certain failure modes and thus avoiding catastrophic collapse [25, 28]. In this context, LS-OPT [29] is
a numerical optimization tool that uses the LS-DYNA code to solve arbitrary nonlinear optimization problems and
allows the user to structure the design process, explore the design space, and compute optimal designs based on given
objectives and constraints. LS-OPT can be used to identify the material parameters associated with the use of ad-
vanced materials such as FRTP composites, which in particular require the application of highly complex material
models. After performing the physical tests and setting a parameterized simulation of such tests with LS-DYNA, the
optimizer allows an automated calibration of the numerical model to predict the test results. The aim is to minimize
the error between the experimental results and the simulation results.

In this work, the optimization is applied to a Formula SAE impact attenuator made of an All-PP thermoplastic
composite material [20] subjected to an axial impact load. The load-displacement curves extrapolated from the ex-
perimental tests are used here to calibrate the parameters of the numerical model by minimizing the Mean Square
Error (MSE) between the experimental and numerical curves. Sequential optimization techniques based on surrogate
modeling techniques are used for this purpose. Indeed, according to previous studies [30, 31], surrogate models (or
meta-models) seem to be a valuable tool in structural optimization in the field of crashworthiness. Structural opti-
mization is characterized by strong numerical noise, discontinuities in the objective function to be optimized, and
physical bifurcations in the crash behavior, which make gradient-based optimization algorithms unsuitable. Based on
a certain number of FEAs, surrogate models allow the construction of a computationally favorable approximation of
the considered expensive objective function [32], also called response surface. In this way, direct optimization of the
real objective function – which is very expensive, since it relies on FEA simulations – is replaced by optimization of
the approximate model.

The aim of this study is to increase the accuracy of the prediction of the global crush behavior of the impact at-
tenuator during the experimental crush test by using two different optimization approaches: the Successive Response
Surface Method (SRSM) [33] and the Efficient Global Optimization (EGO) algorithm [34]. Both methods sequen-
tially add points in the design space, i.e., in the domain of definition of the considered parameters, and are effective
algorithms for highly nonlinear problems such as crashworthiness. However, while the former is characterized by
a local search , the latter is more suitable for global optimization. Indeed, at each iteration, SRSM adds the same
number of sampling points in an adaptive subregion and the optimization of the metamodel is restricted to the current
subregion. On the other hand, EGO builds an initial response surface based on points added according to a Design
of Experiments (DoE) technique [32], and continues by adding a single point per iteration according to the optimiza-
tion of a low-cost function, the acquisition function, which balances local and global search. These algorithms are
applied in this study with a particular focus on predicting the first part of the load-displacement plot. Indeed, previous
studies have shown a dramatic discrepancy between the experimental and numerical curves during the initial impact
phases. This was mainly due to initial contact instabilities between the impacting rigid wall and the component in the
numerical simulations, as well as edge imperfections and undulations of the real component.

The potential of the presented methodology in the design of numerical simulations is confirmed by the obtained
results, which allow several considerations. First, not all parameters have the same influence on the outcome of the
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simulations and it is more convenient to select only some of them through a sensitivity analysis in order to save
computational resources and obtain accurate results. Secondly, a focused study of the influence of the trigger – and
thus the first stages of the crush – can lead to a more accurate prediction of the crush behavior. Finally, optimization by
surrogate models is very effective in terms of computational cost. Although both considered optimization algorithms
are capable of achieving comparable optimal configurations of parameters, the EGO algorithm requires a much smaller
budget of evaluations – and thus FEA simulations – to achieve such optima. Moreover, it should be emphasised that
thermoplastic composites are still the subject of intensive analysis studies due to their relative novelty. Thus, the result
of this work represents an important step in the numerical characterization of the studied material, from which future
research can also benefit.

The paper is organized as follows. Section 2 introduces the material PURE© used to fabricate the impact at-
tenuator that is the focus of this study. In Sections 3 and 4, the mechanical [20, 35, 36] and numerical tests [37]
previously performed on the component in question are each briefly recalled. In Section 5, an overview of the test
cases considered for the optimization, the settings of the sensitivity analysis performed to estimate the influence of
the different parameters, a brief theoretical definition of the optimization strategies SRSM and EGO, and a practical
subsection on how to set up the solver LS-OPT for the analyses are given. The results are presented in Section 6 and
the final conclusions are drawn at the end in Section 7.

2. Material

An impact attenuator of a Formula SAE Vehicle (Figure 1) made of an innovative thermoplastic composite ma-
terial is considered for the analysis. The material is called PURE©, and both its matrix and reinforcement are made
of polypropylene. The PURE© is a laminated composite and each lamina has a woven structure. The thermoplastic
tapes present a skin and core configuration, that are respectively the copolymer and the homopolymer. Polymers gen-
erally present high degree of anisotropy, and orienting the polymer chain provides higher mechanical performances.
Accordingly, the core of the tape is highly oriented towards providing strength. The tapes are manufactured with a
co-extrusion process in which thin copolymer layers, which have lower melting temperature, cover directly the ho-
mopolymer. The tapes are woven into fabrics that are then hot-compacted in sheets. During this process the copolymer
melts and, after solidification, it has bonding capability to keep the homopolymer fibers together. Hence, the copoly-
mer form the matrix and the homopolymer the reinforcement of the final composite material. The advantage of this
process is in the wide consolidation temperature window (130-180 ◦C) that ensure to keep high mechanical properties
in the co-extruded tapes. Other advantages of the PURE© is the fully recyclability together with its manufacturing
scraps, and its peculiar crush behavior. Indeed, the material has a good impact resistance, showing a soft and plastic
impact behavior. The impact attenuator considered is a component intended to absorb energy and attenuate the impact
acceleration during crash event. It has a truncated-cone geometry, where the frontal part has a lower cross-section,
while the part fixed to the chassis has a wider cross-section. The thickness is variable along the axis of the attenuator
(Figure 1): the red, green, and yellow portions have a thickness of 1.68 mm, 2.16 mm, and 2.4 mm, respectively. The
variation of the thickness along the axis is designed to guarantee a progressive energy absorption during the collapse

Figure 1: Formula SAE vehicle and zoom in on impact attenuator.
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of the component. Although its relatively simple geometry, this component was chosen for the study according to its
wide range of applications, that is not only restricted to the automotive sector, and that can be found in the aerospace
industry too.

