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Simple Summary: During the storage of blood units, cells undergo many changes, defined as
storage lesions; these are biochemical, morphological and immunological modifications and seem
to be responsible for adverse post-transfusion effects in recipients. The pre-storage leukoreduction
seems to reduce them. The aims of this study are both to evaluate the human filter effectiveness
and the effect of pre-storage leukoreduction in stored canine whole blood units. We tested whole
blood units, leukoreduced and not, obtained from seven enrolled subjects, until the 42nd day.
The white blood cell (WBC) and platelet (PLT) counts are reported to express the leukoreduction
effectiveness. As indicators of storage-induced hemolysis, the lactate dehydrogenase activity (LDH)
and sodium, potassium, and chlorine electrolytes were measured in plasma, and the red blood
cell (RBC) count, hemoglobin concentration (Hgb), and hematocrit (Hct) were obtained with the
complete blood count (CBC). The mean corpuscular volume (MCV) values and morphological index
obtained from blood smear evaluation were used as indices of morphological changes. We observed
that the leukoreduction filter for human use is equally effective on canine whole blood and that
leukoreduction has a partially protective role to prevent some storage lesions.

Abstract: Storage lesions (SLs) occur when the red blood cell quality is altered during the preservation
of blood units. Pre-storage leukoreduction would limit the number of SLs. The aims of this study
were to evaluate the effectiveness of a leukoreduction filter for human use and the effect of pre-
storage leukoreduction on some ematobiochemical parameters in stored canine whole blood. Seven
canine blood units were tested. Each one was divided into two units—one leukoreduced (LRWB)
and one non-leukoreduced (nLRWB). On each unit, we determined the complete blood count (CBC),
lactate-dehydrogenase (LDH), electrolytes (Na+, K+, Cl−), morphological index (MI) and hemolysis,
on storage days 0, 7, 14, 21, 28, 35, and 42. Leukoreduction allowed a 98.30% recovery of the RBC
count, retaining 99.69% and 94.91% of WBCs and PLTs, respectively. We detected a significant increase
of LDH and MI with strongly higher values in nLRWB compared to LRWB. A progressive increase
in electrolytes and LDH concentrations was observed as indices of stored hemolysis. LDH showed
significantly lower values in LRWB units compared to nLRWB, suggesting its release from leukocytes.
In the majority of units, hemolysis reached 1% on the 42nd day of storage. We assert the human
leukoreduction filter effectiveness on canine whole blood, and we recommend using nLRWB before
day 14, especially for critically ill patients. The difference of the basal hemolysis (day 0) percentages
observed between subjects suggests that more studies should be performed to confirm a possible
inter-individual donor biological variability of RBC membrane resistance, as happens in humans.
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1. Introduction

Blood transfusion represents an essential therapeutic intervention in some hemato-
logical diseases and in emergency critical care. It is important that transfused red blood
cells (RBCs) preserve their metabolic capacity and mechanical functions [1]. In recent years,
the interest in this field of veterinary medicine has grown exponentially and the ability to
store blood for a long time has profoundly revolutionized transfusion medicine. A blood
bank allows the immediate availability of whole blood and blood components, and this
translates into a timelier intervention in all those situations in which it is necessary to trans-
fuse patients within a short time. Blood bags can be stored for a period of time between 35
(whole blood units—WB) and 42 (packed red blood cells—pRBC) days depending on the
product [2,3]. To date, the studies carried out have been aimed at finding the best storage
conditions through the addition of appropriate maintenance solutions, in order to extend
the storage times and maintain the stored cells’ viability and functionality [4]. However,
based on recent studies, it has been demonstrated that blood undergoes many changes dur-
ing storage (storage lesions—SLs). SLs are responsible for negative post-transfusion effects
in recipients, particularly in critically ill patients, and are classified into three categories:
biochemical, biomechanical or morphological, and immunological changes [4]. Particularly,
biochemical changes include the increase of potassium and sodium and hemolysis and
oxidative injury [1,2,5–8]; biomechanical or morphological modifications include shape
alterations and a reduction of RBC deformability. The modifications related to the corpuscu-
lar components of blood units could relate to RBC, white blood cells (WBCs) and platelets
(PLTs). Those related to RBCs are oxidative injury [7], hemolysis [2,6], morphological
alterations and changes in membrane composition [1], changes in sodium and potassium
levels [1,5,8], and the release of procoagulant microparticles [9,10]; those connected to
WBCs and PLTs are the increase in interleukin (Il-8) and VEGF [11–13], and the release of
procoagulant phospholipid (PPL) [14] and microparticles [15].

For both humans and pets, it appears that the risks of harm associated with transfu-
sions increase with the increase in the storage time [16–18] and in the number of transfused
units to the same recipient [19,20]. However, it is difficult to unequivocally establish a
cause-and-effect relationship between the transfusion of stored blood units and the nega-
tive clinical effects observed in transfused patients, since this could be due both to a specific
storage lesion and to the severity of the disease [21].

