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Abstract

Background: Many Alzheimer’s disease (AD) genetic association studies disregard age or incorrectly account for it,
hampering variant discovery.

Methods: Using simulated data, we compared the statistical power of several models: logistic regression on AD
diagnosis adjusted and not adjusted for age; linear regression on a score integrating case-control status and age;
and multivariate Cox regression on age-at-onset. We applied these models to real exome-wide data of 11,127
sequenced individuals (54% cases) and replicated suggestive associations in 21,631 genotype-imputed individuals
(51% cases).

Results: Modeling variable AD risk across age results in 5–10% statistical power gain compared to logistic
regression without age adjustment, while incorrect age adjustment leads to critical power loss. Applying our novel
AD-age score and/or Cox regression, we discovered and replicated novel variants associated with AD on KIF21B,
USH2A, RAB10, RIN3, and TAOK2 genes.

Conclusion: Our AD-age score provides a simple means for statistical power gain and is recommended for future
AD studies.

Keywords: Alzheimer’s disease, Genetics, Whole-exome sequencing, Exome-wide association, Age adjustment, Cox
regression, RAB10, TAOK2, USH2A, RIN3, KIF21B

Background
Genetics plays an important role in the onset of Alzhei-
mer’s disease (AD) with an estimated heritability ranging
from 58 to 79% [1]. Over the last decade, genome-wide
association studies (GWAs) of AD have identified over
40 susceptibility loci [2–5], by meta-analyzing genotype-
imputed data from numerous cohorts genotyped on
various single nucleotide polymorphism (SNP) arrays.
With each updated GWA, the increasing sample sizes
and improved imputation quality of low frequency

variants have enabled additional discoveries. A comple-
mentary approach is to use next generation sequencing
to directly genotype every variant, alleviating the need
for imputation and enabling rare variant discoveries. To
this aim, the Alzheimer’s Disease Sequencing Project
(ADSP) undertook whole-exome sequencing (WES) of
10,836 individuals (53% cases) which led to the discovery
of novel AD risk genes [6, 7]. The ADSP individuals
were part of existing AD cohorts and were selected
based on a risk score accounting for APOE ε2 and APOE
ε4 alleles, sex, and age at onset (AAO) for cases and age
at last exam or death for controls [6]. This design pro-
moted the inclusion of controls least likely to develop
AD by age 85 years and was shown to maximize
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statistical power compared to other approaches such as
using age-matched cases/controls [6].
Across prior AD GWAs, the common approach to as-

sociation testing was to perform case-control logistic re-
gression analyses adjusted for age. Theoretically, this
adjustment should account for increasing AD prevalence
with age in the population, independently of genetic fac-
tors [8, 9]. However, most AD cohorts include the AAO
for cases and last known age without cognitive impair-
ment for controls. This common design leads to the
average age of cases being lower than the average age of
controls. If one performs a case-control logistic regres-
sion with a traditional age adjustment, the model will
infer that age has a negative effect on AD risk, meaning
that younger individuals are more likely to develop AD.
Since advanced age is the greatest risk factor for AD [9],
it appears essential to correctly account for age. The lat-
ter conundrum is particularly relevant to the ADSP
where, by design, the average age of controls is 10 years
greater than that of cases.
In this work, we aimed to improve on prior AD GWA

studies by evaluating and implementing models that in-
herently, correctly account for age effects on AD. To this
aim, we estimated the statistical power of different
models on simulated data, reflecting various age differ-
ences between cases and controls as found in AD co-
horts. These models included logistic regression on AD
case-control status adjusted and not adjusted for age,
linear regression on a newly designed score which
weights case-control status by age, and multivariate Cox
regression on AAO, which models cumulative conver-
sion risk across the life span. We then applied these
models to exome-wide AD data with a next generation
sequenced discovery sample (5075 controls and 6052
cases) and replicated suggestive associations in an inde-
pendent sample of genotype-imputed individuals (10,539
controls and 11,092 cases).