3. Experimental tests

Experimental tests were performed by the authors in previous works [20, 35, 38, 39], where standard coupon test
were conducted to characterize the mechanical response of the material, summarized in Table 1.

Table 1: Experimental test results on standard PURE© specimens. E: Young Modulus; σu: strength; εu: maximum strain; G: shear modulus; τu:
shear strength.

Test E (GPa) σu (MPa) εu%
Tensile 3.4 217.8 5.90
Compression 5.1 17.5 0.52

G (GPa) τu(MPa) εu%
Shear 11.15 21.64 0.065

From the tests, it emerged that the tensile behavior of the material is characterized by high elongation to failure and
the failure is dominated by delamination. Failure due to delamination was confirmed also in compression tests, where
the layers slipped causing a sort of packaging of the tapes. Both compressive strength and strain to elongation resulted
largely lower than the tensile ones. The compression test on circular tubes showed a soft crush behavior. Indeed,
the material failed in a ductile manner, following a non-regular folding of the layers. This plastic-buckling failure
mode is due to the peculiar behavior of the thermoplastic polymer. No brittle failure happened, as is instead usually
observed in common FRTS composites, where the catastrophic failure mode is mainly dominated by fiber rupture,
matrix cracking, fiber-matrix debonding, and delamination [40]. Crushing tests on the PURE© impact attenuator
confirmed that plastic mode is the dominant failure mechanism, as can be seen in Figure 2. Specifically, Figure 2a
shows the set-up of the quasi-static crushing test on the impact attenuator. The load was applied along the axis of the
attenuator by means of a moving metal plate that gets in contact with the upper section of the attenuator. The edge
of this section presents imperfections and undulations, due to the cutting process that caused some fibers to debond.
The results of the quasi-static test are shown in Figure 2b. The failure mode of the attenuator is mainly dominated
by plastic deformation: the edge folded while crushing and the faces bent inward. No catastrophic failure occurred,
as usually happen in common FRTS composites: the material did not splinter and no debrits formation occurred,
leading to a more controllable and predictable crushing behavior. The load-displacement trend in Figure 3a shows
four well distinguished peaks that are due to the thickness discontinuity along the component longitudinal axis. The
curve evidenced a force that progressively and quite smoothly increases, and no sharp drop/peak of force are evident.

(a) (b)

Figure 2: Crush test set- up (a); Impact attenuator after crushing test (b).
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(a) (b)

Figure 3: Load-displacement experimental curves. (a) Curve recorded on the full range of displacement [0, 120] mm. (b) Zoom in on the first [0,
20] mm.

4. Numerical modeling

The finite element model of the component was built using the commercial software LS-DYNA PrePost version
4.8. The component was modelled with fully integrated four node shell elements of 2.5 mm of size. A PART COM-
POSITE was defined to set the thickness of each integration point, the correct ply staking sequence, and orientation.
The moving plate was modelled with a rigid wall. An automatic penalty-based contact definition (AUTOMATIC
SINGLE SURFACE) ensured self contacts between the rigid wall and between the elements themselves. The rigid
wall friction coefficient was estimated to lay between 0.2 and 0.3. A trigger, modelled as two rows of shell elements
with two integration points along the thickness (Figure 4, grey elements), was added to the section of the impact
attenuator that impacts with the rigid wall. The trigger aims to simulate the degraded properties of this edge, due to
undulations and manufacture imperfections. In addition, the initial behavior of the crushing is highly influenced by
the simultaneous contact of the elements of the upper section with the rigid wall, causing apparent force peaks during
the early stages of the simulation. Consequently, two layers of elements with suitably degraded mechanical properties
represent a mathematical expedient for solving this issue.

Figure 4: Numerical model of the impact attenuator.
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The material card MAT 54/55 was used to model the thermoplastic composite, although the literature provides
several examples where this material card is used to simulate FRTS composites [18, 28, 41]. This material card re-
quires physical parameters of the material that are readily available through experimental tests, and some non-physical
parameters that can be calibrated through optimization algorithms. The failure law chosen was the Chang Chang cri-
terion [42]. Accordingly, the material card allows to set properties for the orthotropic direction of the material. The
maximum element stress can be defined for element tension (Xt) and compression (Xc) in longitudinal direction and
for element tension (Yt) and compression (Yc) in transverse direction. The characteristic loading curve of the element
presents an elasto-plastic stress-strain relation. If strain to failure parameters are used (DFAIL parameters), the max-
imum deformation criteria is activated. The failure of the integration point, and consequently the element deletion is
triggered by maximum strains in longitudinal and transverse compression and tension. In this material card, the crush
front reduction factor (SOFT) is a fundamental parameter to be defined in crush simulations [41]. It is a non-physical
parameter that reduces the strength of the element row ahead of the crush front, in order to reduce instabilities due to
element deletion.

5. Optimization

The external optimizer LS-OPT was used to structure the design process, explore the design space and compute
optimal parameter configurations, according to the specified objective. More in detail, two different analyses were
performed: firstly, the material parameters that most influence the crash response were optimized; secondly, the influ-
ence of the trigger on the global response of the component was evaluated, and opportune geometrical and material
card parameters influencing the physical and mechanical properties of the trigger were optimized. In the latter case,
a sensitivity analysis was also performed with the aim to determine which variables have more impact on the out-
put variability, hence to obtain a model simplification by fixing the parameters that are less relevant in view of the
optimization target.

Differently from the methodology presented in [37], where the authors describe a targeted composite formulation
of the optimization problem with load-history evaluations at specific displacements, here an ordinate-based curve
matching optimization is performed. The Sequential Response Surface Method and the Efficient Global Optimization
algorithm are implemented, whose details are provided in Section 5.3 and Section 5.4, respectively. In Figure 5, a
flowchart of the proposed methodology is provided.

5.1. Test cases

Two surrogate-based optimization strategies are used to overcome the statistical uncertainties coming from exper-
imental tests and the necessity to tune non-physical parameters. Moreover, in order to reach an accurate overlapping
of the load-displacement curves resulting from the experimental tests and numerical simulations, two different test
cases are considered, which are described in Section 5.1.1 and Section 5.1.2, respectively.