Among SLs, hemolysis and those lesions caused by procoagulant and proinflammatory
factors released by WBCs and PLTs appear to have great soundness. Hemolysis is one of
the most studied modifications during blood storage and it is caused by the alteration of
the erythrocytes’ shape as well as the increase in their fragility due to oxidative damage and
modification of membrane proteins during storage. These changes seem to be particularly
dangerous when blood units are transfused in an emergency, increasing the risk of infection
and mortality of patients [19,22–24]. It has been documented that the practice of pre-
storage leukoreduction, a process by which WBCs and PLTs are physically removed from
whole blood units before it is processed in the various blood components, seems to have
an important role on the maintenance of blood quality. [25]. In human medicine, this
practice is now routinely used, while it is uncommon in the veterinary field [25]. It seems
that leukoreduction can help partially reduce the effects of SLs [14,25]. Since WBCs are
metabolically active cells that produce inflammatory cytokines, leukoreduction would be a
benefit reducing the immunological storage lesions that induce an inflammatory reaction
in the recipient [13,26] [13,27–29]. It has been shown that the leukocyte “contamination”
in stored whole blood and its derivatives has been both associated with the presence of
post-transfusion adverse reactions (non-hemolytic febrile reactions, alloimmunization,
immunosuppression, transmission of pathogens, thromboembolic damage, and pulmonary
micro-embolism) [13,26]. In veterinary medicine, little is known about the changes that
occur during the storage of leukocyte-depleted blood units and the benefit associated with
the practice of leukoreduction should be deeply studied, also to justify its relatively high
economic costs [25].
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The aims of our study were to evaluate the efficacy of a filter system used in the human
field on canine whole blood and to document the storage effect in some hematological
(RBC, Hgb, Hct, WBC, PLT), biochemical (LDH, electrolytes), and functional parameters
(storage hemolysis) in stored leukoreduced whole blood compared to non-leukoreduced
whole blood, given the need to increase knowledge on this blood product commonly used
in emergency critical care.

2. Materials and Methods
2.1. Blood Donors

Blood units were obtained from seven Ariégeois dogs belonging to the volunteer
donors program of the Veterinary Blood Bank (EMOVET-UNIPG) of the Department of
Veterinary Medicine, University of Perugia, Italy. The animals met the following require-
ments for blood donors according to the Italian Ministry of Health guidelines [30–35]: age
two to eight years, weight > 25 kg, regular vaccination status, and regular prophylaxis
against ecto- and endoparasites. The state of health was established on the basis of the
anamnesis, clinical examination, CBC (complete blood count), and serum biochemistry
panel. Serological tests have been performed to exclude haematological infections: Leishma-
nia infantum, Ehrlichia canis, Babesia spp., Rickettsia spp., Anaplasma phagocytophilum, and
Dirofilaria immitis.

2.2. Blood Collection

Blood was collected according to the Italian veterinary transfusion guidelines [30–33,36].
The collection was performed by venipuncture from the jugular vein after trichotomy,
cleansing and disinfection of the area; no sedation was performed. A unit of 350 mL of
WB was taken from each subject, using a commercial closed collection system for human
use, approved by the Italian Ministry of Health. It consisted of a quadruple bag made of
PVC (Fenwal Inc., Lake Zurich, IL 60047, USA), containing 49 mL of CPDA1 anticoagulant-
preservative solution and was equipped with an integrated filter for pre-storage leukore-
duction (Kansuk laboratori: besyol Mah. Eski Londra asfalti, No 4, 34620 Sefakoy/Istanbul;
Pall, WBF3 leukocyte filter for whole blood). The bags were attached to the filter system
using a sterile technique and filtered through the leukoreduction filter into a secondary
bag by gravity after breakage of an integral canal above the filter. The leukoreduction
filter used in this study is a third-generation polyurethane filter with a neutral charge,
manufactured to remove both WBCs and PLTs. Immediately after collection, the “mother
bag”, containing the collected blood, was weighed, and about half of its content were
drained through the filter and collected by gravity in the satellite bag. This procedure
allowed to obtain approximately 175 mL of non-leukoreduced WB (nLRWB) and 175 mL of
leukoreduced WB (LRWB) for each unit. A total of seven LRWB units and seven nLRWB
units were tested. Each unit was stored in a blood bank refrigerator at 3 to 4 ◦C (SANYO
Blood BankRefrigerator, model MBR-107D (H)), for 42 days and mixed gently at least once
a day.

2.3. Sample Analysis

Three aliquots (A: 10 mL, B: 7 mL, C: 5 mL) of blood were aseptically obtained from
all the bags (nLRWB and LRWB) on storage days 0 (T0, day of donation), 7 (T1), 14 (T2),
21 (T3), 28 (T4), 35 (T5), and 42 (T6) after having appropriately suspended the corpuscular
part. Sampling was carried out under a laminar flow hood to ensure sterility conditions.
These aliquots were collected in an anticoagulant-free tube.

In vitro analysis, evaluated from the aliquots A, B, and C at each time point, were
the following:

• A: CBC, % of WBC and PLT depletion to evaluate leukoreduction effectiveness, %
RBC recovery after filtration (only at T0), LDH, electrolytes concentrations, and blood
smear evaluation.

• B: % of storage hemolysis.
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• C: aerobic and anaerobic bacterial culture.

2.3.1. Complete Blood Count

CBC were obtained with an automated laser analyzer (Sysmex-XT1800iV; Sysmex,
Kobe, Japan) and the following parameters were assessed in nLRWB an LRWB units for
each time point: RBC (n. × 106/µL), Hgb (g/dL), Hct (%), MCV (fL), RDW (%), WBC
(n. × 103/µL), PLT (n. × 103/µL).