Methods
Power simulations
We performed power simulation studies to evaluate
the performance of different AD genetic association
models (R.v3.5.1). We first simulated population level
data that mimics population AD prevalence estimates
at ages 60–100 across a range of age-related risk ef-
fect estimates (OR 1.01–1.25) [10, 11]. The age effect
estimate on AD status (OR 1.16) served as a reference
to evaluate power for AD GWA studies [12]. We then
simulated AD case-control datasets by random sam-
pling of cases and controls from the population level
data. To simulate realistic AD case-control datasets
[13–15], subjects’ mean age was centered on 75 years
following a binomial distribution with a standard de-
viation of 8 years. Simulated subjects were restricted

to the age range of 60–100, after which cases and
controls were randomly drawn abiding by model con-
ditions. To evaluate how age differences between
cases and controls affect power for variant discovery,
subjects were further sampled to three conditions: (1)
no mean age difference between cases and controls,
(2) cases’ mean age is 5 years younger than in con-
trols, and (3) cases’ mean age is 10 years younger
than in controls. These conditions, particularly condi-
tion 2, are similar to those observed for common AD
GWAS cohorts [13–15], while condition 3 mimics the
design of the ADSP WES study. The power was cal-
culated based on 1000 simulation replicates, and the
linear regression on the AD-age score was estimated
with bootstrap-based inference (100 resamplings).
Each replicate included either 1000 cases and 1000
controls, or 5000 cases and 5000 controls, respectively
testing for a significance level of α = 0.05 or α = 5 ×
10−7 (i.e., exome-wide significance). These parameters
respectively mimic common AD GWA cohorts and
the ADSP WES study [7]. We evaluated power for a
range of realistic effect sizes (OR 1.05, 1.10, 1.20,
1.50) and common minor allele frequency (MAF)
0.01, 0.05–0.45 (at 0.05 increments) Data used in the
preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Princi-
pal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clin-
ical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease
(AD).

Participants
All samples were available from publicly released AD-
related cohorts, with phenotype and genotype ascertain-
ment described elsewhere [3, 6, 13, 16–26].
The European individuals in ADSP WES [6, 7], ADSP

whole-genome sequencing (WGS) [21, 25], and the Ac-
celerating Medicine Partnership in AD (AMP-AD) WGS
[22, 24, 26] cohorts comprise our discovery sample and
were mega-analyzed (Table 1 and Table S1). The ADSP
WES selection criteria have already been introduced; the
selection scheme led to a 10 years’ average age difference
between cases and controls [6, 7]. For AMP-AD, the re-
ported age for cases was not always AAO; thus, the aver-
age age of controls was only 2 years greater than that of
cases (Fig. 1).
As a replication sample, we mega-analyzed 34 co-

horts, each corresponding to a specific SNP array
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applied to an AD case/control dataset [3, 16–24].
Some of these cohorts correspond to the same AD
study but individuals were genotyped on different
platforms. These cohorts are heterogeneous in terms
of age reported and are extensively described else-
where [3, 13] (Table 1 and Table S2). When multiple
ages were available for a given subject, the order of
priority for which age to use was AAO then age at
examination then age at death in affected individuals,
and age at death then age at last examination in con-
trol participants [13]. We removed any duplicated in-
dividuals across these cohorts and the discovery
sample.

Genetic quality control
For each cohort included in our analysis, we first deter-
mined the ancestry of each individual with SNPWeights
v2.1 [27] using reference populations from the 1000 Ge-
nomes Consortium [28]. Prior to ancestry determination,
variants were filtered based on genotyping rate (< 95%),
MAF < 1% and Hardy-Weinberg equilibrium (HWE) in
controls (p < 10−6). By applying an ancestry percentage
cut-off > 75%, the samples were stratified into five super
populations: South-Asians, East-Asians, Americans, Afri-
cans and Europeans, and an admixed group composed
of individuals not passing cut-off in any single ancestry.
Since most individuals were Europeans and to avoid
spurious associations, we focused on European ancestry
individuals.
Carriers of known pathogenic mutations on APP,

PSEN1, PSEN2, and MAPT were excluded from our ana-
lysis. Discordant pathology cases, defined as any clinic-
ally diagnosed AD individual with Braak stage below III
or neuritic plaques level below moderate, were excluded
from our analysis.
The joint called set of exome variants in the ADSP

