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Abstract

Possibly through its effects on glia, the peroxisome proliferator-activated gamma receptor 

(PPARγ) agonist pioglitazone (PIO) has been shown to alter the effects of heroin in preclinical 

models. Until now, these results have not been assessed in humans. Heroin-dependent participants 

were randomized to either active (45 mg, n = 14) or placebo (0 mg, n = 16) PIO maintenance for 

the duration of the three-week study. After stabilization on buprenorphine (8 mg), participants 

began a two-week testing period. On the first to fourth test days, participants could self-administer 

drug or money by making verbal choices for either option. On the fifth day, active heroin and 

money were administered and participants could work to receive heroin or money using a 

progressive ratio choice procedure. Test days 6–10 were identical to test days 1–5 with the 

exception that, during one of the test weeks, placebo was available on the first four days, and 

during the other week heroin was available. PIO failed to alter the reinforcing or positive 

subjective effects of heroin, but it did reduce heroin craving and overall anxiety. Although we were 

unable to replicate the robust effects found in preclinical models, these data provide an indication 

of drug effects that deserves further exploration.
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Introduction

Pharmacotherapies for substance abuse represent opportunities to facilitate treatment and 

provide insight into the neuropharmacological mechanisms involved in the initiation and 

maintenance of addiction (Koob, Lloyd, and Mason 2009). Recent research on the 

interaction between drugs of abuse and immunocompetent (glia) cells indicates that the 

study of neuroimmunopharmacology may provide novel pharmacological targets to combat 

substance abuse (for reviews, see Bachtella et al. 2017; Cooper, Jones, and Comer 2012). 

One emerging area of research seeks to examine the relationship between glial cell activity 

and the behavioral effects of opioids and other drugs of abuse. Although previous research 

has shown that opioids are immunosuppressive (Eisenstein et al., 1996; Eisenstein 2011; 

Eisenstein et al. 2006), other studies have demonstrated that opioids activate glia, which 

modifies opioid-induced physiological and behavioral effects (Bland, Hutchinson, and Maier 

2009; Hutchinson et al. 2007, 2009; Hutchinson and Watkins 2014; Watkins et al. 2005).

It is hypothesized that the interaction between opioids and glia occurs through the pattern 

recognition receptor, toll-like receptor 4 (TLR4), where opioids bind to the TLR4 co-

receptor myeloid differentiation factor 2 (Hutchinson et al. 2010; Jacobsen, Watkins, and 

Hutchinson 2014; Liang et al. 2016; Wang et al. 2012). Opioid interactions with glial cells 

may contribute to opioid actions within the brain’s reward system, thereby mediating their 

abuse potential. There is also evidence of the importance of TLR4 in the development of 

tolerance and withdrawal (Eidson and Murphy 2013; Watkins et al. 2009).

Preclinical research into the behavioral effects of opioid-glia interactions has found that 

selectively increasing glial (astrocyte) activity in the nucleus accumbens (NAcc) and 

intracingulate cortex results in significantly greater preference for morphine-associated cues 

r elative to vehicle-associated cues [morphine-induced conditioned place preference (CPP)]. 

Investigators were able to attenuate this effect with a glial activity inhibitor (Narita et al. 

2006). Preclinical research has shown that the glial inhibitors propentofylline [acting upon 

tumor necrosis factor alpha (TNFα), microglia and interleukin (IL)-1β] and minocycline 

(TNFα, IL1β, microglia) attenuated morphine-induced conditioned place preference (CPP), 

a measure of drug reward (Haney and Spealman 2008; Ledeboer et al. 2005; Narita et al. 

2006; Sweitzer and De Leo 2011; Tikka et al. 2001; Yrjänheikki et al. 1998). Other 

preclinical studies showed that the microglia and astrocyte activity suppressor ibudilast 

(Suzumura et al. 1999) significantly reduced the magnitude of morphine-induced dopamine 

release in the NAcc (Bland, Hutchinson, and Maier 2009). Ibudilast also attenuated both 

antagonist-precipitated and deprivation-induced morphine withdrawal in rodents 

(Hutchinson et al. 2009; Ledeboer et al. 2006).