2.3.2. Percentages of WBC and PLT Depletion (Leukoreduction Effectiveness)

To calculate the effectiveness of filtration, the WBC % mean and the PLT % mean at
T0 was estimated both in LRWB and in nLRWB units. The following formula was used to
determine the percentage of leukoreduction as previously established [6]:

%WBC depletion = (WBC mean in nLRWB −WBC mean in LRWB) × 100/WBC mean in nLRWB (1)

%PLT depletion = (PLT mean in nLRWB − PLT mean in LRWB) × 100/PLT mean in nLRWB (2)

2.3.3. Percentage of RBC Recovery

To calculate the effectiveness of RBC recovery after filtration, the RBC mean at T0 was
estimated both in LRWB and nLRWB units. The following formula was used to determine
the percentage of RBC recovery as previously established [6]:

%RBC recovery = (RBC mean in nLRWB − RBC mean in LRWB) × 100/RBC mean in nLRWB (3)

2.3.4. LDH and Electrolytes

After the blood counts, samples were centrifuged (3000× g for 10 min-ALC CEN-
TRIFUGE PK120) and the supernatant was used to evaluate the concentrations of LDH
(U/L) by using an automatic biochemistry analyser (Hitachi-904 Boehringer, Mannheim,
Germany), and to determine the concentrations of Na+, K+ and Cl− (mEq/L) with an
electrode analyzer (i-smart 30 VET, FUTURLAB, Limena, (PD) Italy).

2.3.5. Blood Smear Evaluation and Morphological Index

Each blood smear performed was stained with May Grünwald–Giemsa stain by an
automatic slide-stainer (Wescor Aerospray slide stainer, 7120. Delcon, Bergamo, Italy). The
microscopic evaluation of each smear was carried out by the same hemathologist (M.T.A.)
using a standardized method. The slides were observed under an optical microscope, before
at 200× objective magnification for cellularity assessment, and then at 1000× objective
magnification for RBC morphology evaluation. A total of 200 RBCs were counted and
classified, based on morphology of cells, and a score from 0 to +3 was assigned in order to
calculate the morphological index (MI) [29,37,38]:

• 0: Discocyte (normal form erythrocyte)
• 1: Echinocyte I (irregularly shaped erythrocyte, with a maximum of five membrane

spicules)
• 2: Echinocyte II (flat erythrocyte with numerous membranous spicules)
• 3: Echinocyte III (ovoid or spherical erythrocyte with numerous membranous spicules)

At all time points, both from the LRWB and nLRWB units, for each specimen the
morphological index (MI) was calculated with the following formula (MI = ∑ scores/200)
as previously described [29]. Subsequently, the mean of MI values at each time points, both
in LRWB and in nLRWB units, was calculated.
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2.3.6. Storage Hemolysis

The percentages of hemolysis in all stored LRWB and nLRWB units at each time point
(T0 = basal hemolysis, T1–T6 = storage hemolysis) was calculated using the following
formula [5]:

% hemolysis (storage hemolysis) = [(100 − Hct) × supernatant Hb]/total Hb (4)

The Hct and total Hb concentration were obtained from the CBC.
Supernatants were obtained on plasma, separated by centrifugation (2000× g for

10 min, Eppendorf-5810 R) of 1 mL of blood from each B aliquot. The concentrations of su-
pernatant Hb were measured using the direct spectrophotometric method (HewlettPackard
8452A spectrophotometer) as the Harboe assay previously described [39], with appropriate
correction, according to the following formula [40].

Supernatant Hb = [(167.2 × A415nm) − (83.6 × A380nm) − (83.6 × A450nm)] × 1/1000 (5)

2.3.7. Bacterial Culture

To exclude bacterial contamination, from each C aliquot obtained both in LRWB and
nLRWB, at each time point, aerobic and anaerobic bacterial culture was carried out as
previously described [31,33,35]. Tryptic soy broth (10 mL) medium was inoculated with
each sample and incubated aerobically and anaerobically at 37 ◦C for 48 h. After 48 h, a
small amount of each broth culture was subcultered on blood agar, MacConkey agar, and
mannitol salt agar and incubated for 48 h at 37 ◦C.

2.4. Statistical Analysis

A general linear model for repeated measures was used to evaluate differences be-
tween groups (LRWB and nLRWB) and variables with repeated measurements (HCT, RBC,
Hgb, MCV, RDW, MCH, MCHC, WBC, PLT, K, Cl, Na, LDH, MI). The Bonferroni post-hoc
test was applied to identify differences in times of the variables with repeated measure-
ments. Comparison between basal hemolysis of the LRWB and nLRWB was performed by a
paired t-test. Data were analyzed by commercial software R, version 2.8.1 (R, Development
Core Team 2007). A value of p < 0.05 was considered significant for the analysis. The
Shapiro–Wilk test was used for the evaluation of normality.

3. Results
3.1. Complete Blood Count

Results regarding all parameters included the complete blood count in nLRWB and
LRWB during times are reported in Table 1.

3.2. Percentages of WBC and PLT Depletion, and Percentage of RBC Recovery
(Leukoreduction Effectiveness)

The pre-storage leukoreduction allowed to obtain a reduction of WBCs and PLTs of
99.69% and 94.91%, respectively, and in the units treated with leukoreduction the RBC
recovery percentage was 98.30% (Figure 1).
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Table 1. Means ± standard deviations and significance of the parameters RBC(×1012/L), HCT(%), Hgb(g/dL), MCV(fL), RDW(%), WBC(×109/L), PLT(×109/L) in nLRWB and LRWB
groups, in the different days post-donation (T0 to T6). nLRW: not leukoreduced whole blood, LRWB: leukoreduced whole blood.