WES is composed of 1,524,414 SNPs [6, 7]. We re-
stricted downstream analysis to these variants, meaning
that variants called only in ADSP WGS or AMP-AD
were not included. To remove potential sequencing arti-
facts, we applied several quality control (QC) steps to
each dataset. First, SNPs were checked for consistency

with the Haplotype reference consortium (HRC) panel
[29]. This check included flipping SNPs reported on in-
correct strand and excluding SNPs with more than 10%
MAF difference with the HRC panel. Second, we re-
moved SNPs that deviated from HWE in controls (p <
10−6) or that had a genotyping rate below 95%. Third,
we removed any variants which had a flag different than
PASS in gnomADv3 [30].. Following these QC steps,
905,341 variants remained. For analysis, we considered
124,679 variants with minor allele count above 10, to en-
sure a minimum number of carriers.
In each cohort of the replication sample, SNPs with

less than 95% genotyping rate or deviating from HWE in
controls (p < 10−6) were excluded. Then, we used the
gnomAD database [30] to filter out SNPs that met one
of the following criteria: (i) located in low complexity re-
gion, (ii) located within common structural variants
(MAF > 1%), (iii) multiallelic SNPs with MAF > 1% for at
least two alternate alleles, (iv) located within a common
Ins/Del (insertion/deletion), (v) having any flag different
than PASS in gnomAD, and (vi) having potential probe
polymorphisms [31]. The latter are defined as SNPs for
which the probe may have variable affinity due to the
presence of other SNP(s) within 20 bp and with MAF >
1%. Individuals with more than 5% genotype missingness
were excluded. Imputation was performed on the Mich-
igan imputation server using the TOPMed reference
panel [32, 33]. Per cohort, only variants with sufficient
imputation quality (r2 > 0.3) were included in the replica-
tion analysis (Table S3).
Identity-by-descent was run to determine the related-

ness between all individuals using PLINKv1.9 [34]. In
the discovery sample, we kept only one version of dupli-
cated individuals and removed first degree relatives
keeping AD relatives over controls, and when both had a
concordant diagnosis, we kept the younger case or older
control. In the replication sample, we removed any indi-
viduals already present in the discovery, and for dupli-
cate subjects, we kept the copy from the SNP array with
the highest genome coverage.
On the subset of remaining individuals, we computed

genetic principal components to account for population

Table 1 Detailed demographics for discovery and replication sample. Details per cohort included in the discovery and replication
can be found respectively in Tables S1 and S2. HC healthy controls, AD Alzheimer’s disease

Sample N
(% females)

Age
μ (σ)

ε3/ε3
(%)

ε3/ε4
(%)

ε4/ε4
(%)

ε2/ε3
(%)

ε2/ε4
(%)

ε2/ε2
(%)

Discovery – (WES + WGS)

Controls 5075 (59.0) 85.2 (5.4) 66.13 13.93 0.51 17.12 1.52 0.79

AD cases 6052 (57.8) 76.3 (8.2) 47.54 39.29 4.23 6.08 2.46 0.4

Replication – (imputed SNP arrays)

Controls 10,539 (59.4) 76.7 (8.5) 60.98 22.01 2.07 12.11 2.18 0.65

AD cases 11,092 (60.5) 73.3 (9.3) 32.83 44.37 16.21 3.69 2.79 0.1
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stratification [35] in both the discovery and replication
samples, separately.

Statistics, association models, and AD-age score
We considered four main models: logistic regression on
AD diagnosis adjusted for age, logistic regression on AD
diagnosis, linear regression on a score integrating case-
control status and age, and multivariate Cox regression
on AAO. When AAO was not available, the first known
age with AD diagnosis was used. Our analyses removed
individuals younger than 60 and censored maximum age
at 100. We considered controls below 60 as uninforma-
tive and cases below 60 as early onset AD potentially
due to a causal mutation.
For the third model, we defined the AD-age score as

follows:

� log(1-weight (age)) − 0.5 for controls
� −log (weight (age)) + 0.5 for cases

The score was designed to abide by the following
rules: cases and controls should be clearly separated
(maximum value for controls − 0.5 and minimum value
for cases + 0.5, ensuring that the minimum difference
between cases/controls is greater than 1), younger cases
should have higher scores compared to older cases, and
older controls should have lower scores than younger
ones. This ensured that younger cases and older controls
were at opposite extremes of the score spectrum and as-
sumed these individuals influenced genetic associations
the most.
We defined two weight (age) functions:

A. A linear definition: weight (age) = (age-59.5)/(100.5–
59.5);

B. A piecewise continuous definition:
○ 60 and below: weight (age) = 5/320
○ > 60 to 65: weight (age) = (age−55)/320
○ > 65 to 75: weight (age) = 4*(age−55)/320–3/32
○ > 75 to 80: weight (age) = 10*(age−55)/320–15/
32
○ > 80 to 90: weight (age) = 16*(age−55)/320–30/
32
○ > 90 to 100: weight (age) = 6*(age−55)/320 + 5/32

