Supporting Information to the paper Biurrun I. et al. Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science.

Appendix S5. Additional detailed results.

Figure S5.1. Richness of the complete vegetation across biomes and coarse-level vegetation types for the four most represented grain sizes $\left(0.1 \mathrm{~m}^{2}, 1 \mathrm{~m}^{2}, 10 \mathrm{~m}^{2}, 100 \mathrm{~m}^{2}\right) . N$ is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.2. Richness of vascular plants across biomes and coarse-level vegetation types for the four most represented grain sizes $\left(0.1 \mathrm{~m}^{2}, 1 \mathrm{~m}^{2}, 10 \mathrm{~m}^{2}, 100 \mathrm{~m}^{2}\right)$. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.3. Richness of bryophytes across biomes and coarse-level vegetation types for the four most represented grain sizes $\left(0.1 \mathrm{~m}^{2}, 1 \mathrm{~m}^{2}, 10 \mathrm{~m}^{2}, 100 \mathrm{~m}^{2}\right)$. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.4. Richness of lichens across biomes and coarse-level vegetation types for the four most represented grain sizes ($0.1 \mathrm{~m}^{2}, 1 \mathrm{~m}^{2}, 10 \mathrm{~m}^{2}, 100 \mathrm{~m}^{2}$). N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.5. Richness at $0.0001 \mathrm{~m}^{2}$ of the four plant groups across fine-level vegetation types. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.6. Richness at $0.001 \mathrm{~m}^{2}$ of the four plant groups across fine-level vegetation types. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.7. Richness at $0.01 \mathrm{~m}^{2}$ of the four plant groups across fine-level vegetation types. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.8. Richness at $0.1 \mathrm{~m}^{2}$ of the four plant groups across fine-level vegetation types. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.9. Richness at $1 \mathrm{~m}^{2}$ of the four plant groups across fine-level vegetation types. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.10. Richness at $10 \mathrm{~m}^{2}$ of the four plant groups across fine-level vegetation types. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.11. Richness at $100 \mathrm{~m}^{2}$ of the four plant groups across fine-level vegetation types. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.12. Richness at $1000 \mathrm{~m}^{2}$ of the four plant groups across fine-level vegetation types. N is the number of plots. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.13. Species-area relationships for the complete vegetation and fine-level vegetation types. SARs for the complete dataset (dashed line) and for the subset including only plots from nested series with at least seven standard grain sizes (continuous line) are shown. C. 3 \& C. 4 category includes saline communities and saline steppes and semi-deserts. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.14. Species-area relationships for vascular plants and fine-level vegetation types. SARs for the complete dataset (dashed line) and for the subset including only plots from nested series with at least seven standard grain sizes (continuous line) are shown. C. 3 \& C. 4 category includes saline communities and saline steppes and semi-deserts. No filtering by sampling method (rooted vs. shoot) was applied.
A. 1 Alpine grasslands

A. 4 Rocky grasslands

B. 3 Mesic grasslands

D. 3 Garrigues and thorn cushion communities

F. 1 Alpine deserts

A. 2 Alpine steppes

B. 1 Sandy dry grasslands

B. 4 Wet grasslands

C. 2 Rocks and screes
D. Lowland heathlands

E. 1 Tall forb communities

F. 2 Cold deserts and semi-deserts

A. 3 Xeric grasslands and steppes

B. 2 Meso-xeric grasslands

B. 5 Mediterranean grasslands
C. 3 \& C. 4 Saline communities

E. 2 Ruderal communities

F. 3 Warm deserts and semi-deserts

Figure S5.15. Species-area relationships for bryophytes and fine-level vegetation types. SARs for the complete dataset (dashed line) and for the subset including only plots from nested series with at least seven standard grain sizes (continuous line) are shown. C. 3 \& C. 4 category includes saline communities and saline steppes and semi-deserts. No filtering by sampling method (rooted vs. shoot) was applied.

Figure S5.16. Species-area relationships for lichens and fine-level vegetation types. SARs for the complete dataset (dashed line) and for the subset including only plots from nested series with at least seven standard grain sizes (continuous line) are shown. C. 3 \& C. 4 category includes saline communities and saline steppes and semi-deserts. No filtering by sampling method (rooted vs. shoot) wa applied.

Table S5.1. Maximum richness values for each plant group and grain size across biomes. The richest values for each plant group are shown in blue. Alp: Alpine; Pol: Polar and subpolar; Bor: Boreal; Dmi: Dry midlatitudes; Tmi: Temperate midlatitudes; Syr: Subtropics with year-round rain; Swr: Subtropics with winter rain; Dtr: Dry tropics and subtropics. + or - before the maximum values indicate that they are derived from slightly smaller (+) or bigger (-) grain sizes than the standard ones, i.e., $0.0009,0.09,9,10.89,900$ or $1024 \mathrm{~m}^{2}$ respectively. Maximum richness for the exact grain size is indicated in brackets in upper case. No filtering by sampling method (rooted vs. shoot) applied.