5.1.1. Material card optimization
The strain to failure calculated through experimental tests represents a loss of load-carrying capability of the

PURE© standard specimen mainly due to delamination. However, this parameter does not scale up well to a larger
component. Indeed, the crushing collapse of the PURE© impact attenuator is mainly dominated by creasing, fold-
ing, bending, and plastic deformation. Due to these discrepancies, a good match to the experimental data can be
obtained using multiple combinations of MAT54/55 parameters. According to the literature [41] and to previous nu-
merical analyses made from the authors, the compressive strain-to-failure in the fiber direction, DFAILc, is among
the parameters that have the most influence on the crush response. Therefore, it is included in the optimization study.
Moreover, in crashworthiness simulation, a crush front reduction factor called SOFT can be set. Its tuning can avoid
instability and ensure stable crushing when the load goes from a row of elements to the following one. As such, it
also strongly influences the crush simulation result, and is optimized as second and last variable of the optimization
study. Therefore, a 2-dimensional optimization problem is addressed and targeted at minimizing the mean squared
residual error, i.e., the difference in force values between the experimental and numerical load-displacement curves.
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Figure 5: Optimization Methodology Flowchart. An enlargement of the steps composing the SRSM and EGO algorithms is provided on the right.

The optimization problems is defined as:

min
x1, x2

MSE =
1
P

P∑

k=1

(
fk(x1, x2) −Gk

Mk

)2

s.t. −0.35 ≤ x1 ≤ − 0.15,
0 ≤ x2 ≤ 1,

(1)

where x1 and x2 are the variables describing DFAILc and SOFT, respectively, and P is the amount of experimental
force values acquired during the test. Gk , k = 1, . . . , P, are the values on the experimental load-displacement target
curve shown in Figure 3a, and fk(x1, x2) the corresponding components on the computed curve f resulting from a
numerical simulation. Mk is defined as the maximum targeted absolute value of the experimental load-displacement
curve, i.e., Mk = max |Gk |. From the solver perspective, the displacement and force histories are extracted from the
simulation output and afterwards used to construct a force vs. displacement crossplot. The experimental curves used
as target curves are read into LS-OPT as file histories and the MSE between each crossplot and the corresponding test
data is then computed.

5.1.2. Trigger optimization
According to previous numerical experiments simulating the impact on the component, there is always an early

peak of force that is not visible in the experimental load-displacement curves. In order to reduce this discrepancy,
an optimization study was carried out on the trigger parameters that directly affect the stiffness of the front part of
the component. By calibrating them, it is possible to reduce the numerical instabilities and dampen the early force
peak. These parameters are the Young Modulus (Et), the compressive strain to failure (DFAILct), the maximum
compressive strength (Xct), and the wall thickness (Tk). While the latter is a geometrical parameter, the former define
the material card of the numerical model. The Tk variable indicates the thickness of a single integration point of the
shell element composing the trigger part. The variation ranges of the four parameters can be observed in Equation
(2), which defines the 4-dimensional optimization problem faced to obtain an accurate prediction of the part of the
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load-displacement curve influenced by the trigger presence. The design ranges for the variables were determined
according to the authors’ experience and the initial design values associated with the numerical model, which were
tuned by trial and error. The range should be neither too small, nor too large. Indeed, if the design range is small,
there is a risk that it will be too conservative and may not allow the design to converge at all if it is too small to capture
the variability of the response, especially if the objective function is characterized by noise. On the other hand, if the
design range is too large, more samples are needed on the search space in order to achieve sufficient accuracy of the
predictive model.

minx MSE =
1
P

P∑

k=1

(
fk(x) −Gk

Mk

)2

s.t. −0.35 ≤ x1 ≤ − 0.15,
1.5 ≤ x2 ≤ 9.5,

0.01 ≤ x3 ≤ 0.1,
0.01 ≤ x4 ≤ 0.84

(2)

Here, the variables vector is x = (x1, x2, x3, x4), whose components represent in the order the parameters DFAILct,
Et, Xct, and Tk, while the other symbols are defined as in Equation (1). The subscript t in the variable names, which
refers to the trigger component, is omitted and automatically implied in the following sections for simplicity and data
readability. The experimental reference curve for the calculation of the MSE is shown in Figure 3b. It should be
noted that, although kriging is a powerful surrogate model which results in high performance in terms of prediction
quality, this method is costly in terms of computational complexity, especially for large datasets: the computational
complexity of kriging is O(n3) where n is the number datapoints, i.e., measurements or simulations in our specific
case. Moreover, the higher the dimensionality of the problem, the higher is the necessary number of datapoints in
order to obtain an accurate approximation of the objective function. As such, a preliminary study on the sensitivity of
the MSE objective function to the variability of the problem variables was carried out. This allowed for identifying
the parameters that have more impact on the output variability and performing focused optimization studies taking
into account a maximum of two variables in a single analysis.

5.2. Sensitivity Analysis
Since the design optimization process is expensive, suitable design parameters should be determined. At the

beginning, it is important to select many rather than a few design variables. Afterward, it is commonly preferred to
perform variable screening to reduce the number of design variables, and therefore the overall computational time. In
this study, the Analysis of Variance (ANOVA) [43] is used to evaluate the main and interaction effects of the design
variables defining the trigger on the computation of the MSE. ANOVA assesses the importance of one or more factors
by comparing the response variable means, i.e. the averaged objective function values, at the different factor levels. A
full factorial DoE sampling technique was here used to evaluate the objective function for every possible combination
of every possible design variable [32]. This is the most straightforward way of sampling a design space, where each
variable can assume only a prescribed number of discrete values, a.k.a. factor levels. In this study, three levels for
each variable were chosen, leading to a total of 34 = 81 DoE points. The levels for each factor are given in Table 2
and their combinations can be visualized in Figure 6, which provides an example of samples distribution involving
the Tk, E, and Xc parameters.

Table 2: Factor information for the full factorial DoE generated in the sensitivity analysis study.

Factor Levels Values
Tk 3 0.010 0.425 0.840
Xc 3 0.010 0.055 0.100
E 3 1.5 5.5 9.5
DFAILc 3 -0.40 -0.25 -0.10

Main effects plots and interaction plots were also evaluated. The former are used to examine the differences
between level means for the single factors, while the latter show how the relationship between one categorical factor
and a continuous response depends on the value of a second categorical factor, respectively.
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Figure 6: Example of Full Factorial sampling for a selection of parameters – Tk, E, and Xc – in 2D and 3D views. The highlighted sample refers
to the initial configuration of parameters.