Preclinical research also supports the idea that the interaction between opioids and glial may 

mediate the effects of chronic opioid use (i.e., physiological dependence). Chronic 

antagonism of TLR4 during withdrawal has been shown to alter heroin craving resulting 

from prolonged abstinence (Theberge et al. 2013). These preclinical findings were 

corroborated by our own clinical laboratory assessments. In a recent investigation, we found 

that that opioid withdrawal symptoms (“anxious,” “perspiring,” “restless,” and “stomach 
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cramps”) were significantly decreased by the glial inhibitor ibudilast in comparison to 

placebo (Cooper et al. 2016).

Another glial modulator under investigation is the Peroxisome proliferator-activated gamma 

receptor (PPARγ) agonist pioglitazone (PIO). PPARγ agonists inhibit the expression of 

cytokines by monocytes/macrophages and microglia (Kielian and Drew 2003). PPARγ 
agonists have shown promise in treating many forms of drug abuse; more specifically, in 

rodent models of alcohol abuse (Ferguson et al. 2014; Stopponi et al. 2011, 2013) and in 

human models of nicotine use (Jones et al. 2017). Concerning opioid abuse, preclinical 

research has also shown that PPARγ activation by PIO attenuated the development of 

analgesic tolerance to morphine (de Guglielmo et al. 2014), reduced heroin self-

administration under a fixed-ratio and progressive-ratio schedule of reinforcement, and 

attenuated heroin-induced extracellular dopamine release in the NAcc (de Guglielmo et al. 

2015).

The ability of PIO to alter the effects of heroin in humans has not been characterized in 

controlled, clinical laboratory settings. As such, the aim of the current study was to examine 

the subjective and reinforcing effects of heroin under PIO maintenance [0 (placebo), 45 mg] 

in opioid-dependent heroin users. Secondary aims were to examine the influence of PIO on 

the cognitive and physiological effects of heroin. We hypothesized that PIO would decrease 

indicators of the abuse potential of heroin, without altering its effects mediated through 

traditional opioid receptor mechanisms. If these hypotheses are supported, regulation of 

PPARγ may represent a new pharmacotherapeutic target for the treatment of opioid abuse 

and dependence.

Methods

Participant recruitment, selection, and compensation

Heroin users who were not seeking treatment for their drug use were recruited using print 

and online advertisements within the New York City (NYC) metropolitan area. Following a 

brief telephone interview, potential participants who met preliminary study criteria were 

scheduled for in-person screening visits at the New York State Psychiatric Institute (NYSPI). 

During screening visits, psychologists, nurses, and physicians assessed participants’ physical 

and mental health. Participants’ health was determined using an electrocardiogram, clinical 

laboratory tests (hematology, blood chemistry panel, liver and thyroid functioning, 

urinalysis, and syphilis serology), a clinical interview with a research psychologist, and a 

physical and psychiatric examination with a physician. At every screening visit, urine 

toxicology tests assessed for recent use of opioids, benzodiazepines, cocaine, and marijuana. 

Observable symptoms of withdrawal or response to an intramuscular injection of naloxone 

(0.2–0.8 mg) were used during screening to determine if individuals were currently 

physiologically dependent on opioids. In order to be enrolled, participants needed to meet 

DSM-IV criteria for opioid abuse and be physiologically dependent on them, be physically 

healthy, and be between the ages of 21 and 55 years.

Participants who had chronic pain, were dependent on any psychoactive substance other than 

opioids, nicotine, or caffeine, or met criteria for any Axis 1 diagnosis that may have 

Jones et al. Page 3

J Psychoactive Drugs. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interfered with their ability to provide informed consent were excluded. As compensation, 

participants were paid $25/day with a $25/day bonus for completing the study. All study 

procedures were approved by the Institutional Review Board of the New York State 

Psychiatric Institute (NYSPI IRB# 6255; ClinicalTrials.gov Identifier: NCT01395797).

Procedures

Opioid stabilization and maintenance—For the duration of the three-week study, 

participants resided on our secure inpatient unit, located on the fifth floor of the NYSPI. For 

the first 5–7 days following admission, participants were stabilized on the maintenance 

medication, a daily 8 mg sublingual (SL) dose of buprenorphine + 2 mg of naloxone. The 

maintenance medication was taken each evening at 8 pm. This dosing regimen was chosen 

to ensure that the maintenance medication had the least impact on study measures (as 

buprenorphine levels would be at their nadir during experimental testing sessions). During 

stabilization, participants were treated for emergent withdrawal symptoms with 

supplemental medications (e.g., clonazepam, clonidine, zolpidem). Self-reported and 

observer-rated withdrawal were assessed daily and experimental testing did not begin until 

withdrawal symptoms were no longer present.