(A) corresponds to a linear effect of age between 60
and 100 and (B) accounts for the changes in AD preva-
lence slope in this age range [8] (Fig. 1).
For the analysis of exome-wide data, all models had

two subversions: (1) adjusted for sex and 10 first princi-
pal components of population structure and (2) add-
itionally adjusted for APOE ε2 and APOE ε4 alleles.
The associations for the first three models were esti-

mated with PLINKv2.0 [36] using the –glm flag, which

performs a logistic regression for case/control phenotype
and a linear regression for quantitative phenotype. The
Cox regression associations were estimated with gwasur-
vir [37].
We calculated the number of independent variants

with PLINKv1.9 [34] (option –indep-pairwise 1000 50
0.1), which identified 87,034 linkage disequilibrium
blocks covering the 124,679 considered variants. Thus,
the exome-wide threshold was set at p < 5 × 10−7 (0.05/
87034, Bonferroni correction) and the suggestive thresh-
old at p < 1 × 10−5 (1/87304). A 1Mb region around the
APOE locus was excluded from the reported results due
to its well-established association with AD. We did not
correct for the number of tested models due to their
high correlation (cf. Results), nor for the two versions of
adjustment (APOE ε2 and APOE ε4 alleles adjusted or
not), as in Bis et al. [7], since these were similarly highly
correlated.
Thirty-one variants passing the suggestive threshold in

the discovery were evaluated in the replication sample.
We disentangled spurious and true associations based
on their associations in the replication dataset. SNVs
with discordant direction of effect were considered to be
spurious associations. Variants which had a concordant
direction of effect and p < 1.6 × 10−3 (0.05/31, Bonferroni
correction) in the same regression model, allowing dif-
ferent covariate adjustment, were considered significant,
while those with p < 0.05 were considered to replicate
nominally.
For more robust and powerful inference with the AD-

age score, which is not normally distributed, we per-
formed bootstrapping (100 resamplings) consistent with
what was done in power simulations. To limit the com-
putational burden, we only computed the bootstrap-
based inference for the set of replicated variants, which
allowed us to compare the significance of the linear re-
gression on AD-age score with the Cox regression for
true associations.
Last, we performed a fixed-effect meta-analysis using

the metafor package in R [38] to estimate the signifi-
cance of the replicated variants in the combined discov-
ery and replication samples .

Gene and variant annotations
Each variant consequence was annotated with the
Ensembl Variant Effect Predictor toolset [39]. Non-
synonymous variants, such as missense or frameshift
variants, may lead to loss or gain of function that may
affect the enzymatic activity, stability, and/or interaction
properties at the protein level. Synonymous variants, by
contrast, do not typically directly affect protein function;
however, they can influence protein expression both at
the transcriptional and translational level [40].
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To disentangle the role of the synonymous common
variants as potential expression quantitative trait loci
(eQTL), we queried the largest brain cis-eQTL meta-
analysis which included 1433 post-mortem brain samples
from the AMP-AD and CommonMind Consortium [41].
Lastly, for mapped genes harboring significant vari-

ants, we queried the AMP-AD fixed-effect meta-analysis
of gene differential expression between AD and control
individuals across brain tissues [22, 24, 26].

Results
Age-informed AD risk estimation increases power for
genetic association testing
Power outcomes for specific illustrations of simulation
analyses, considering a range of age-related risk effect
estimates, are presented in Fig. 2 and Figure S1. An
overview of power differences between different associ-
ation models for all simulations’ conditions, varying the
AD risk associated with age, is provided in Figure S2. In

Fig. 1 Proposed AD-age score visualization and its distribution in the discovery and replication samples. a Illustration of the proposed AD-age
scores with a linear and a piecewise definition of the weight (age) function (see the “Methods” section). b, c Cases (AD) and controls (CN) age
distribution in the discovery, composed of next generation sequencing data, and in the replication, composed of SNP-array imputed data, and d,
e their respective AD-age score distributions