5.3. Sequential Response Surface Method (SRSM)
In the branch of metamodel-based optimization, which is used to create and optimize an approximate model of

the design instead of optimizing the design through direct simulation, the first technique adopted in this study is the
Sequential Response Surface Method (SRSM) [33]. The SRSM uses a region of interest – a subspace of the design
space – to determine an approximate optimum. Sampling is done sequentially, meaning that only a small number
of points is chosen for each iteration and multiple iterations are performed. After each iteration, a response surface
approximating the real objective function is constructed over the parameters domain, it is optimized, and the domain
is reduced to a new region of interest, centered on the current optimum. The algorithm proceeds by moving the center
of the region of interest as well as reducing its size. The variables ranges for the next iteration depend on both the
oscillatory nature of the solution and the accuracy of the current optimum. The first is based on whether the current
optimum and the previous designs are on the opposite or the same side of the region of interest. Regarding this, it is
worth noting that at the first iteration, the previous design is defined according to a configuration of parameters given
as an input before the optimization is launched - the parameter configuration defining the baseline model in our case,
i.e., the numerical model obtained with the trial and error technique. The accuracy of the current optimum is instead
estimated using the proximity of the predicted optimum of the current iteration to the previous design. The smaller
the distance between the two designs, the more rapidly the region of interest is reduced in size. In the current study, at
each iteration a space filling sampling strategy is used to distribute points over the domain and the kriging metamodel
is chosen to construct the response surface [32].

5.4. Efficient Global Optimization (EGO)
Efficient global optimization (EGO) [34] is a Gaussian process model-based adaptive algorithm finalized to reach

a near-optimal solution by using a low budget of evaluations. The EGO algorithm begins by fitting a surrogate model
to a set of initial points specified according to a DoE scheme. Even in this case, the DoE sampling scheme is the
space filling design and the response surface is constructed according to the kriging surrogate model. While the DoE
scheme is arbitrary, the choice of the surrogate model is strictly dictated by the optimization strategy. Indeed, after the
first response surface is fitted according to the training points – DoE points and related objective function evaluations
– for all iterations a new point, referred to as infill point, is selected by maximizing an Expected Improvement (EI)
function [32], which is defined as follows:

E[I(x)] =


(ymin − ŷ(x))Φ

(
ymin−ŷ(x)

ŝ(x)

)
+ ŝ(x)ϕ

(
ymin−ŷ(x)

ŝ(x)

)
if ŝ(x) > 0,

0 if ŝ(x) = 0.
(3)

In Equation (3), ŷ is the function approximating the real and expensive objective function, ymin is the best objec-
tive function value observed in all the previous iterations, ŝ represents the uncertainty on the interpolated function
value, while Φ and ϕ are the Gaussian cumulative distribution function and probability density function, respectively.
Therefore, the EI not only considers the predicted response value, but also its variance. The error committed in the
approximation ŝ is utilized to balance between local and global search. In fact, Equation (3) allows for locating new
points in promising areas, close to locations where the best fitness function value has been computed, as well as in
sparsely sampled areas, which are characterized by a low sampling density and, consequently, high uncertainties.
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Indeed, according to Equation (3), the EI can be large due to any of the two additive terms — the first governed by
the prediction mean and the other by the prediction variance. The point with the maximum EI is evaluated to update
the Kriging model, i.e., a FEM simulation is performed and the objective function value associated to the output is
compared to one of the best sample so far and used to augment the training set on which the response surface is fit.
The infill procedure is repeated until a prescribed number of evaluations is reached.

5.5. Setup in LS-OPT

The software LS-OPT was used to carry out the optimization of (1) the material card parameters SOFT and
DFAILc based on the match between the entire load-displacement curves from experimental tests (Figure 3a) and
simulations, and (2) the most influencing parameters on the trigger behavior, and hence the first portion of the load-
displacement curve depicted in Figure 3b, identified thanks to the ANOVA test. The focus of this section is to describe
the optimization from the software perspective, by providing a visual depiction of the methods flow and useful details
about the options settings to run the algorithms. Since the trigger optimization was addressed through both SRSM
and EGO, this test case is here used to illustrate the logical flows and the technical details.

Figure 7 illustrates the LS-OPT graphical user interface, where the optimization flowchart of the SRSM is dis-
played. Once the parameters undergoing the optimization procedure are defined, the flow starts with the sampling
phase, where a Design of Experiments methodology [32] is used to sample the design space. In particular, a Space
Filling sampling strategy is chosen to locate a set of evenly distributed points over the prescribed domain so that
the minimum distance between any two points is maximized. The objective function is evaluated by performing
FEM simulations on models defined according to the parameter configurations associated to each DoE point. The
load-displacement curves are derived from the simulations, and the MSE is computed for each curve and assigned as
objective function value to the single sampling data point. In this way, it is possible to describe the variation of the
objective function based on the values of the design variables affecting the process. Once the training set is available,
the whole domain is defined as Region of Interest and a response surface through the Kriging metamodel [32] is built
upon the available datapoints. In our case, exponential correlation functions and a quadratic trend model are chosen to
define the level of regression of the model and the polynomial degree of the approximation, as was done in [37]. The
optimum of the objective function is determined on the approximated response surface by using a Genetic Algorithm
[44], with the default settings provided by LS-OPT. The optimum is evaluated and is taken as the first sample of the
following iteration, where a new region of interest is defined as a portion of the one of the previous iteration, and the
center is located on the previous optimum. On the restricted domain, the described steps – sampling, approximation
construction, optimization – are repeated until a given termination criterion is met, which in our analyses is fixed to
a total number of 5 iterations. By setting 10 evaluations per iteration, this termination criteria implies a total bud-
get of 50 evaluated sample points. In the last iteration, the sample points are located in a region of interest that is
small enough to consider a satisfactorily small range of variability in the data. The optimization terminates with a
verification simulation on the computed optimum.

Figure 7: Optimization flowchart in LS-OPT for the SRSM optimization strategy. The main settings are shown on the right.