For this investigation, an opioid-dependent sample, maintained on an opioid throughout the 

study (vs detoxified), was chosen based upon findings from Jones et al. (2016) in which no 

interaction between PIO and oxycodone was found. It was suggested that the results of this 

study may have varied if an opioid-dependent sample had been employed. According to the 

theory of opioid-induced glial activation and neuroinflammation, chronic opioid (ab)users 

may have higher tonic levels of glial activity upon which PIO could act (Hutchinson et al. 

2009; Sweitzer and De Leo 2011; Woods et al. 2003).

Pioglitazone stabilization and maintenance—Participants were randomized to one of 

two PIO maintenance conditions [0 mg (placebo) or 45 mg]. The active PIO dose employed 

in this study is currently used clinically for the treatment of insulin resistance and type 2 

diabetes (Gillies and Dunn 2000; Pfützner et al. 2006). PIO stabilization was initiated upon 

the day of admission onto the unit and participants were maintained on the same PIO dose 

for the duration of the study (a between-subjects design was used). Participants were 

maintained on PIO for approximately seven days prior to laboratory testing. Participants and 

study staff conducting laboratory sessions were blind to the PIO maintenance condition. The 

study MD was not blinded for safety purposes. Adverse events were assessed daily 

throughout the study with none determined to be “probably” or “definitely” related to PIO. 

Table 1 shows the overall study design with a schedule of laboratory sessions.

Experimental sessions

Following stabilization, participants began laboratory sessions, which took place from 

Monday to Friday. Participants completed three types of laboratory sessions over the course 

of two weeks. Monday through Thursday (Days 1–4), participants were given five 

opportunities each day (at 10 am, 11 am, 12 pm, 1 pm, and 2 pm) to choose between a dose 

of drug (heroin or placebo) and $10 using a simple “yes” or “no” verbal choice procedure. 

The same dose was tested in the procedure for the entire week (e.g., Week 1 = active heroin, 
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Week 2 = placebo heroin). The order of active heroin and placebo weeks was randomly 

assigned.

Challenge doses of heroin or placebo were administered intravenously (IV: 10 mg) or 

intranasally (IN: 40 mg), depending on the participants’ preferred route of street heroin use. 

Our previous work with heroin has shown that this 1:4 IV-to-IN ratio produces a similar 

magnitude of reinforcing, subjective, and physiological effects (Comer et al. 1999). 

Completers in both PIO conditions consisted of roughly equal numbers of IV and IN users. 

Placebo consisted of a matching milliliter (ml) or milligram (mg) amount of dextrose 

solution or lactose powder, respectively.

Friday, or Day 5, laboratory sessions consisted of two parts. In the morning “sample” 

session (10 am), participants were administered an active dose of heroin followed by various 

assessments of subjective effects, performance tasks, and physiological measures (discussed 

later in this article). These data were collected at baseline and at various time points up to 90 

minutes after drug administration. For safety, participants’ vital signs were continuously 

monitored during all drug administration sessions.

At approximately 2 pm, participants completed a drug “cue exposure” session. During the 

cue session, participants were shown a neutral stimulus (a water bottle) and asked to look at, 

hold and sniff it, and take a drink of the water inside (Neutral Cue). Participants were then 

asked to manipulate paraphernalia associated with intravenous or intranasal drug use 

(Active/Drug Cue). Neutral cues always preceded drug cue presentation to prevent carry-

over effects from the active condition to the control condition.

Intranasal users were instructed to watch as a research nurse opened a wallet, removed a $1 

bill, removed a packet of powder mimicking heroin, opened the packet, and rolled the dollar 

bill. Participants were then given the packet and dollar bill to hold for approximately 30 

seconds. Intravenous users were instructed to watch as a research nurse opened a packet of 

heroin, poured its contents onto a spoon, added a few drops of water to the spoon, held an 

open flame froma lighter under the spoon, added cotton to the spoon, and drew the fluid into 

a syringe. Next, a tourniquet was placed on the participants’ arm and the participant was 

instructed to look for a vein. The participant was then given the syringe to hold for 

approximately 30 seconds. Because previous studies have shown that a physiological and 

subjective response can be induced by showing heroin users pictures or videos of drug 

paraphernalia, we believe that manipulating actual heroin paraphernalia should easily induce 

robust arousal (Preller et al. 2013; Zhao et al. 2012; Zijlstra et al. 2009).