Fig. 2 Power of different association models for two specific simulation outcomes. a–c A common variant with moderate effect size, evaluated in
1000 cases and 1000 controls at a significance level of α = 0.05, mimicking the condition of common AD cohorts genotyped on SNP arrays. d–f
An uncommon variant with large effect size, evaluated in 5000 cases and 5000 controls at a significance level of α = 5 × 10−7, mimicking the
condition of ADSP WES which allows exploration of uncommon and rare variant associations. Panels show power on the y-axis and age-related
effect estimates on the x-axis. Outcomes for four models are shown (cf. legend) and the age-related effect estimate for AD [OR (Age-AD)] is
marked by a vertical gray dotted line. From left to right, panels show simulation results for increasing mean age differences between cases and
controls (cases being younger than controls where applicable)
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simulations where the mean age of cases was younger
than in controls, adjustment for age in logistic regression
analyses compared to not adjusting for age led to critical
power loss (Fig. 2), amounting to as much as 90% power
loss in some conditions (Figure S2 A-D). The AD-age
score model performed best overall across all four
models, displaying power increases regardless of age dif-
ferences between cases and controls, particularly for the
estimated age effect on AD status [12] corresponding to
the vertical gray line on Fig. 2, S2. Power gain of the
AD-age score with regard to logistic regression not ad-
justed for age was on average 5%, up to 10% in some
scenarios (Figure S2 C-D). The Cox regression on AAO
performed worse than the unadjusted logistic regression
when the cases and controls were age matched and bet-
ter when the age difference increased (Fig. 2e, f). Power
gain of the AD-age score with regard to Cox regression
was between 5 and 10% in some scenarios, notably when
cases controls were age matched (Figure S2 G-H). When
age difference is 10 years, the AD-age score and Cox re-
gression performs similarly with some scenarios showing
1% increased power for AD-age while others showed 0–
2% power gain for the Cox regression. Figure S3 shows
that all models have the same type I error control under
our simulation paradigm.

Exome-wide association
Exome-wide association with AD in the discovery sam-
ple for all four models and their subversions are shown
in (Figure S4-S7). QQ plots for each exome-wide associ-
ation show no inflation (λ < 1.1), except for the Cox re-
gression adjusted for APOE ε2 and APOE ε4 allele
dosages (λ = 1.19) (Table S4, Figure S8-S11). The logistic
regression adjusted for age showed no associations above
the suggestive threshold outside of the APOE region
(Figure S4). Across the three other models, a total of 31
variants passed suggestive significance, including 5
known AD risk loci [7]. The parameter estimates of
these models: (i) OR (odd ratio) for logistic regression,
(ii) exp(β) for the linear regression, and (iii) HR (hazard
ratio) for the Cox regression were found to be highly
correlated (Figure S12), with (i–ii) Pearson correlation:
r2 = 0.80 (p = 3 × 10−12), (i–iii) r2 = 0.84 (p = 4 × 10−14),
and (ii–iii) r2 = 0.97 (p < 2 × 10−16). The known TREM2
missense single nucleotide variant (SNV) (rs75932628)
was exome-wide significant in the three models. Other
known associations included synonymous SNVs on
PILRA (rs2405442), MS4A6A (rs12453), NSF (rs199533,
lead SNV of a locus also encompassing MAPT and
KANSL1), and a frameshift deletion on ABCA7
(rs547447016) (Fig. 3, Tables 2 and 3). The association
on PILRA was exome-wide significant in the AD-age
score linear regression and suggestive in the Cox regres-
sion but did not reach the suggestive threshold in the

logistic regression. Similarly, the association on ABCA7
was suggestive in both AD-age score and Cox regres-
sions, but not in the logistic regression. On the contrary,
the association on MS4A6A was suggestive in the logistic
regression and in the AD-age score and just below sig-
nificance in the Cox regression. The association on NSF/
MAPT/KANSL1 was suggestive in all three models. In
addition to these 5 known exonic associations, associa-
tions on 26 other exonic loci were at least suggestive in
one of the three models (Table S5). Logistic regression
(Figure S5) produced one spurious association on
ETV3L, the AD-age score linear regression led to three
spurious associations on TACR3, PCDHA7, and the one
on ETV3L, while the Cox regression (Figure S6) had 16
spurious associations including the one on TACR3. The
logistic regression model showed no novel suggestive as-
sociation. The AD-age score linear regression, prior to
bootstrap (Figure S7), produced two novel suggestive-
level associations: one USH2A missense SNV
(rs111033333) and one RIN3 missense SNV
(rs150221413), which replicated nominally. The Cox re-
gression produced several exome-wide significant associ-
ations in the discovery with concordant direction of
effect in the replication including NAV2 (rs11828836),
RAB10 (rs149622307), and the USH2A and RIN3 associ-
ations, also found in the AD-age score linear regression.
Among suggestive associations in the Cox regression,
two significantly replicated: RAB10 synonymous SNV
(rs149622307) and TAOK2 synonymous SNV
(rs4077410), and three nominally replicated: KIF21B syn-
onymous SNV (rs2297911), and the previous missenses
on USH2A and RIN3. NAV2 synonymous SNV
(rs11828836) did not reach nominal significance (p =
0.17), but it was imputed with sufficient quality in only
9235 individuals (less than 50% of imputed individuals).
CDKL1 intronic SNV (rs61981931) did not reach nom-
inal significance (p = 0.09).
For the set of replicated variants (Table 2), we meta-

