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elements are adopted, pinned in correspondence of the slab—steel girder interface, having
properties suitably calibrated to assure a translational stiffness equal to the one used in the
previous applications. A pictorial view of the developed model is reported in Figure 12.

Material properties

E.= 31447 N/mm?
E;,= 210000 N/mm?
v.=0.15

v, =0.30

Model complexity

12642 shell elements
13320 nodes
592 frames (shear connection)

Figure 12. 3D finite element (FE) model.

Figure 13 shows the vertical deflection v, the slab—girder interface slip I';, and the
longitudinal displacements of the upper (ws,up) and bottom flanges (w; i, ¢) of the steel
girder obtained for case studies S2-UDL, S3-CL, 52-SS, and S3-PW. The results obtained
considering the different beam elements (GFE, CIFE, and IIFE) are reported with lines
of different colours and are compared with those achieved by the refined 3D FE model,
represented by black dots.
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Figure 13. Comparison between the proposed beam model and the refined 3D FE model for some case studies in terms of

vertical displacement vy; interface slip I';; and the longitudinal displacement of the steel girder bottom and upper flanges,

Wy jnf and ws syp-

Concerning the proposed beam model, a suitable number of elements is considered,
on the basis of the previous applications, to assure the analysis convergence and accuracy.
In detail, 200, 100, and 50 elements are considered for the GFE, the CIFE, and the IIFE,
respectively. It can be observed that the results from the proposed beam finite elements are
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practically superimposed and all perfectly match the solution achieved with the refined 3D
FE model.

Figure 14 compares the normal stresses on the concrete slab mid plane, on the steel
girder web, and on the steel girder bottom flange obtained from the proposed beam
model with those resulting from the refined 3D FE model, for case study S2-UDL. As the
results from the beam models are almost superimposed, for the sake of simplicity, only
those relevant to the IIFE are reported in red. The results from the refined FE model are
reported with black lines. Because the response of the slab is symmetric with respect
to the longitudinal middle axis, comparisons between the beam and shell finite element
models are made by dividing the plot of Figure 14a into two parts, and by presenting the
distribution of stresses for half of the slab.
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Figure 14. (a) Longitudinal normal stress on the slab mid plane, (b) on the steel girder web, and (c)
on the steel girder bottom flange for case study S2-UDL.

The beam model is able to capture very well the slab normal stresses with very few
differences in the bridge deck section characterised by the maximum positive bending
moment and at the fixed support. Comparisons of normal stresses in the box-girder web
are presented in Figure 14b by superimposing the results from the beam and shell models;
normal stresses obtained by the shell model are closely reproduced with minor differences
at the fixed support and in correspondence of the bridge deck section in which the overall
bending moment passes from hogging to sagging. Finally, normal stresses in the bottom
flange of the box-girder are compared in Figure 14c, adopting the strategy used for the
concrete slab; even in this case, the beam model performs very well, furnishing results
superimposed to those of the shell model.

Figure 15 compares the normal stresses on the slab mid plane, on the steel girder
web, and on the steel girder bottom flange for case study S3-CL. As for the concrete slab
(Figure 15a) and the box-girder bottom flange (Figure 15¢), normal stresses of the refined
shell model are closely reproduced with very small differences in the neighborhood of the
applied concentrated load. Normal stresses acting on the web of the steel girder are more
sensitive to the concentrated load and significant differences are observed between the
proposed beam model and the refined 3D FE model (Figure 15b).
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Figure 15. (a) Longitudinal normal stress on the slab mid plane, (b) on the steel girder web, and (c)

on the steel girder bottom flange for case study S3-CL.

Figure 16 compares the same response parameters for case study S2-SS. Stresses in the
concrete slab (Figure 16a) and the box-girder bottom flange (Figure 16c) resulting from the
refined 3D FE model are well reproduced, with exception of only the bridge deck sections
near the supports, particularly the pinned one. However, it should be remarked that
stresses vanish at the pinned support, thus differences are of limited significance. Normal
stresses on the web of the steel girder predicted with the proposed beam model are in very
good agreement with those of the shell model, with minor discrepancies near the supports

(Figure 16b).
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Figure 16. (a) Longitudinal normal stress on the slab mid plane, (b) on the steel girder web, and (c)

on the steel girder bottom flange for case study 52-SS.
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Finally, Figure 17 refers to case study S3-PW. Stresses in the concrete slab (Figure 17a)
and the box-girder bottom flange (Figure 17c) obtained from the refined shell model are
well reproduced, except for the bridge deck section subjected to the local effects induced
by the pre-stressing. Normal stresses on the web of the steel girder are also well captured,
even in the region affected by the pre-stressing local actions (Figure 17b).
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Figure 17. (a) Longitudinal normal stress on the slab mid plane, (b) on the steel girder web, and (c)
on the steel girder bottom flange for case study S3-PR.