Following the cue exposure session, participants completed a progressive ratio self-

administration task to receive portions of the dose of drug or money they had sampled earlier 

in the day (0–100%, in increments of 10%). Participants were told that they could work for 

all or part of the sampled dose or the sampled money amount by choosing the drug or money 

option each time a choice was available. The alternative money value ($20) was chosen 

based on previous studies conducted in our laboratory (Comer, Collins, and Fischman 1997). 

Drug and money were available at each choice trial. For example, at each opportunity, 
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intranasal users could respond for 4 mg (10% of the total dose of 40 mg) or $2 (10% of 

$20).

Completion of the ratio requirement for each choice trial was accompanied by a visual 

stimulus on the computer screen. After a choice was made for one option by clicking on its 

visual representation on the computer screen, responding for the other option was not 

possible until the ratio was completed and another trial was initiated. Responses to complete 

the ratio requirement consisted of finger presses on a computer mouse. The response 

requirement for each of the two options increased independently such that the initial ratio 

requirement for each option was 50 responses; the ratio increased progressively each time 

the option was selected (50, 100, 200, 400, 800, 1200, 1600, 2000, 2400, and 2800). At the 

end of the self-administration task (approximately 4 pm), the participant received whatever 

he or she had chosen: money (added to their study payment) and/or the IV or IN challenge 

drug.

Task and measures

Subjective effects—Six questionnaires were used to assess subjective drug effects and 

opioid withdrawal symptoms. A 26-item visual analog scale (VAS) was used to assess 

subjective and physiological drug effects, such as “I feel a good effect” and “I feel high.” 

Participants rated each item on the scale from “Not at all” (0 mm) to “Extremely” (100 mm). 

In addition, a six-item drug effects questionnaire (DEQ) was used to measure drug effects 

(strength of drug effects, good effects, bad effects, willingness to take the drug again, drug 

liking, and similarity to other drugs). Participants selected among a series of possible 

answers ranging from 0 (“No Effect”) to 4 (“Very Strong Effect:), except for the drug liking 

questionnaire, which ranged from −4 (“Dislike Very Much”) to 4 (“Like Very Much”). 

Craving questionnaires for heroin, cocaine, and cigarettes (individualized for each 

participant) were also utilized (Tiffany and Drobes 1991; Tiffany et al. 1993). Finally, the 

Subjective and Clinical Opioid Withdrawal Scales (SOWS and COWS, respectively) were 

used to identify the presence and severity of opioid withdrawal symptoms (Handelsman et 

al. 1987). During the cue session, the Spielberger’s Situational Anxiety Scale (SSAS) asked 

participants to rate, on a 5-point Likert scale, the degree to which they experienced events 

such as “salivating” and “trembling” while manipulating the drug paraphernalia (Spielberger 

et al. 1983).

Physiological measures—Miosis was assessed as a physiological indicator of mu 

agonist effects using a NeurOptics™ Pupillometer under ambient lighting conditions. For 

safety, oxygen saturation (%SpO2), respiration (breaths per minute), heart rate, and blood 

pressure (systolic and diastolic) were continuously monitored during sessions and recorded 

every five minutes. Supplemental oxygen also was provided throughout the session.

During the cue-exposure sessions, galvanic skin response (GSR), skin temperature, and heart 

rate were assessed immediately before and after active and neutral drug cue presentation. 

These measures were used as indicators of autonomic arousal (Mendes 2009).

Performance effects—The performance battery consisted of two tasks: a 10-min divided 

attention task (DAT) and a 3-min digit-symbol substitution task (DSST). Custom-made 

Jones et al. Page 6

J Psychoactive Drugs. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



software was used for these performance tasks (see Comer et al. 1999 for details). The 

divided attention task consisted of concurrent pursuit-tracking and vigilance components. 

Participants tracked a moving stimulus on the video screen using the mouse and also 

signaled when a small black square appeared at any of the four corners of the video screen. 