analyzed the discovery and independent replication re-
sults. Seven out of the ten exonic variants were most sig-
nificant in the linear regression on the AD-age score,
while only two performed best in the Cox regression,
those on KIF21B and TAOK2, and one in the logistic re-
gression, on MS4A6A (Figure S13). After meta-analysis,
the variants located on RAB10, TREM2, PILRA,
MS4A6A, and RIN3 were exome-wide significant (p <
5 × 10−7) (Table S6).

Functional annotation
Among the mapped genes (Table 3), the synonymous
variants on PILRA and KANSL1 were significantly asso-
ciated with the expression of their respective mapped
gene (false discovery rate (FDR) corrected). At the nom-
inal significance level, TAOK2 and KIF21B synonymous
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Fig. 3 (See legend on next page.)
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variants were also associated with the expression of their
respective genes. Among nearby genes with FDR-
significant eQTL association, PVRIG was the strongest
association at the PILRA locus, KANSL1-AS1 at the
NSF/MAPT/KANSL1 locus, and INO80E at the TAOK2
locus (Table S6).
In the meta-analysis of differential gene expression

across brain tissues in AMP-AD, TREM2, KANSL1,
RAB10, MS4A6A, and RIN3 were found to be signifi-
cantly upregulated in AD compared to control
individuals, while TAOK2 was significantly downreg-
ulated (reported associations were FDR-significant,
Table S7).

Discussion
In the AD data simulation, we showed that incorrectly
adjusting for age led to critical power loss and that
weighting the known effect of age on AD risk in the
phenotype increased statistical power for variant discov-
ery. Testing these models on real AD data confirmed
our simulation observations and enabled the discovery
of novel variants modulating AD risk.

Previous literature
The main prior AD WES study aimed to address the age
adjustment conundrum in the ADSP WES data by
implementing three different logistic regression models:
the main one being unadjusted for age, while the other
two were age adjusted [7]. However, given that cases
were on average younger than controls, the age adjust-
ment was in the opposite direction of the true age effect
on AD risk. It is perhaps unsurprising, therefore, that
there were no replicated findings from the two age-
adjusted models (only associations from the main age-
unadjusted model in the ADSP discovery were repli-
cated) [7].
An alternative approach has been to use Cox regres-

sion on AAO for improved power compared to logistic
regression that only considers case-control status. Cox
regression has proven successful in predicting an indi-
vidual’s AD conversion risk by calculating a polygenic
hazard score [42, 43]. However, it needs to abide by sev-
eral assumptions, including proportional hazards across
age. Several studies have shown that Cox regression per-
forms better than logistic regression on case-control data
when AAO is available [44, 45], but it has not been

(See figure on previous page.)
Fig. 3 Manhattan plots of exome wide associations in the four main models excluding the APOE region. The age-adjusted logistic regression has
no suggestive association (dashed line, p < 1 × 10−5). The main causal variant on TREM2 is exome-wide significant (solid line, p < 5 × 10−7) in the
other three models. Among suggestive associations, (i) known AD associations are in red and (ii) novel associations which replicate (p < 0.05) in
an independent dataset are in blue (cf Table 3). Colored dots were bootstrapped in the AD-age score model (see the “Methods” section). The
minimum p value from the adjustment models for each main model is displayed as in [7]

Table 2 Main association results. Effect corresponds to OR (odds ratio) for logistic regression on AD status not adjusted by age
(LogReg), exp(β) for linear regression on AD-age score (LinReg), and HR (hazard ratio) for multivariate Cox regression on age-at-onset
(CoxReg). Correlation between these measures is high for suggestive associations as shown on Figure S11. P p value, m model
subversion. Subversion codes are (1) adjusted for sex and 10 first principal components of population structure and (2) additionally
adjusted for APOE ε2 and APOE ε4 alleles. Two types of weighted AD-age score were used with (A) corresponding to a linear effect
of age between 60 and 100 and (B) accounting for the changes in AD prevalence slope in this age range [8]