Parameters Groups
Day of Donation p for Repeated

Measurements

T0
Day 0

T1
Day 7

T2
Day 14

T3
Day 21

T4
Day 28

T5
Day 35

T6
Day 42 Among Times Among

Groups

RBC
(×1012/L)

nLRWB 5.23 ± 0.422 5.05 ± 0.543 5.04 ± 0.552 5.15 ± 0.652 5.09 ± 0.656 5.11 ± 0.664 5.17 ± 0.676
0.85 0.97

LRWB 5.18 ± 0.38 5.23 ± 0.36 5.16 ± 0.43 5.27 ± 0.426 5.19 ± 0.445 5.19 ± 0.474 5.32 ± 0.524

HCT
(%)

nLRWB 34.5 ± 4.1 * 30.9 ± 4.3 30.5 ±4.2 * 31.4 ± 4.7 31.7 ± 5.1 32.4 ± 5.2 33.6 ± 5.3 * <0.01
(p = 0.004) 0.96

LRWB 34.0 ± 3.8 * 31.6 ± 2.8 30.8 ± 3.3 * 31.6 ± 3.2 31.4 ± 3.5 31.8 ± 3.7 32.9 ± 3.8 *

Hb
(g/dL)

nLRWB 12.5 ± 1.8 12.3 ± 2.1 12.3 ± 2.1 12.2 ± 2.2 12.2 ± 2.1 12.3 ± 2.1 12.3 ± 2.2
0.29 0.87

LRWB 12.3 ± 1.7 12.5 ± 1.4 12.5 ± 1.5 12.5 ± 1.4 12.6 ± 1.4 12.5 ± 1.4 12.5 ± 1.5

MCV
(fL)

nLRWB 65.7 ± 4.3 * 61.1 ± 4.2 * 60.4 ± 4.5 * 60.9 ± 4.4 * 62.17 ± 4.9 * 63.3 ± 4.7 * 64.8 ± 5.0 *
<0.001 0.06

LRWB 65.59 ± 4.31 * 60.41 ± 4.38 * 59.70 ± 4.60 * 59.97 ± 4.57 * 60.57 ± 4.88 * 61.33 ± 4.88 * 61.94 ± 5.23 *

RDW
(%)

nLRWB 13.6 ± 0.7 13.74 ± 0.7 13.67 ± 0.7 13.87 ± 0.7 14.20 ± 1.2 * 14.81 ± 1.5 * 15.77 ± 1.8 *
0.02 0.89

LRWB 13.47 ± 0.76 13.58 ± 0.7 13.76 ± 0.8 14.09 ± 0.9 14.27 ± 1.1 * 14.71 ± 1.3 * 15.29 ± 1.8 *

WBC
(×109/L)

nLRWB 8.87 ± 1.31 9.25 ± 1.77 9.29 ± 1.60 9.14 ± 1.79 9.22 ± 1.77 9.12 ± 1.90 8.57 ± 1.80
0.07 <0.001

LRWB 0.027 ± 0.06 0.002 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01

PLT
(×109/L)

nLRWB 227.7 ± 97.9 209.0 ± 95.1 175.7 ± 90.2 186.4 ± 83.5 176.2 ± 80.3 165.5 ± 76.9 191.2 ± 77.9
0.08 <0.001

LRWB 11.5 ± 19.6 4.1 ± 6.3 5.0 ± 8.4 6.8 ± 8.6 9.8 ± 9.8 12.2 ± 10.7 16.7 ± 11.5

The significant results (p < 0.05) of the multivariable analysis are in bold. Asterisks * indicate the significant times (p < 0.05).
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Figure 1. Leukoreduction effectiveness. Box plots (indicating median as lane and interquartile range as box) of
RBC(×1012/L), WBC(×109/L), and PLT(×109/L) counts before (nLRWB) and after (LRWB) leukoreduction of whole
blood units from seven canine donors. Black circles indicate outliers. Asterisks * p < 0.05.

The WB and the PLT counts measured in nLRWB units during the storage time have
no significant differences. The RBC and Hb values measured in all units during the storage
period remained substantially unchanged, with no significative differences between LRWB
and nLRWB units and among the different storage times (Table 1). The Hct showed
statistically significantly modifications during storage (Table 1, Figure 2), but without
significant differences between LRWB and nLRWB units. There was a decrease from T0 to
T14 and a progressive increase from T14 to T42 in all units, without significant differences
between LRBW and nLRWB.
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The MCV shows significant differences in almost all the times considered, except
T0, without significant differences in LRWB and nLRWB units, as shown in Table 1 and
Figure 3 After a reduction from T0 toT7, there is a progressive increase from T14 toT42.
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The RDW increases during the storage in both groups, in particular, significantly from
T28 to T42 with no differences between LRWB and nLRWB units (Table 1, Figure 4).
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3.3. LDH and Electrolytes

Results regarding LDH and electrolyte levels during times and among groups are
reported in Table 2.

The changes in plasma concentration of LDH enzyme are shown in Figure 5 There
are significant differences both between the LRWB and nLRWB groups, and among all the
storage times, with a progressive increase in LDH levels during the six weeks of storage,
more marked starting from T21.
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Table 2. Means ± standard deviations and significance of the parameters Na+, K+, and Cl−(mEq/L), LDH(U/L) in nLRWB and LRWB groups and in the different days post-donation.