Accurate recognition of the brief flash of a black square is considered a “Hit,” and failure to 

respond is considered a “Miss.” If the participant indicates that the square appeared when it 

does not, this is considered a “False Alarm.” The distance between the cursor and moving 

stimulus was measured, as was the speed of the moving stimulus (with greater accuracy, the 

stimulus moved at a faster rate). The digit-symbol substitution task consisted of nine three-

row by three-column squares (with one black square per row) displayed across the top of the 

computer screen. A randomly generated number indicated which of the nine patterns should 

be emulated on a keypad by the participant on a particular trial. Participants were required to 

emulate as many patterns as possible by entering the pattern associated with randomly 

generated numbers appearing on the bottom of the screen. Prior to testing for the main study, 

participants were trained in how to complete the performance tasks during a practice session 

performed while screening.

Drugs

Naloxone HCl (Narcan) for IM injection was obtained from the International Medication 

System Limited Amphastar (South Elmonte, CA). PIO tablets (15 mg) were provided by the 

OMEROS Corporation (Seattle, WA), and were overencapsulated by the New York State 

Psychiatric Institute Pharmacy. Each daily dose consisted of three capsules of active drug 

and/or lactose-filled placebo, depending on the final target dose (e.g., 45 mg = 3 ° 15 mg 

capsules; 0 mg = 3 ° 0 mg capsules). The three capsules were administered to participants by 

a research nurse.

Buprenorphine/naloxone tablets for SL administration were provided by Reckitt Benckiser 

Pharmaceuticals, Inc. (Richmond, VA), while heroin HCl powder was obtained from the 

Research Triangle Institute (Research Park Triangle, NC). Placebo IN heroin doses consisted 

of lactose monohydrate powder, purchased from Spectrum Chemicals (Gardena, CA). For 

intravenous users, placebo consisted of sterile 5% dextrose solution. All IN doses were 

insufflated through a plastic straw within 5–10 seconds, and IV doses were injected through 

a catheter by a research physician within 30 seconds. Both IV and IN users were recruited in 

order to improve participant flow into the study. Heroin was administered by both routes of 

administration in order to maximize the salience of the drug cue during the cue-exposure 

sessions. All study drug blinding and packaging was performed by the New York State 

Psychiatric Institute Pharmacy.

Statistical analyses

An a priori power analysis was conducted to ensure that effects on the outcome measures of 

interest could be detected. Estimates for our primary measure of heroin’s reinforcing effects 

were obtained from a similar trial assessing the reinforcing effects of heroin in 

buprenorphine/naloxone-maintained heroin abusers (Comer et al. 2005). The targeted 

sample size of 20 per arm was calculated to provide 80% power to detect a 26% between-

group difference in average percentage of drug choice, which is an effect size of 0.65. This 
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assumes a standard deviation of 28%. The sample size goal was also estimated to provide 

80% power to detect a 500-point between-group difference in progressive ratio breakpoint 

values, which is an effect size of 0.64. This assumes a standard deviation of 594 and a 

between-level correlation of 0.60. Estimates of positive subjective effects were also 

considered. Twenty completers per arm in each study calculated to provide 83% power to 

detect a 15-mm difference in ratings of “Liking” as measured by the VAS. This analysis 

assumes a common standard deviation of differences of 16 mm (e.g., effect size of 0.66).

Continuous and categorical demographics variables were summarized descriptively and 

compared between the 0 mg and 45 mg PIO conditions using the chi-square (X2) or t-tests. 

The primary statistical analyses were comparisons of acute drug effects and self-

administration (from Day 5/Friday Session) between placebo (0 mg) and active (45 mg) PIO 

maintenance. These comparisons were made using analysis of variance (ANOVA) evaluating 

the time course of drug effects. F-tests were also used to compare PR heroin breakpoint 

values between active and placebo PIO groups. This same method was used to compare 

mean autonomic arousal following presentation of active drug cues.

ANOVA was employed to compare heroin choices between active and placebo PIO groups 

during the preceding four days (Monday–Thursday). Tukey’s HSD post-hoc tests were used 

to identify significant differences between PIO groups. In order to determine whether the 

results differed between individuals who received IN heroin versus IV heroin, independent-

samples t-tests compared these measures between these two groups. Because no significant 

differences were found, the data presented as follows were collapsed across this condition. 

For all analyses, the significance level of α was set at <.05, with an α of .05–.10 considered 

as approaching statistical significance. All data analyses were performed using SPSS version 

18 (SPSS 2009) and SuperANOVA (Gagnon et al. 1990).