Area [m^{2}]	Complete vegetation							Vascular plants								
	Alp	Pol	Bor	Dmi	Tmi	Syr	Swr	Dtr	Alp	Pol	Bor	Dmi	Tmi	Syr	Swr	Dtr
0.0001	3	-	5	7	10	-	9	2	5	-	5	7	11	-	8	4
0.001	7	-	9	9	19	-	15	3	9	-	9	8	19	-	12	6
0.01	13	-	16	24	29	-	22	7	12	-	14	22	23	-	24	11
0.1	22	-	31	35	46	-	35	14	23	-	28	35	43	-	37	15
1	41	30	54	56	82	-	50	28	43	23	52	51	79	58	50	49
10	59	-	80	91	101	-	85	51	86	-	72	80	$-106{ }^{(98)}$	-	76	$+48^{(47)}$
100	82	-	106	159	146	-	123	-	89	33	94	144	133	-	122	71
1000	-	-	-	-	$+123{ }^{(58)}$	-	-	-	-	-	-	-	$+97^{(83)}$	-	134	96
Area			Bry	ophy								ichens				
$\left[\mathrm{m}^{2}\right]$	Alp	Pol	Bor	Dmi	Tmi	Syr	Swr	Dtr	Alp	Pol	Bor	Dmi	Tmi	Syr	Swr	Dtr
0.0001	1	-	2	4	5	-	5	1	0	-	2	1	4	-	1	1
0.001	2	-	2	6	$+9^{(7)}$	-	8	$+1^{(-)}$	0	-	2	1	$6^{(3)}$	-	1	$+1^{(-)}$
0.01	3	-	4	6	18	-	9	1	6	-	3	2	8	-	3	1
0.1	5	-	4	9	$+24^{(10)}$	-	10	$+2^{(-)}$	7	-	5	3	$+15^{(8)}$	-	5	$+2^{(-)}$
1	15	11	7	11	31	-	18	3	16	11	6	6	21	-	5	3
10	27	-	26	11	$+40^{(22)}$		19	$+11^{(-)}$	23	-	11	9	$+24^{(14)}$	-	9	$+10^{(-)}$
100	12	-	19	12	38	-	23	-	24	-	13	11	31	-	15	-
1000	-	-	-	-	$+22^{(2)}$	-	-	-	-	-	-	-	+35 ${ }^{(5)}$	-	-	-

Table S5.2. Comparison of mean richness of vascular plants in plots recorded using the "rooted presence" and the "shoot presence" methods across the six coarse-level vegetation types. $S=$ shoot presence; $R=$ rooted presence; $\% S=$ percentage richness difference: blue and red colours indicate richness increase or decrease, respectively, in shoot method vs. rooted method. $\mathrm{A}=$ natural grasslands; $\mathrm{B}=$ secondary grasslands; $\mathrm{C}=$ azonal communities; $\mathrm{D}=\mathrm{d}$ warf shrublands; $\mathrm{E}=$ tall-forb and ruderal communities; $\mathrm{F}=$ deserts and semi-deserts.

Area$\left[\mathrm{m}^{2}\right]$	A			B			C			D			E			F		
	R	S	\% S															
0.0001	0.4	1.9	421	0.5	2.9	436	0.0	0.8	NA	-	1.8	NA	-	2.4	NA	-	0.8	NA
0.001	1.6	2.8	77	3.5	4.5	28	2.6	1.4	46	-	1.8	NA	-	3.5	NA	-	1.6	NA
0.01	5.8	4.2	28	5.8	8.1	38	3.8	3.7	4	5.1	3.0	42	-	5.6	NA	-	3.6	NA
0.1	7.5	11.3	51	12.0	15.1	26	3.0	3.8	27	3.3	7.0	111	5.8	9.9	71	2.1	8.3	294
1	14.8	12.6	15	19.7	17.8	10	5.5	8.9	63	13.9	11.3	18	10.8	13.6	26	5.4	10.6	97
10	25.8	33.2	29	29.9	33.4	12	16.6	18.1	10	17.7	23.8	34	20.6	24.2	18	16.9	19.9	17
100	35.9	39.2	9	28.9	45.0	56	12.5	14.5	16	15.3	33.9	122	34.0	38.7	14	12.6	24.3	93
1000	123.3	83.0	33	56.3	41.8	26	23.6	6.0	75	-	50.7	NA	93.0	91.0	2	-	80.2	NA