10

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The LS-OPT interface for the EGO algorithm is illustrated in Figure 8. EGO is a separate metamodel-base
optimization strategy in LS-OPT, which restricts the choice of the metamodel to kriging, since it is able to take
advantage of its ability to estimate the potential error committed in the approximation. Indeed, the maximization of
the EI function defined in Equation (3) allows for locating points in the domain area containing the current best design,
as well as in scarcely sampled regions, characterized by an high variance of the model. The optimization happens in
two steps. The first step (Step 1) consists of a unique iteration, set as shown in Figure 8, on the left. First of all, a DoE

Figure 8: Optimization flowchart in LS-OPT for the EGO optimization strategy. The red frames highlight the diagram blocks that differ for the two
steps – Step 1 and Step 2 – of the optimization process.

of multiple points is performed. Again, a Space Filling design was chosen to locate 8 sample points. Based on that, the
kriging response surface is built and an approximated value of the objective function ŷ as well as the error committed
in the approximation ŝ are associated to each point of the search domain. Hence, the EI function is built over the
same domain, and its optimization returns the infill point to be evaluated through FEM simulation. Step 1 is followed
by a sequential EGO with one sample per iteration (Step 2), as shown by Figure 8 (right). The switch from Step 1
to Step 2 is practically handled by letting the first iteration end and changing the algorithm settings before restarting
the optimization run from the second iteration. In the sequential EGO, one infill point per iteration is added, and the
response surface is updated at each iteration based on all the previous points (i.e., DoE samples and infill points).
It is worth noting that, at the end of every iteration, the current best design is updated if the simulated infill point
has a better objective function value than the best so far, that is the best among the DoE points and all the previous
infill points. Even in this case, the algorithm stops when a prescribed number of 50 iterations is reached, which is a
reasonable budget for the addressed 2-dimensional optimization problem [31] and in line with the total budget used for
the SRSM optimization strategy. Alternative termination criteria are design change or objective function tolerances.

6. Results and discussion

The load-displacement curve of the experimental crush test on the impact attenuator is shown in Figure 3a. Four
peaks of force can be distinguished in the curve. These peaks are due to thickness discontinuity, as illustrated in
Figure 4, and layer compaction. The material did not splitter: the faces folded and compacted themselves. The curve
evidenced a force that progressively and quite smoothly increases, an no sharp drop/peak of force are evident.

The numerical material model was set-up according to the outcome of the standard experimental tests: the Young
modulus, the ultimate strain and the stress in tension and compression were computed experimentally and then used
as input parameters. However, these parameters are affected by statistical uncertainties, and the SOFT non-physical
factor cannot even be experimentally evaluated. Accordingly, a trial and error process was necessary to fine-tune the
material parameters, and through this process, a high sensitivity of the response to the variation of the SOFT and
DFAILc parameters was evident. Figure 9a shows a comparison of the collapse mode between the experimental and
the simulated component, calibrated by trial and error. The faces of the experimental attenuator undergo to buckling
and layer compaction (Figure 9a). Instead, the faces of the numerical model do not compact due to element failure
and deletion (Figure 9b-9c).
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(a) (b) (c)

Figure 9: Crush behavior: (a) experimental test and (b)-(c) numerical simulation.

6.1. Material card optimization
The DFAILc and SOFT parameters of the material map were optimized using the SRSM methodology described

in Section 5.3. A total budget of 4 iterations, each with 8 simulated sample points, was considered. This choice is
motivated by a trade-off between computational cost and accuracy. After the fourth iteration, the algorithm chooses
a sufficiently reduced range that allows to consider a satisfactorily small range of variability in the data. The sample
points are arranged according to a space-filling DoE scheme that allows points to be generated by maximizing their
mutual distances. The MSE kriging response surface is then adjusted based only on the sample points of the current
iteration to obtain a locally accurate approximation and easily drive the search for the optimum towards the restricted
region of interest. As can be seen in Figure 10, the domain tends to shrink around the predicted optimum by focusing
the search on lower DFAILc values.

Figure 10: Top views of the metamodel approximations for the 4 iterations of the SRSM optimization procedure for the material card optimization.
The response surface of the last iteration is also shown in isometric view.

Starting from the search domain D = [−0.35,−0.15] × [0.01, 0.99], it ends up to the optimum (DFAILc, SOFT)
= (−0.17, 0.66), which corresponds to an MSE amounting to 0.440. However, low DFAILc values lead the elements
to fail and erode at low deformations, resulting in an overall brittle-like behavior and decreasing the average load.
Figure 11 shows the optimal result of the optimization. It can be appreciated how the global behavior follows that
of the experimental curve. The peak around 40 mm, corresponding to the first thickness increase, is well captured.
A substantial difference can be noticed around 55 mm. In fact, experimentally, this peak of force is due to the
compaction of the bent layers of the attenuator’s edges. The numerical simulation, on the other hand, does not exhibit
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Figure 11: Comparison of the experimental load-displacement curve with the optimized numerical curve obtained by SRSM Methodology

this compaction behavior, as the elements tend to fail before the lateral faces of the attenuator compact themselves
(Figure 9c). Finally, it is possible to appreciate a marked discrepancy of the initial peak between the simulated curve
and the experimental curve. This discrepancy is evident both in terms of peak force (difference of around 50%) and
in terms of stiffness, and was attenuated by implementing and optimizing a numerical trigger, as described in the
following sections.

6.2. Sensitivity analysis on the trigger parameters

As introduced in Section 5.1.2, the influence of 4 variables (Tk, Xc, E, DFAILc) on the trigger response was
analyzed in order to find the factors that most influence the crush response on the first displacements. Each point
of the DoE corresponds to a crush simulation on the first 20 mm of the component, according to each combination
of the 4 factors, as described in Section 5.2. In fact, the influence of the trigger on the force response is evident
within the first moments of crushing. Furthermore, this choice allows to considerably reduce the computational time
of the simulations. Figure 12 shows the main effects plot for the MSE between the numerical and the experimental
curve. This plot evaluates the differences between the fitted means of the levels for each factor analyzed. Each point
represents the response mean of the factor. If the responses of a factor are placed horizontally, then it can be stated
that the factor has not a strong influence on the response.

Figure 12: Main Effects Plot evaluated on the MSE response, with data averaged on each factor level.

From this graph it is evident that the DFAILc value has no influence on the evaluated response. Instead, the thick-
ness seems to have a strong effect on the MSE value. However, it is of great importance to evaluate the relationship
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Figure 13: Interaction Plots for MSE, with data averaged on each factor level.

Table 3: Factor information for the full factorial DoE generated in the sensitivity analysis study.