Results

Participants

A total of 46 heroin users (without chronic pain) were enrolled in the current study. Sixteen 

participants from the PIO 0 mg group completed while the 45 mg group had 14 completers. 

Ten participants either discontinued or were withdrawn from the protocol (five participants 

withdrew because of personal issues or because they could not tolerate the boredom or 

confinement of the inpatient unit, two participants discontinued due to significant weight 

gain, one from elevated liver function tests, one from an unreported leg injury sustained 

prior to admission, which began to worsen, and one because an intravenous catheter could 

not be placed for laboratory sessions). Six enrolled participants were included in a 15 mg 

PIO condition that was eventually dropped from the study due to limitations of the grant 

timeline. Table 2 displays the major demographic and drug use variables for completers of 

both groups.

The 0 mg and 45 mg conditions were similarly matched on most demographic variables of 

interest. Completers in both groups consisted of roughly equal numbers of IV and IN users, 

who were using 6–7 bags of heroin daily. Nicotine, cocaine, and alcohol use was common (> 
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50%) among both groups, while the use of marijuana, sedatives (benzodiazepines/

barbiturates), hallucinogens, and prescription opioids was rare.

Reinforcing effects

During the first four days of testing, active doses of heroin were chosen significantly more 

than placebo heroin (PBO Heroin vs Active Heroin: p < .001) using the simple verbal choice 

self-administration procedure. However, the percentage of heroin choices (Figure 1, upper 

panel) did not vary as a function of PIO maintenance dose (PIO 0 mg vs PIO 45 mg: p = 

NS). On Day 5, when active heroin versus money was available and participants responded 

under a progressive ratio schedule of reinforcement, robust drug breakpoints (>1500) were 

observed under all conditions tested. The reinforcing effects of heroin did not vary as a 

function of the availability of heroin the preceding four days (i.e., active heroin or placebo 

heroin), or as a function of PIO maintenance condition (Figure 1, lower panel) (PIO 0 mg vs 

PIO 45 mg: p = NS).

Positive subjective effects

The subjective effects of heroin were measured at baseline on Days 1–4 and on Day 5 

following an experimenter-administered dose of heroin (IV: 10 mg; IN 40 mg). In 

comparison to the pre-dose baseline (−45 min), post-dose ratings (5, 15, 45, and 60 min) of 

“Good Effect” (p < .05), “High Quality” (p < .01), “Liking” (p < .01), “High” (p < .05), 

“Would Take Again” (p < .05), and “Would Pay” (p < .05) were significantly elevated. 

Similar results were observed on the more general descriptors of “Strong” (p < .05), 

“Sedated” (p < .01), and “Potent” (p < .01). These measures did not vary as a function of the 

availability of heroin the preceding week (i.e., active heroin or placebo heroin). Overall, no 

main effect of PIO maintenance condition or interactions was observed. An effect of active 

PIO to decrease “Good Effect” approached significance, but only following active heroin 

availability (PIO 0 mg vs PIO 45 mg: p < .10).

Aversive subjective effects

Heroin did not produce any notable increases in assessments of “Bad” drug effect, 

“Depressed,” “Irritable,” “Nauseous,” or “Nervous.” These ratings were also not affected by 

PIO. VAS ratings of “Anxious” were slightly lower during week-long active heroin self-

administration. Only under this condition did we observe an effect of PIO to further 

attenuate anxiety. PIO’s effect approached statistical significance during Days 1–4 (PIO 0 

mg vs PIO 45 mg: p < .10; Figure 2, upper panel), and was significant on Day 5 (PIO 0 mg 

vs PIO 45 mg: p < .05).

Craving

Throughout the study, VAS ratings of “Wanting” for cocaine and alcohol were generally low 

(<10 of 100), with the exception of tobacco (scores ranged between 35 and 60 mm). We 

observed no effect of heroin or PIO dose on these measures. However, measures of heroin 

craving assessed using the VAS (“I Want Heroin”), SOWS (“I Feeling Like Shooting Up”), 

and craving scales (“Desire” and “Urge” for heroin) were generally lower under the active 

PIO maintenance condition (Figure 2, upper panel), though this difference did not meet 
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statistical significance. The ability of PIO to reduce craving was only statistically significant 

(PIO 0 mg vs PIO 45 mg: p < .05) on the VAS measure of “I Want Heroin” measures during 

the Day 5 sample session (Figure 2, lower panel).