Parameters Type of Units

Day of Donation p for Repeated
Measurements

T0
Day of

Donation

T1
Day 7

T2
Day 14

T3
Day 21

T4
Day 28

T5
Day 35

T6
Day 42

Among
Different

Times

Between
Groups

(nLRWB vs.
LRWB)

Na+

(mEq/L)
nLRWB 154.0 ± 1.00 * 159.20 ± 0.84 158.40 ± 7.70 164.80 ± 5.45 163.00 ± 2.35 166.00 ± 3.16 * 169.20 ± 3.56 *

<0.001 0.37
LRWB 153.2 ± 2.4 * 158.2 ± 1.3 156.6 ± 6.1 162.0 ± 4.1 159.8 ± 2.7 161.4 ± 3.2 * 165.6 ± 3.4 *

K+

(mEq/L)
nLRWB 2.5 ± 0.2 * 3.9 ± 0.3 * 4.1 ± 0.5 * 4.3 ± 0.4 * 4.6 ± 0.4 * 4.8 ± 0.4 * 5.0 ± 0.5 *

<0.001 0.21
LRWB 2.5 ± 0.2 * 3.8 ± 0.2 * 4.0 ± 0.3 * 4.2 ± 0.3 4.2 ± 0.4 4.2 ± 0.4 * 4.3 ± 0.4 *

Cl−

(mEq/L)
nLRWB 78.0 ± 4.1 80.8 ± 3.9 * 79.6 ± 2.5 79.2 ± 3.2 77.4 ± 2.7 77.2 ± 3.2 77.6 ± 3.1

<0.01 0.75
LRWB 79.4 ± 5.1 81.8 ± 4.6 * 80.4 ± 2.8 82.2 ± 5.4 80.4 ± 3.5 80.0 ± 4.3 80.6 ± 4.0

LDH
(U/L)

nLRWB 237.4 ± 255.6 217.2 ± 76.6 201.8 ± 67.2 258.2 ± 62.8 374.0 ± 153.2 * 612.4 ± 173.5 * 808.6 ± 108.7 *
<0.001 <0.001

LRWB 27.0 ± 15.3 63.4 ± 17.8 61.2 ± 35.0 69.4 ± 26.7 111.6 ± 30.9 * 129.4 ± 39.5 * 162.2 ± 61.3 *

The significant results of the multivariable analysis are in bold. Asterisks * indicate the significant times (p < 0.05).
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Figure 5. Differences in LDH (mean) measured in nLRWB and LRWB units during the storage period.
The days of storage are presented in the x-axis. LDH (U/L) is presented in the y-axis. Asterisks
* p < 0.05.

No significant differences are observed between the LRWB and nLRWB units regard-
ing Na+ and K+. Na+ showed a progressive increase from T0 to T42, except at T14 and T28,
which showed a reduction. T0 is significantly different from all storage times (Figure 6a).
The mean K+ concentration showed a progressive increase, particularly from T0 to T7.
From T21 to T42, the differences between LRWB and nLRWB increased, but not significantly
(Figure 6b).
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Figure 6. Differences in Na+ (mean) (a) and K+ (mean) (b) measured in nLRWB and LRWB units,
during the storage period. The days of storage are presented in the x-axis. Na+ and K+(mEq/L) is
presented in the y-axis. Asterisks * p < 0.05.
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The Cl− concentration showed a more variable trend, alternating increasing and
decreasing values, and then acquired an almost stationary phase from T21. There are no
differences between the LRWB and nLRWB units (Figure 7).
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3.4. Blood Smear Evaluation and Morphological Index

The changes in MI are shown in Figure 8 There is a significant difference between the
whole units and the filtrates, and the times are all different from each other. Below, there
are some of the images obtained with an optical microscope, from blood smears of nLRWB
(Figure 9) and LRWB (Figure 10), which show the progressive transformation of the red
blood cell from discocyte to echinocyte during the storage time.
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Figure 8. Differences in morphological index (mean) measured in nLRWB and LRWB units, during
the storage period. The days of storage are presented in the x-axis. MI is presented in the y-axis.
Asterisks * p < 0.05.
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Figure 9. Optical microscopic scans of non-leukoreduced whole blood, showing morphological
changes during storage. (a) corresponds to T0 red blood cells with normal biconcave disc shape; (b)
corresponds to T14; (c) correspond to T28 and (d) corresponds to T42 progressive changes in shape.
(d) also shows neutrophils in the degeneration phase.
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Figure 10. Optical microscopic scans of leukoreduced whole blood showing morphological changes
during storage. (a) corresponds to T0 red blood cells with normal biconcave disc shape; (b) corre-
sponds to T14; (c) correspond to T28 and (d) corresponds to T42 progressive changes in shape.

3.5. Basal and Storage Hemolysis

The percentages of hemolysis at T0 (basal hemolysis) showed an interindividual
variability between subjects, although this was not significant.
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The degree of hemolysis showed progressively significant increases from T0 to T42
in both the nLRWB and LRWB units (Figure 11). There are no significant differences
in the percentages of storage hemolysis manifested by the whole units compared to the
leukoreduced ones.
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(%) is presented in the y-axis. Asterisks * p < 0.05.

3.6. Bacterial Culture

All samples for aerobic and anaerobic bacterial culture were negative.