Variable P-Value
Tk 0
Xc 0
E 0
DFAILc 0.87
Tk*Xc 0
Tk*E 0
Tk*DFAILc 0.42
Xc*E 0.06
Xc*DFAILc 0.73
E*DFAILc 0.73

that the interaction between two factors has on the response value. Figure 13 shows the interaction plots, representing
the means for the levels of one factor on the x-axis, and a separate line for each level of another factor. The interaction
between DFAILc and the other three factors is confirmed to be inconsistent. The DFAILc vs Tk plot presents straight
horizontal lines, meaning that a change in DFAILc does not affect the outcome. The three lines are parallel but quite
distant from each other, confirming that the Tk value has a stronger effect. The DFAILc vs Xc and the DFAILc vs
E plots present straight parallel lines too, even if they are closer each other, suggesting that these two parameters
have a poor effect on the response. For completeness, Table 3 shows the results of the analysis of variance (ANOVA)
carried out with a significance level of 5 percent. For the values of Tk, Xc, and E, it is not possible to accept the
null hypothesis. Mixed terms of the second order were also analyzed. In this case, the interactions between Tk and
Xc, and between Tk and E turn out to influence the response. Mixed terms of the third order were evaluated too, and
was confirmed that the terms containing the DFAILC variable have not influence on the response. Consequently, the
parameters Tk, Xc and E were used for trigger optimization, reducing the dimension of the problem to 3 variables.

It is clear from the interaction plots (figure 13) that the Tk variable has the stronger effect on the response. Figure
14 shows the effect of the only trigger thickness on the component stress distribution after the first 7 mm and 14 mm of
crush displacement. It is evident how a reduced thickness leads the effect of the trigger being null. The load remains
almost zero (Figure 15) for the first two millimeters of crushing. Afterwards, the elements of the upper edge of the
component get in contact with the rigid wall at the same time, causing a sudden increase of the load. On the other
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hand, a thick trigger causes a noticeable increase in load during the early stages of the impact. The elements of the
trigger transfer the load directly to the underlying elements, before these come into contact with the rigid wall. As
can be noticed in Figure 14, the elements above the top section are more loaded, and greater out of plane deformation
and bending of the vertical faces are evident. An intermediate trigger thickness, would hence guarantee a softening
effect on the upper edge of the nose. Indeed, it is possible to appreciate the triggering of some folds, from which the
deformation propagates more regularly.

Figure 14: Stress distribution of the impact attenuator crush according to the thickness of the trigger.

Figure 15: Influence of the trigger thickness on the force-displacement trend.

6.3. Trigger optimization
Based on the outcome of the sensitivity analysis, the trigger optimization was performed using both the SRSM

and EGO optimization strategies, by focusing on the parameters that have the greatest impact on the variability of the
objective function. Initial experiments with the SRSM have empirically shown that this optimization technique tends
to over-localize the search. In contrast, the EGO algorithm has high potential because it constructs and optimizes an
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acquisition function that balances exploitation (evaluating points with low mean) and exploration (evaluating points
with high uncertainty) of the search domain. The error that the kriging surrogate model makes in approximating the
real objective function is not used at all in the SRSM, since the optimum of the response surface is simply found by a
genetic algorithm. EGO has been applied both to a one-dimensional optimization problem, where the thickness is the
only variable, and to two-dimensional problems, where the thickness is optimized together with either the modulus E
or the strength to failure Xc. All the parameters that do not undergo optimization are kept constant according to the
outcome of the material card optimization on the full load-displacement curve described in Section 6.1.

6.3.1. SRSM on Tk and Xc
At first, the Tk and Xc parameters are estimated by using an SRSM iterative procedure. It is composed of five

iterations, each of which starts from a DoE sample set of 10 points that are located on the domain according to a
space-filling scheme, which allows for generating samples that are evenly distributed allover the current region of
interest, as shown in Figure 16. From the figure, it is evident that at each iteration the region of interest is reduced and
centered on the predicted optimum of the preceding iteration. The evolution of the region of interest is particularly

Figure 16: Top views of the metamodel approximations for the 5 iterations of the SRSM optimization procedure for the trigger optimization on the
Xc and Tk variables.

(a)

(b)

Figure 17: Histories of variables (a) and objective (b) for the SRSM optimization strategy over the 5 iterations.
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appreciable in Figure 17a, where the history of the predicted optimum (red curve) and the range of the domain of
variation (blue curves) are clearly shown. Starting from a parameters configuration equal to (Tk,Xc)= (0.52, 0.05)
for the baseline model, i.e., the one set through trial and error, the parameters configurations defining the predicted
optima found in the five iterations are shown in Table 4. It should be noted that, while for the thickness parameter the

Table 4: Evolution of the significant samples for the SRSM applied to the optimization of Tk and Xc.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
Point (Tk, Xc) MSE Point (Tk, Xc) MSE Point (Tk, Xc) MSE Point (Tk, Xc) MSE Point (Tk, Xc) MSE

Predicted Optimum (0.34, 1) 0.180 (0.22, 0.048) 0.227 (0.19, 0.070) 0.235 (0.21, 0.057) 0.218 (0.25,0.062) 0.170
Computed Optimum (0.34, 1) 0.426 (0.22, 0.048) 0.227 (0.19, 0.070) 0.253 (0.21, 0.057) 0.234 (0.25,0.062) 0.201
Best Computed (0.27, 0.045) 0.276 (0.22, 0.048) 0.227 (0.22, 0.048) 0.227 (0.19, 0.057) 0.227 (0.18, 0.062) 0.199

optimum is always internal to the variation range, the Xc variable often ends up being located on the boundaries of its
definition domain. This can be interpreted as a too strong tendency of the algorithm of localizing the search, with the
possibility of missing important information on the neglected domain areas.

The predicted optimum of each iteration is evaluated through numerical simulation and used as DoE point of the
following one. In Figure 17b, the objective function value of this point is represented and referred to as Computed
Feasible. In line with this, the term Computed Optimum is used to refer to the combination of parameters that is
found at the end of the sequential optimization strategy as the point that optimizes the last MSE approximation model,
while the Best Computed is the parameters configuration that shows the lowest MSE among all the points that have
been evaluated during the optimization procedure. It can be observed that the Best Computed is not updated during
the second, third, and forth iterations, and only the fifth iteration is able to furnish a prediction that also leads to a
reduction of the MSE between the experimental and numerical curves. As illustrated in Table 4, the minimum MSE
value is found with the parameters configuration (Tk,Xc) = (0.25, 0.062), which provides an MSE of 0.199.