5. Conclusions

Finite elements for a higher order steel-concrete composite beam model were pre-
sented in this paper. The model, which is particularly suitable for the analysis of bridge
decks, includes the partial interaction between concrete and steel members and accounts for
the overall shear deformability and the shear-lag phenomenon, which strongly characterise
the response of both steel and concrete elements.

Finite elements characterised by different interpolating functions are developed, im-
plementing linear, polynomial, and exponential shape functions; the latter are derived from
an analytical solution that exploits exponential matrices. The performance of the presented
finite elements is investigated in terms of the solution convergence rate with reference to
realistic steel-concrete composite beams with different restraints and loading conditions.
The efficiency of the proposed finite elements in providing a reliable prediction of the
structural response of composite beams is also addressed through comparison of the results
with those achieved with a refined 3D numerical model developed using conventional
shell finite elements.

The following remarks can be drawn:

e  The finite element based on linear shape functions (GFE) suffers from locking prob-
lems and requires a highly refined discretization to reach an accurate solution of the
problem;

e  The finite element implementing cubic and quadratic polynomial shape functions
(CIFE) avoids locking problems and is characterised by a higher converge rate than
that based on linear shape functions (GFE);

o  The finite element with exponential shape functions (IIFE) is the most performant and
furnishes an almost exact solution, independent of the beam discretization, provided



Appl. Sci. 2021, 11, 568

23 of 28

that enough finite elements are adopted to avoid issues in the numerical evaluation of
the exponential matrix;

e  The CIFE is highly competitive with respect to the IIFE, especially in predicting beam
displacements and rotations; in some cases, if very accurate solutions are not required,
the former may provide results with a lower number of finite elements than that
necessary to avoid instabilities in the computation of the exponential shape functions
of the IIFE;

e In the case of distributed or concentrated loads, the convergence rate relevant to
warping intensities of the steel components is much lower than that relevant to the
other response parameters; differences in the convergence rate attenuate in the cases
of prestressing or concrete shrinkage.

Provided that a proper discretization of the beam axis is used, depending on the
adopted finite element, the beam model is able to capture very well the structural response
of composite beams subjected to different loads and restraint conditions obtained from a
refined 3D model. In particular, both displacements, stresses, and stress resultants of the
3D model are reproduced by the proposed beam model, which foresees a number of dofs
about thirty times lower.

Author Contributions: Conceptualization, G.L. and F.G.; methodology, G.L., EG., and S.C.; software,
F.G. and S.C,; validation, G.L. and EG.; formal analysis, G.L., EG., and S.C.; data curation, S.C.;
writing—original draft preparation, F.G. and S.C.; writing—review and editing, G.L. and FG.;
visualization, EG. and S.C.; supervision, L.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Stress Resultants and Inertial Components

The complete (i.e., non-compact) form of balance conditions (17), which includes
stress resultants of the beam components as well as external stresses and forces, assumes
the form

Ji [(Fe+ Fy) @l + Sex-@e + Sey@e + Fer@), + Sop-tos + V 0)) dz + [ q (ts-ds — doe-ac)dz

[ R R X X R (A1)
= fO (pcz‘wc + Ps, Ws + py~v0)dz + (Pczﬁwwc + Pszf‘ws + Pya~vo)|a:0,L
where
N
F. — / e acdA = | M. (A2)
A, WC
0
Sex = / Texz Ac,x dA = 0 (A3)
Ac
Qcx
0
Sey = / Toy oy dA = | V. (A4)
Ac 0
N,
Pr - / Oyz ¢ dA - Mr (AS)
Ay

Wi



Appl. Sci. 2021, 11, 568

24 of 28

N
n li M
Fo— Zti/o O ac dG = |
i=1 Y
WSX
F 0T
n l]- Vs
Sse =) ti / Togz Asg G =
i-1 Y0 st
L st a
S
n li VS
Se =) fi/ Tsgz s, g AG; =
[ Qsx
are the generalized stress resultants,
e ]
Py = / b, a. dA + Sy acdl = | mey
Ac U Ay 0A; U 0JA,
L Wey |
. _ ez i
pCZ - / bz ac dA + Sz Ac dl - Mey
JA. U A, dAc U 9A,
L Wey |

n I; nool
sydl+Y b [Tbydg+ ) [Csy
i=1 70 i=170

are the resultants of forces applied along the beam, and

= b, dA +
T /ACUA, Y 9Ac U 0A,

Feza
Py = / SzacdA = | Mexa cona =0,L
(Ac U Ar)y W
cye
FSZ“
Ps;y = / sz as dA = Msza conae =0,L
(As), Wixa
Wsyﬂé

Qy“:/(AcuAr) sydA+/(As)usydA cona=0,L

o

(A6)

(A7)

(A8)

(A9)

(A10)

(Al1)

(A12)

(A13)

(A14)

are the resultants of the forces applied at the beam end cross sections. Inertia of the beam

cross section, constituting the global stiffness matrix K, is
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Appendix B
Stress State