4. Discussion

The interest in leukocyte-depleted whole blood and packed red blood cell transfusion
has increased in recent years in order to minimize the risk in the transfusion recipient. In
the human field, it has been established that the removal of buffy coat from the whole
blood allows the elimination of about 70% of the WBCs, and it seems to be sufficient in
preventing febrile transfusion reactions due to blood transfusion but not to prevent a
possible alloimmunization secondary to the human leukocyte antigen system (HLA) [41].
Filtration has recently emerged as the most commonly used method of leukocyte depletion.
Leukocyte reduction by means of filtration can be performed before and after storage.
Prestorage leukofiltration offers additional benefits, avoiding the potential of reaction and
alloimmunization compared to leukocyte removal during or after the storage period [41].
Particularly, HLA antigens may solubilize from leukocyte membranes during storage,
passing through the filter used after storage and immunizing the recipient [41–43]; cy-
tokines released from leukocytes during storage may cause febrile reactions in transfusion
recipients [44,45] and the release of leukocyte enzymes during storage may alter RBC
metabolism and reduce their half-life [41,46].

The results of our study are encouraging since significant changes in some specific
parameters have been found both between leukoreduced and non-leukoreduced whole
blood units during storage time. We decided to evaluate these parameters for a period
of time of a week longer (42 days) than the normal shelf-life commonly stated for whole
blood units (35 days), to better evaluate their modifications during storage.

The leukoreduction filters currently available are specific for human use. A unit of
whole blood generally contains ≥1 to 10 × 109 WBC. In human transfusion medicine, the
Food and Drug Administration (FDA) establishes that a blood component can be defined as
leukoreduced when the concentration of white blood cells is <5.0 × 106 with 85% recovery
of original RBC content [47] and <1 × 106 WBC/unit is the standard of the Council of
Europe [3,48]. In our study, leukoreduction was effective since filtration was under the
FDA standards, removing 99.69% leukocytes and 94.91% platelets from the whole blood
units and ensuring the 98.30% RBC recovery in LRWB units compared to the nLRWB units.
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Our results are in agreement with those previously found on canine leukoreduced packed
red blood cell units and whole blood units [6,11,49] using a filter currently available for
human use. Our study confirms that the use of commercially available leukoreduction
filters for human blood units is effective also for canine whole blood.

Regarding the hematological parameters studied, Hb maintained similar values over
time, similar to other studies [1,2]. Indeed, we found that Hb concentrations were not
statistically different from the beginning to the end of the storage time both in LRWB and
nLRWB units. In our study, as well as in the above-mentioned studies (1,2), we detected
the total hemoglobin levels including both the intracellular and extracellular Hb content.
In human medicine, some authors measured only plasma Hb in blood units by using a
specific instrument able to detect low plasma Hb levels and found a statistically significant
increase during storage of this parameter, which can be used as a more reliable index of
hemolysis [7]. Unfortunately, we could not obtain this type of determination.

The Hct values varied significantly during the storage time, both in LRWB and in
nLRWB units, showing a decrease on the 14th day (T2) of storage compared to T0 levels
and an increase on the 42nd day (T5), returning to basal levels. No significant differences
were found between the LRWB and nLRWB units, probably because leukoreduction does
not affect this parameter. Our results are different to those previously found in packed red
blood cell units both in human [50] and veterinary medicine [2] that found a progressively
significant increase in Hct from the beginning to the end of the storage time (42nd day). A
possible explanation for this difference in our study could be the different effect of plasma
in whole blood units compared to the maintenance storage solutions used (Adsol, Optisol,
SAGM, and PAGGGM) in packed red blood cell units of the previous studies [2,9]. Another
possible explanation for the differing results could also be due to the different methods
used to obtain the Hct value. In the previous research [2], Hct was directly measured
using the microhematocrit method, whereas in the present study we used an automated
hematology analyzer that indirectly determined Hct values by multiplying RBC numbers
with the MCV. In our study, the RBC count remained unchanged during storage and the
MCV showed a trend similar to that of Hct (a significant decrease at the 14th day and a
significant increase, reaching the basal levels, at the 35th and 42nd days).

The MCV represents the average volume of erythrocytes and could be considered an
index of morphological modification; its variability in all units during the six weeks of
storage indicates the changes in size of red blood cells during storage. In our study, the
MCV reaches higher values in nLRWB units in all time points. Moreover, MCV values
showed a reduction at T2 (14 days) and then a progressive increase that reaches the basal
levels at T5 (35 days) and T6 (42 days), both in the LRWB and nLRWB groups. The increase
in the MCV values indicates RBC swelling; it seems that there is a deregulated mechanism
of red blood cell volume. Particularly, it is documented that there is an insufficiency
of the adenosine-5′-triphosphate (ATP)-dependent Na−K pumps of the RBC membrane
which cannot work properly under cold storage conditions [33,48]. This could explain
the increase in the volume of the RBC other than the hypocromia and the anisocytosis
found [1]. Moreover, the increase in the MCV was more pronounced in unfiltered units,
suggesting that some products of leukocyte disintegration may be involved to affect RBC
membrane properties [33,48].

Our results are partly in contrast with those reported by other authors that record the
slight increase of the MCV from T0 to T35 [48]. In our study, both MCV and Hct trends
could be explained with the transformation of red blood cells into echinocytes starting from
the 14th day of storage. In fact, with their numerous membrane projections, these modified
erythrocytes would trap the plasma between the red blood cells for a value equal to 1 to
3% of the volume, as suggested by Mustafa et al. (2016) [50]. To confirm this theory, we
evaluated blood smears and calculated the morphological index weekly from all the LRWB
and nLRWB samples. We observed a progressive morphological change during the 42 days
of storage with a progressive transformation of the discocyte, first into a flat echinocyte,
then into a spherical echinocyte with numerous membrane spicules. Particularly, the 14th
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day of storage, when compared with day 0, shows a significant increase of MI, both in the
nLRWB and in LRWB units. The MI progressively increases in both groups from T2 to T5,
as does the MCV and Hct. In human [50] and veterinary medicine [38] it is assumed that
the oxidative damage that occurs during storage could contribute to the morphological
modifications. In our study, the severity of the morphological and MI changes were greater
in the nLRWB units at all storage times (Figure 9). Since the entity of the increase was
greater in nLRWB, we can suppose that the leukocyte degradation products could also
contribute to the transformation of the red blood cell from discocyte to echinocyte. Our
results are in agreement with those observed by other authors [29].