SNP (hg19) / gene Discovery Replication

LogReg LinReg CoxReg LogReg LinReg CoxReg

OR P m exp(β) P m HR P m OR P m exp(β) P m HR P m

1:200959302:G:A / KIF21B 0.87 2.10−4 2 0.90 5.10−6 B2 0.89 5.10−6 2 0.96 0.13 1 0.96 0.01 B1 0.96 0.02 2

1:216270469:G:A / USH2A 9.12 4.10−3 2 6.76 4.10−8 B1 4.07 8.10−9 2 1.58 0.14 1 1.70 0.04 A1 1.33 0.12 1

2:26332640:T:C / RAB10 17.4 0.06 1 10.46 2.10−15 B1 4.92 5.10−7 1 4.50 0.05 1 5.03 2.10−3 B1 2.69 6.10−4 1

6:41129252:C:T / TREM2 4.83 3.10−10 1 3.22 2.10−27 A1 2.58 1.10−23 1 2.32 2.10−9 1 2.69 1.10−14 A1 1.95 2.10−18 2

7:99971313:T:C / PILRA 0.88 2.10−5 1 0.87 6.10−8 A2 0.90 9.10−7 2 0.92 6.10−5 1 0.90 2.10− 7 B1 0.93 5.10−7 1

11:59945745:T:C / MS4A6A 0.88 9.10−6 1 0.91 1.10−6 B1 0.92 1.10−5 1 0.89 1.10−8 1 0.89 3.10−12 A1 0.93 2.10−8 1

14:93022240:G:T / RIN3 16.3 7.10−3 2 6.54 6.10−11 A2 3.46 4.10−7 2 1.95 0.04 2 1.69 0.02 A2 1.59 0.01 2

16:29998200:A:G / TAOK2 1.12 6.10−5 1 1.08 3.10−7 A1 1.09 6.10−6 2 1.04 0.07 2 1.05 1.10−3 B1 1.05 4.10−4 2

17:44828931:G:A / NSF/MAPT/
KANSL1

0.85 5.10−6 2 0.89 5.10−8 B2 0.89 7.10−7 2 0.97 0.20 2 0.97 0.06 B2 0.98 0.18 2

19:1047507:AGGAGCAG:A /
ABCA7

3.36 1.10−4 2 2.18 3.10−7 A1 1.94 1.10−6 1 1.36 0.12 1 1.33 0.07 B2 1.22 0.13 2
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applied to the ADSP WES data. Cox regression was pre-
viously applied to AD GWA, using genotype-imputed
data overlapping partially with the ADSP sample used
here, and led to the discovery of novel associations [46].
Alternative approaches have been proposed when Cox
regression’s assumptions are violated as in AD GWA, in-
cluding age stratification [47] and generalized Cox re-
gression [48]. Our proposed AD-age score offers
additional flexibility without these assumptions and it
can accommodate age information other than AAO such
as age-at-study and age-at-death. Unlike Cox regression
models, the AD-age score can be flexibly incorporated
as a quantitative outcome into conventional tools (e.g.,
PLINK) for GWAS and new methods (e.g., BOLT-LMM,
SAIGE) for analysis of large/biobank scale genetic data
with related samples. Additionally, the linear and logistic
regressions are faster than Cox regression and thus more
advantageous for larger datasets [44].
Oversampling cases with early AAO and controls with

late censoring time for exome sequencing is an efficient
design because it directs limited study resources towards
subjects that are most useful for discovering the genetic
associations of AD in the original cohorts [49, 50]. We
proposed the AD-age score for improved power in the
discovery stage and validated the findings using an inde-
pendent replication sample. Although the hypothesis
testing is appropriate in the discovery stage with extreme
sampling, it is worth noting that the estimated genetic
effect/odds ratio may not represent that in the whole
population [51]. To obtain unbiased genetic effect esti-
mations of AD risk in the whole population, it may be
advisable to turn to more advanced methods that can
explicitly address the biased sampling design (e.g., [49,
52]).