Stresses of Equations (9)—(11), relevant to strains descending from the admissible
displacement field according to constitutive relationships, are usually referred to as ac-
tive stresses and can be used to compute normal longitudinal stresses o, 0s;, and oy,
with negligible errors (Equations (9)—(11)). However, active stresses do not satisfy the
local equilibrium, which also requires additional non-vanishing stress components, called
reactive stresses. The latter do not appear in the virtual work theorem expression and
can be estimated by means of the local equilibrium conditions. These components are
significant in the case of shear stresses. By assuming concrete and steel members as thin-
walled elements, the total shear stresses Tcx; and T,z, may be calculated separately for the
concrete slab and the steel girder, starting from the local equilibrium. For the steel girder,
by considering the constitutive law in Equation (10), the local equilibrium condition with
null body forces provides

O';Z + Tsgz, ¢ = 0 (A24)

which, integrated along the local curvilinear abscissa ¢, yields

~ " g Ci
T2(8,2) = T — Es 1, /0 a.d% + s /0 e dg (A25)

Equation (A25) is valid for each wall of the steel girder; Tz, is an integration constant
that has to be evaluated by imposing equilibrium conditions at the wall edges. As for the
concrete slab, reinforcements are assumed to be smeared within the slab so that shear stress
discontinuities only occur at the slab—girder connection. Thus, the slab is divided into
different panels, each one characterised by a curvilinear abscissa ¢ and by the relevant shear
stresses T.z,. The local equilibrium condition is provided by the following relationship:

/h ol dy + /h 0r, Ay + Tz, ¢ he =0 (A26)

where /i, is the thickness of the slab and /, is the notional thickness of the smeared rein-
forcements. By considering constitutive laws in Equation (9) and Equation (11), integration
along the local abscissa ¢ yields

Te:(8,2) = e — B w! I Ji. acdédy + B JE Sy B dEdy
(A27)

— L, w! JE J;, acddy + -Eq N Sy, Eadidy

where, analogously to the steel girder, Tz, is an integration constant that has to be evaluated
by imposing equilibrium conditions at the wall edges.
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Appendix C
Notations
The following symbols are used in this paper:

0 origin of Cartesian coordinate system;
A matrix containing stiffnesses of the beam cross section;
A area;
a geometric vector;
B matrix containing stiffnesses of the beam cross section;
b vector of the integration constants;
B concrete slab width;
C matrix containing stiffnesses of the beam cross section;
c vector of loads and stress-independent strain along the beam;
d vector of all unknown displacements;
d differential operator;
E exponential matrix;
E Young’s modulus;
f vector of nodal forces;
fer fsnr foo warping intensity functions;
G shear modulus;
slab thickness;
inertia matrix or identity matrix;
inertia matrix;
stiffness matrix of the beam element;
i indexes;
length of the beam;
length of the beam plane walls;
length of the finite element;
inertia matrix;
bending moment at the beam end cross section;
bending moment along the beam axis;
longitudinal force at the beam end cross section;
matrix of interpolating functions;
vector of resultants of forces due to restrained stress-independent strain;
number of the plane steel walls;
number of finite elements
resultants of external forces along the beam axis;
resultants of external forces at the beam end cross section;
resultant of vertical loads at the beam end cross section;
Ge, qs longitudinal forces along the beam axis;
resultant of vertical loads along the beam axis;
inverse of matrix of exponential matrices evaluated at beam ends;
vector grouping unknown displacements and their first derivative;
thickness of the i-th plane steel wall;
linear matrix operator;
displacement of the two end cross sections of the beam;
displacement of the end cross section of the beam;
transverse displacement, along coordinate direction X;
vector of the unknown nodal displacements;
assembled vector of the nodal displacements of all the elements;
vertical displacement of the cross section, along coordinate direction Y;
bi-moment at the beam end cross section;
longitudinal displacement, along coordinate direction Z;
vector grouping the generalised displacements;
coordinate axes;
coordinates;
coordinates of the slab—girder interface connection;
direction cosine of the local abscissa;
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overall stress-independent strain;

vector of stress-independent strains;
stress-independent strain;

generic nonlinear stress-independent longitudinal strain field;
rotation;

beam-slab interface slip;

local abscissa of the finite element;

normalised abscissa of the finite element
interpolating function;

Poisson’s ratio; interpolating function

stiffness per-unit-length of the shear connection;
normal stress;

shear stress;

interpolating function;

bi-moment along the beam axis;

local abscissa of the beam plane walls;

Pe slab warping function;

Py, steel warping function due to longitudinal shear flow;
Pso steel warping function due to shear force.
Subscripts

c concrete part of the composite beam;

e finite element;

r steel reinforcement part of the composite beam;
s steel part of the composite beam;

0 referred to the origin of coordinate system;

, partial derivatives.

Symbols and Superscripts

T concrete part of the composite beam;

! derivative with respect to z variable;

D formal linear differential operator;

~ variation;

scalar product.
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