Furthermore, the increase of RDW values observed in our study during the storage pe-
riod evaluated is an index of anisocytosis and deformation of the erythrocyte mass [29,39].

In our study, the degree of hemolysis during the storage time was calculated using the
described formula, and indirectly by LDH and electrolytes. In human medicine, the length
of blood storage time is regulated by the FDA, which has established that all commercially
available preservative solutions must ensure the survival of 75% of the red blood cells after
24 h from the transfusion. The Council of Europe set the limit of hemolysis at 0.8% on the
42nd day of storage for packed red blood cells units [3], while the American Association of
Blood Banks (AABB) admits a percentage of hemolysis not exceeding 1% [51–54]. There are
no comparable guidelines about the acceptable hemolysis degree in stored canine whole
blood [55].

In the present study, hemolysis was determined using the same formula applied in
other human and veterinary studies [2,6,40,48,49,56]. In all the units, the degree of hemol-
ysis progressively increased (p < 0.05) during the storage time, reaching the maximum
level close to 1% at the 42nd day of storage (Figure 11). There are no significant differences
in the percentage of hemolysis detected in the nLRWB whole blood units compared to
the LRWB units. Only at the 42nd day of storage was the hemolysis percentage slightly
higher in the nLRWB units. According to our results, leukoreduction did not have any
evident effect on the percentage of hemolysis during storage. This practice would not seem
to have a protective role on storage-induced hemolysis as would have been expected on
the basis of what is reported in human literature [41,57]. Only a few human studies [56]
show results similar to ours concerning the comparison of hemolysis percentage in leukore-
duced and non-leukoreduced blood units. According to our knowledge, in the veterinary
literature there is only one other study that compares the hemolysis percentage between
leukoreduced and non-leukoreduced canine whole blood units [48].

In our study, hemolysis progressively increased during the storage time and our
results are similar to those of other studies by using the same method for the hemolysis
calculation, indicating a progressive increase in the hemolysis percentage during the storage
time both in leukoreduced [6,49,56] and non-leukoreduced units [2,56]. Particularly, one
study showed that the percentage of hemolysis increases independent of the storage
solutions used (Adsol, Optisol, SAGM and PAGGGM) from day 0 to day 42 of storage [6].
Ferreira et al. (2018) [2] found a statistically significant positive correlation between the
storage time and hemolysis in canine non-leukoreduced packed RBC stored for six weeks
that exceeded the hemolysis limit of 1% in almost all of the units tested. Almost 51% of
the units with 36 to 42 days of shelf-life showed more than 1% hemolysis. Interestingly, in
our study, this limit was exceeded only at the 42nd day of storage in whole blood units in
CPDA1, both in LRWB and in nLRWB, but with slightly higher values in nLRWB units.
The use of whole blood units seems to be valid regarding the storage-induced hemolysis
results in the veterinary practice.

It is worth mentioning that, in our study, there was a difference between the basal
hemolysis percentages recorded in each subject on the donation day (T0). Indeed, as previ-
ously observed [58], the largest source of inter-unit difference in hemolysis is donor-specific.
A donor-specific variability in RBC performance during storage, and post transfusion via-
bility has been previously established [59,60]. The RBC lifespan and storage viability could
be affected by numerous factors such as genetic variability (age, breed, gender), subclinical
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conditions, concentrations of membrane peroxiredoxin-2, the presence of serum uric acid,
and lifestyle factors (diet, attitude) that cannot be revealed by the hematological profile
obtained at blood donation. This donor variation effect seems to lead to the production of
unequal blood products even in similar storage conditions and durations. [59,60]. More
studies are needed in veterinary medicine regarding this topic, since few data are available.

To evaluate the degree of hemolysis during the storage time, other reliable hemolysis
indexes such as LDH and electrolyte concentrations can also be used [61,62]. In our study,
these parameters were significantly increased during the storage time. Indeed, a change in
the plasma electrolyte concentration occured, certainly attributable to hemolysis, but also
to alterations in the Na/K membrane pump. In our study, we found an increase in serum
K+ and Na+ levels, from day T0 to T5 in both the LRWB and nLRWB groups, but with lower
values in the LRWB group. Nevertheless, the K+ values remained close to the reference
value during storage, while the Na+ values exceeded the higher reference limit. On the
other hand, the Cl− values showed limited significative differences between the LRWB
and nLRWB units. Our results are in agreement with those reported in veterinary medicine
by other authors that report a significant increase in plasma electrolytes, and in particular
in K+ levels in canine WB and pRBC both in leukoreduced and non-leukoreduced whole
blood units with different maintenance solutions added [5,48].

In human medicine, it is known that, during blood storage, a constant increase of
plasma potassium that reaches high values and a decrease in plasma sodium levels oc-
cur [1,5,8]. The mechanisms underlying this electrolyte imbalance have been attributed to
the reduced function of the Na/K-ATPase pump of the red blood cell membrane, causing
the reduced entry of the sodium ions into the cells and a reduced exit of potassium ions
from the cells via the semipermeable membrane. As previously mentioned, this pump
works poorly during storage due to falling concentrations of ATP correlated to the cold
storage conditions. At the same time, the potassium accumulated in the erythrocytes
during storage is then subsequently released due to the increasing hemolysis [4,29,63,64].