Potential disease mechanisms
The novel variants identified through our exome-wide
association, with the exception of the USH2A SNV, are
located on genes previously linked to AD, re-enforcing
our confidence in these associations (Table S8).
Our main finding is a rare variant on RAB10 passing

the exome-wide threshold in discovery and surviving
Bonferroni correction in the replication. RAB proteins
are key regulators of vesicular trafficking and play a
major role in the endolysosomal and retromer pathways
known to be linked to AD [53]. Another rare RAB10
SNV was shown to segregate with AD resilience in pedi-
grees at risk for AD and RAB10 was shown to be upreg-
ulated in AD brains [54], a finding corroborated in our
study. RAB10 knockdown significantly decreased Aβ42
and Aβ42/Aβ40 ratio in neuroblastoma cells [54]. Silen-
cing of RAB10 decreased β-amyloid peptides (Aβ) and
increased soluble ectodomain of APP β (sAPPβ) [55],
supporting a role of RAB10 in either γ-secretase cleavage
of APP and the degradation of Aβ. Moreover, phosphor-
ylated Rab10 was prominent in neurofibrillary tangles in
the hippocampus of AD individuals but scarce in con-
trols [56]. Mechanistically, the JNK-interactin protein 1
(JIP1) mediates the anterograde transport of Rab10-
positive cargo to axonal tips which promotes axonal
growth and is critical for proper neuronal function [57].
JIP1 also regulates anterograde and retrograde transport
of APP along axons [58]. These molecular mechanisms
suggest that Rab10 could play a role in APP trafficking
along axons.
Additionally, our exome-wide analysis identified a mis-

sense variant on Rab interactor 3 (RIN3). Common vari-
ants in a locus near RIN3 and SLC24A4 were reported
to be associated with AD susceptibility [2]. Increased
RIN3 expression in APP/PS1 mouse models was shown
to correlate with endosomal dysfunction and altered
axonal trafficking and processing of APP [59]. For these

Table 3 Sample sizes, minor allele frequency, and imputation quality for the identified variants. MAF minor allele frequency, R-square
(Rsq) Imputation quality

Gene(s) RS id Consequence SNP (hg19) Discovery Replication

N MAF N MAF Rsq

KIF21B rs2297911 synonymous 1:200959302:G:A 11,006 0.17391 21,631 0.1769 1

USH2A rs111033333 missense 1:216270469:G:A 11,126 0.00085 19,544 0.00132 0.81

RAB10 rs149622307 synonymous 2:26332640:T:C 11,057 0.00045 9833 0.00076 0.85

TREM2 rs75932628 missense 6:41129252:C:T 11,076 0.00591 21,176 0.00606 0.93

PILRA rs2405442 synonymous 7:99971313:T:C 11,022 0.29836 21,631 0.30567 0.94

MS4A6A rs12453 synonymous 11:59945745:T:C 11,114 0.3941 21,481 0.39015 0.99

RIN3 rs150221413 missense 14:93022240:G:T 11,020 0.00082 17,652 0.00131 0.8

TAOK2 rs4077410 synonymous 16:29998200:A:G 11,063 0.47966 21,631 0.48195 0.94

NSF/MAPT/ KANSL1 rs199533 synonymous 17:44828931:G:A 11,094 0.20367 21,631 0.19931 0.99

ABCA7 rs547447016 frameshift 19:1047507:AGGAGCAG:A 11,006 0.00313 18,356 0.00311 0.88
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reasons, the Rab-related proteins involved in the endoly-
sosomal and retromer pathways have been considered as
promising therapeutic targets for AD [53].
Two common exonic variants, on TAOK2 and KIF21B,

were identified as suggestive in our discovery analysis
and replicated (Bonferroni corrected and nominally, re-
spectively). Previous AD GWAS summary statistics show
a concordant direction of effect with our analysis [2, 3]
with the SNVs p values on TAOK2 and KIF21B in those
studies equal to 0.05 and 10−5, respectively (Table S8).
TAOK2 was shown to be phosphorylated in AD and
frontotemporal lobar degeneration brains. Its expression
was colocalized with tangles and its inhibition reduced
tau phosphorylation [60]. Further, KIF21B is involved in
neuronal and synaptic signaling and increased KIF21B
expression levels were associated with more severe AD
pathology [61].

Limitation
For common synonymous variants, the regulated gene
and true causal variant remain uncertain because our
study focused on exomes and we cannot perform a
genome-wide colocalization analysis. The causal variant
may be intergenic and in linkage disequilibrium with a
common synonymous variant identified in our analysis.
Thus, future genome-wide studies are warranted to help
disentangle which nearby genes are regulated, notably
for the novel common loci encompassing KIF21B and
TAOK2.

Conclusion
Correctly accounting for the risk-increasing effect of age
on AD is an efficient means of increasing statistical
power. Thus, our AD-age score should prove useful in
future AD genetic association studies to enable the dis-
covery of additional novel variants.
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