6.3.2. EGO on Tk
By observing both, the main effects plots in Figure 12 and the interaction plots in Figure 13, it is clear that the

MSE objective function is mainly influenced by the trigger thickness. On the other hand, the maximum strain for fiber
compression DFAILc is practically insignificant. As such, the good convergence properties of the EGO strategy were
first tested on a one-dimensional problem with Tk as unique parameter, and on two-variables problems afterward. The
former test case is described in this section.

Starting from a space-filling DoE of 4 points, Figure 18 shows the evolution of the kriging approximation over the
15 EGO iterations that were performed, with 1 infill point each. In the figure, the new sample chosen according to
the maximization of the EI acquisition function is highlighted and, based on it, the model is refitted at each iteration.
It can be noted that the new point is sometimes located by the algorithm in the most promising area of the domain,
i.e., the region containing the current best design, while other times it moves away from the optimal area to explore
sparsely populated regions. This attitude is also evident in Figure 19, which shows the optimization history of both the
infill point and the best computed until each iteration. Indeed, when the MSE value of the computed feasible is much
higher than the one of the best computed, it means that the EI maximization locates the infill point in a less populated
region of the domain, where the approximation model might not be not accurate and, as a consequence, a new point
located there would likely be far from optimality. Of course, the best computed is updated only if the new infill point
has a better objective function value than the best so far, therefore its history decreases monotonously. From the
optimization history, it is evident that the optimum predicted in the first iteration following the initial DoE procedure
actually represents the best computed throughout the prescribed budget of iteration, that corresponds to the total budget
of finite element simulations. Indeed, this optimization test case benefits from both, its low dimensionality and the
exploitative/explorative capabilities of the EGO algorithm. However, it is worth underlining that reducing the search
space to only one variable is equivalent to searching for the optimum within a subspace of the actual 4-dimensional
domain defined by Equation 2, thus limiting the algorithm freedom during its search. Indeed, EGO converges to the
optimal point with Tk = 0.21 mm and an MSE value of 0.249, which is worse than the best computed from the SRSM
strategy on 2 parameters, but, since it was reached after only 5 objective function evaluations (i.e., FEM evaluations
of the numerical model), can be considered satisfactory given the trade-off between prediction accuracy and saving of
computational resources. We hence decided to use the same optimization strategy to optimize couples of parameters
in order to exploit the interaction effects between them: Tk and E first, and Tk and Xc afterward.
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Figure 18: Evolution of the kriging model approximation of the MSE objective function for Tk ∈ [0.01, 0.84], based on the initial 4 DoE points and
the new infill point per iteration.

Figure 19: Optimization history of the EGO algorithm applied to the optimization of Tk by minimizing the MSE between experimental and
numerical load-displacement curves. Both the histories of the infill point and the best computed are shown, together with the predicted optimal
value of the EI function.

6.3.3. EGO on two parameters
The limitations showed by the optimization on the one-dimensional test case drove the investigation towards

the usage of the EGO algorithm on the optimization of couples of parameters: (Tk, E) and (Tk, Xc). Both the
optimization studies start from an 8-samples space-filling DoE scheme on a bi-dimensional search space defined for
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each case according to the variables boundaries specified in Equation (2). At each iteration, a kriging response surface
is fitted on the available training data, leading to a global prediction of the MSE objective function. Again, based
on that and the available points, the EI acquisition function is built and optimized through genetic algorithm. The
predicted optimum is evaluated, compared to the best computed so far withing the optimization procedure, and used
to update the approximation model for the following iteration. If the simulation returns an objective function value
that is better than the best so far, then the infill points becomes the best computed – y∗ in Equation (3) – and the
optimization proceeds with the following iteration. The optimization history of the predicted optimum, the computed
optimum, and the best computed is shown in Figure 20a and Figure 20b for the (Tk, E) and the (Tk, Xc) test case,
respectively. In both plots, the mixed exploitative/explorative attitude of the EGO algorithm can be observed thanks to

(a) (b)

Figure 20: Optimization history of the EGO algorithm applied to the optimization of (a) Tk and E and (b) Tk and Xc variables, by minimizing the
MSE between experimental and numerical load-displacement curves.

the evident variation in the computed objective function values of the infill points, i.e., the predicted optima through
the maximization of EI. In a total budget of 50 evaluations in addition to the ones needed for the DoE phase, the
best computed undergoes several updates, leading to the final optimal samples (Tk, E) = (0.22, 6.87) and (Tk, Xc) =
(0.18, 0.089). The respective objective function values are MSE(0.22, 6.87) = 0.191 and MSE(0.18, 0.089) = 0.197.
Hence, both the bi-dimensional test cases allow for obtaining a lower MSE than the optimization of the thickness
parameter by itself, which means that interaction effects are not totally negligible. On the other hand, by keeping in
mind that in Section 6.3.2 the best computed is found by using 5 FEM simulations, EGO converges to an optimal
values much faster and with much less computational effort when optimizing one variable only. All in all, it is worth
underlining that both the values found for the Tk parameters are very close to the value found in the one-dimensional
optimization problem (Tk = 0.21 mm).

6.3.4. Considerations on the optimization results
In order to assess the accuracy of the load-displacement numerical curves compared to the experimental one,

three error measures have been evaluated: the Root Mean Squared Error (RMSE), the coefficient of determination
(R2), and the maximal residual error (εmax). The computations are performed by interpolation of the experimental
and numerical load-displacement data at 20 and 120 query points when interested on the [0, 20] mm and [0,120]
mm displacement ranges, respectively. Good agreement is stated when the RMSE and the εmax measures present
a small value, whereas the R2 should have a value close to the unit [29]. To draw some general conclusions, the
optimal parameters configuration found in the trigger optimization test cases were used to run verification FEM
simulations on the full displacement range of interest, [0, 120] mm. Indeed, the studies aimed at optimizing the
most relevant parameters of the trigger component were set to maximize the coherence between experimental and
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numerical curves in the range [0, 20] mm, which corresponds to the portion of curve that is most influenced by
variation in the trigger set up. As a consequence, it is not obvious that parameters configurations minimizing the
MSE on the first 20 mm are optimal for the full range of displacements too. Table 5 contains the aforementioned
accuracy measures evaluated on the outcome of the final verification FEM simulations. The accuracy is evaluated
for the optimal parameter configurations resulting from every performed study, except for the SRSM optimization on
the trigger component. Indeed, it resulted to be a too exploitative search technique, and hence a priori less reliable
than EGO for the case of interest. It can be observed that the numerical curve tuned by trial and error is less accurate

Table 5: Accuracy estimation of the numerical approximation of the full load-displacement curves from the experimental tests. Bold style highlights
the best results.