The results of our study revealed significant alterations in the concentration of both
potassium and sodium, whose concentrations increased in all units during the storage
time, even if only the Na+ value exceeded the higher reference limit. These results are in
contrast with those reported in the human literature [1,5,8]. Probably, this occurred because
canine erythrocytes contain naturally lower potassium and higher sodium concentrations,
in addition to having limited Na/K-ATPase pump activity, as compared to humans [65,66].
Furthermore, it has been documented that cation permeability is volume-dependent in
canine erythrocytes. As a result, sodium permeability decreases, while potassium perme-
ability increases as RBCs swell, and the opposite occurs as they shrink [65].

For these reasons in human medicine, particular attention is paid to recipients affected
by coronary pathologies, subjected to cardiac bypass operations, as well as to pediatric
patients [67]. The increase in K+ in the supernatant could lead to hyperkalemia in the
recipient, with the risk of developing cardiac arrhythmias up to death from cardiac arrest.
This can occur especially in the case of transfusions of red blood cells stored for a long
period of time and performed quickly. On the other hand, in the preserved dog blood units,
a significant increase in the concentration of K+ is unlikely to occur [4], as our results also
demonstrate. However, some clinically healthy Japanese and Korean dog breeds show
high levels of this electrolyte within the erythrocytes, resulting from a greater activity of the
aforementioned pump [68] and a prolonged storage period of the blood units obtained from
these breeds could lead to the accumulation of K+ in the supernatant over the reference
limits [4].

In veterinary medicine, there are not many studies regarding modifications of the LDH
concentrations during storage. According to our results, in all LRWB and nLRWB units,
we found significant progressively increased LDH levels, with strongly lower values in
LRWB bags. These changes are comparable to those found in human blood units [7,69,70],
suggesting that LDH could be an index of reliable hemolysis also in canine blood bags.
In our study, the increase was significantly higher in the nLRWB units compared to the
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LRWB groups according to what happens in human medicine [69]. These results confirm
the progressive increase of hemolysis during the storage time, as previously stated with
the storage hemolysis formula. Moreover, the evaluation of LDH concentrations in LRWB
demonstrated that there is probably a presumptive protective role of leukodepletion. This
result could be attributed to the LDH enzymatic activity contained in the white blood
cells [71–73]. In addition, some authors affirm that the degradation of leukocytes causes the
release of LDH, and other lytic enzymes which would alter the properties of the erythrocyte
membrane responsible for further hemolysis during storage in nLRWB [74,75].

In the literature, different studies also justify the use of leukoreduction in the reduc-
tion of hemolysis during storage with various mechanisms. Some authors suggest that
the leukoreduction filter could remove the less deformable and fragile red blood cells
present at the time of collection [51]. Others [4,51,76] suggest that in nLWB units, WBCs
contribute to the faster consumption of the energy substrates contained to produce ATP
for their metabolism. This could cause a reduced ATP production by RBC that affects the
erythrocyte membrane by reducing its elasticity and intracellular viscosity, with an increase
in hemolysis.

The main limitations of this study are the small number of subjects enrolled, the
impossibility of carrying out a statistical analysis of data regarding basal hemolysis related
to the subject and the possible influence of genetic and lifestyle donor variability on
blood parameters.

5. Conclusions

Based on the results of our study, we believe that the leukoreduction filter for human
use is equally effective on canine whole blood units as it allowed a 98.30% recovery of RBC,
retaining 99.69% and 94.91% of WBCs and PLTs, respectively.

A significant increase for the variables LDH and MI were detected among groups
(nLRWB vs. LRWB), with higher values in non-leukoreduced units, demonstrating the
usefulness of this practice in veterinary medicine. Moreover, a significant progressive
increase of the parameters RDW, K+, Na+, LDH, and MI during T0 to T6 as well as a
reduction of the parameters HCT and MCV at T2 (14 days) with their progressive increase
that reaches the basal levels at T5 to T6 (35 days to 42 days) have been shown in both the
LRWB and nLRWB groups.

Our results demonstrate that a storage time of 35 days is adequate for whole blood
stored in CPDA1, as it is able to maintain the percentage of hemolysis below 1%, as re-
quired by human standards. However, given the progressive morphological changes
shown during storage, already evident on day 14 on unfiltered samples, we recom-
mend using LRWB stored units before the 14th day of storage, especially in critical and
polytransfused patients.

We showed that the storage hemolysis increased significantly during storage time
without significant differences between the LRWB and nLRWB units. This happened
despite an insignificant difference observed for RBC levels during the storage period. Since
the increase of LDH levels during storage time was different among the groups, we suppose
that the change of its concentrations should not be correlated only with hemolysis. Probably,
the highest levels of LDH recorded in the non-filtered samples could have a leukocyte
origin. More studies are needed to confirm this data and to evaluate the post-transfusion
effect of this enzyme in the recipients.

Finally, the detection of a difference between the basal hemolysis percentages recorded
in each subject on the day of donation could suggest an inter-individual donor biological
variability of RBC membrane resistance, as happens in humans. Further studies, aimed
at evaluating the degree of hemolysis tendency of different blood donors are needed in
the veterinary field, since no data are available. Particularly, future research should be
conducted to define how much age, gender, race, diet, and other individual variables could
influence the characteristics of the erythrocyte membrane.
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