RMSE R2 εmax

trial and error 0.78683 0.58768 2.5776
SRSM Full 0.70997 0.67118 2.1101
EGO Tk 0.66460 0.68574 1.2761
EGO Tk/E 0.60536 0.70444 1.5250
EGO Tk/Xc 0.65767 0.71191 1.3603

of any other curve according to each error measure, proving an improvement lead by surrogate-based optimization
strategies. Moreover, when evaluated on the full range of displacements, the optimal solutions from the optimization
studies on the trigger component perform better than the optimum of the SRSM result obtained by minimization of
the MSE computed on the full load-displacement curve. This means that a focused study on the trigger component
is beneficial for improving the overall accuracy of the numerical load-displacement curve. This can be also observed
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Figure 21: (a) RMSE evaluated on the full crush curve; (b) RMSE Evaluated on the first 20 mm of crush displacement.

in Figure 21, which provides visual evidence of the RMSE accuracy measure for different test cases. From Figure
21a, it is evident that the optimization of the MSE objective function on the full displacements range does not provide
an accurate approximation of the initial part of the curve, which is mostly influenced by the trigger definition. On
the other hand, when focusing the optimization strategy to minimize the MSE computed on the first 20 mm of crush
displacement only, the found optima still perform well when simulated on a total time that is sufficient to cover the
full displacements range, as illustrated in Figure 21b.

In Figure 22, the load-displacement curves extracted from the experimental tests are compared to the ones resulting
from the simulations that are set according to the results of the optimization procedure.

In Figure 22a, the curves resulting from the optimization studies on the trigger component are shown. It can
be assessed that all the curves associated to the optimal parameter configurations returned by EGO provide a more
accurate approximation of the experimental curve than the trial-end-error method. Indeed, the optimized trigger allows
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(a) (b)

Figure 22: Comparison of experimental and numerical load-displacement curves. (a) The experimental curve is compared to the optimized curves
and the Trial and Error curve on the [0, 20] mm displacement range. (b) The experimental curve is compared to the best optimized curve in terms
of RMSE and the Trial and Error curve on the [0, 120] mm displacement range.

Figure 23: Crush behavior of the optimized numerical impact attenuator and comparison with the experimental test.

for attenuating the initial pick due to contact instabilities between the impacting rigid wall and the component in the
numerical simulations. It is also evident that the blue curve, which is the outcome of the simulation corresponding to
the solution of EGO on the one-dimensional test case, tends to overly overestimate the experimental trend if compared
to the curves obtained as optima of the 2-variables test cases. In Figure 22b, the experimental and trial and error
curves are compared to the numerical curve that provides the lower RMSE among all the considered test cases, i.e.,
the outcome of the complete simulation on the numerical model set according to the optimum of the EGO Tk/E
test case. Also here, it can be noted that such a curve is able to capture the experimental behavior with satisfactory
accuracy, by definitely improving the approximation provided by the numerical model tuned by hand. The first 50
mm of crushing are well approximated by the numerical curve (green) as well as the peak of force at 40 mm, that
corresponds to the first thickness variation, and the following drop of load. The rest of the numerical curve follows
a less scattered path respect to the experimental one, due to the absence of the compacted walls on the impacting
edge of the attenuator, that causes the “up and down” force trend. However, the average increasing tendency is well
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followed by the numerical curve.
Finally, Figure 23 shows the crushing behavior of the impact attenuator with optimized properties. It is noticeable

that the the global deformations and the bending of the vertical face in correspondence of the thickness variation are
well captured. The same cannot be said for the folding and compacting of the top edge. Indeed, the element erosion
criteria of the material card lead the elements in contact with the rigid wall to be deleted before that layer compaction
occurs.

7. Conclusions

In this paper, a numerical optimization study for the material parameter identification of an All-PP composite
impact attenuator in crashworthiness was presented. It is well known that the mechanical properties determined by
standard tests usually do not adequately reflect the failure mechanism of a composite component subjected to crush
loading, especially in the case of the particular failure mode of an All-PP composite material. Therefore, the problem
of scaling from specimen to component was addressed using a parameter identification procedure from LS-OPT based
on the optimization of the numerical load-displacement crush curve with respect to the most influential parameters of
the numerical model. In this study, an optimization methodology consisting of several conceptual building blocks was
developed and tested. The optimization study is divided into two sub-problems. The first problem aims at optimizing
the material card parameters based on minimizing the Mean Square Error (MSE) between the experimental and
numerical load-displacement curves recorded for the whole range of displacements [0, 120] mm. Here, the parameters
SOFT and DFAILc of the LS-DYNA material card were chosen as the variables to be optimized. On the other hand,
the second problem has the more focused objective of optimizing both the geometrical and material parameters of a
numerical trigger with degraded properties, which was modeled and optimized to represent the top edge imperfections
and reduce the initial contact instabilities between the rigid wall and the impact attenuator. In this second phase, the
objective was to minimize the MSE on the shorter range [0, 20] mm. The introduction of the numerical trigger and
its optimization proved to be a good solution for damping the oscillations and force peaks during the first impact
phases. In the logical flow of the method, two different surrogate-based optimization strategies were considered:
the Sequential Response Surface Method (SRSM) and the Efficient Global Optimization (EGO) algorithms. The
two strategies were compared in terms of exploitative/explorative search behavior and convergence speed towards an
optimal solution. Furthermore, the paper contains a detailed description of the practical setup of the optimizers in
LS-OPT. This is particularly useful in the case of EGO, which was introduced to the software relatively recently and,
after a thorough search of the relevant literature, has never been applied to similar mechanical test cases. The results
show that optimization is beneficial for refining significant parameters on both the full component and the trigger.
The obtained numerical load-displacement curve accurately reproduces the experimental results. An improvement
over the numerical curve obtained by trial and error was visible in terms of accuracy measures as well as in the visual
inspection of the resulting curves. In summary, the exploratory and exploitative capabilities of the EGO algorithm
make it a more convenient choice for optimizing the objective function with low computational cost.
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