Physiological and performance effects

On Day 5, heroin significantly decreased pupil diameter, heart rate, and breaths per minute 

in comparison to baseline (p < .05). On the cognitive performance tasks, heroin significantly 

decreased the total number of correct responses on the DSST (PBO Heroin vs Active 

Heroin: p < .05) and increased the number of “misses” on the DAT. The total tracking 

distance on the DAT, and the number of “hits” and “false alarms,” were not affected. No 

moderating effect of PIO was found on these measures.

Response to drug cues

During the cue sessions, presentation of active drug cues (versus neutral cues) failed to alter 

the participants’ assessments of their own “Sweating Hands,” “Salivating,” “Faster Heart 

Rate,” and “Trembling” while manipulating drug paraphernalia, though a significant 

increase in reports of “Heavy Stomach” were reported (p < .05). These findings were not 

altered by PIO and were consistent, regardless of whether the participant received active or 

placebo heroin the preceding week. Assessments of “Desire for Heroin,” “I Want Heroin,” 

and “Anxious” were increased following active drug cue presentation. These findings only 

approached statistical significance (Active Cue vs Neutral Cue: p < .10) and were not 

affected by any other study conditions. Assessment of autonomic arousal during the cue 

session revealed that active drug cues increased skin conductance to a degree that 

approached statistical significance (Active Cue vs Neutral Cue: p < .10), but this effect was 

not altered by PIO or heroin availability in the days prior to the session. Heart rate and skin 

temperature were not significantly altered by any of our study conditions.

Discussion

The current study sought to determine whether PIO, a PPARγ agonist and glial modulator, 

would alter the subjective and reinforcing effects of heroin. In our sample of opioid-

dependent participants, heroin produced typical mu opioid agonist effects, including miosis, 

respiratory depression, and mild cognitive impairment (Comer, Collins, and Fischman 1997; 

Comer et al. 1999; Rook et al. 2006). Heroin was also self-administered significantly more 

than placebo under all conditions tested, producing increases in reports of positive subjective 

effects with relatively minimal aversive effects. These data demonstrate the abuse potential 

common to most opioid drugs. However, the current study failed to find evidence that PIO 

altered the reinforcing effects of heroin. We also did not observe an effect of PIO on direct 

assessments of the positive or negative subjective effects of heroin. However, PIO did 

significantly reduce craving for heroin, an effect that is often associated with relapse to 

heroin use in patients who are in treatment (Tsui et al. 2014).

The results of this first clinical assessment of PIO for treating opioid use disorder are 

inconsistent with preclinical findings showing significant reductions in heroin self-

administration in rats (de Guglielmo et al. 2015). Such robust preclinical data suggest that 
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more clinical testing is needed, as parametric differences between preclinical and clinical 

studies often affect replicability (Ahmed 2005; Foltin et al. 2015; Haney and Spealman 

2008; Mello and Negus 1996). However, as we did not meet the recruitment goals outlined 

in our power analysis, this conclusion is difficult to make, as we may have been 

underpowered to detect differences in these measures.

Consistent with de Guglielmo and colleagues (2015), the current investigation did observe a 

reduction in heroin craving during maintenance on active PIO. Although PIO did not alter 

drug self-administration among our non-treatment-seeking sample, the attenuated opioid 

craving in treatment-seeking samples may be important in maintaining abstinence from 

illicit opioids (Moore et al. 2013; Weiss et al. 2003). Similar to another clinical assessment 

we conducted using another glial inhibitor, we also found evidence of reduced anxiety under 

active medication (vs. placebo) conditions (Cooper et al. 2016).

We also attempted to corroborate preclinical findings showing that PIO can reduce cue-

induced heroin seeking (de Guglielmo et al. 2017). However, the cue exposure procedure we 

employed produced only marginal psychological and physiological arousal. One parametric 

condition likely responsible for this finding is the dosing of heroin less than two hours 

before the cue session. We believe a greater period of drug abstinence preceding the session 

would increase the salience of the drug cues. Therefore, the investigators feel that we did not 

produce a sufficient cue effect upon which PIO could act. Based on the ability of PIO to alter 

craving during other laboratory sessions, its effects on cue-induced craving should be 

reassessed, independently of opioid administration.

We were unable to ascertain the mechanism(s) underlying the effects that were observed. 

With regard to our hypothesis about PIO-induced inhibition of glial activation, the most 

relevant measurements of inflammation would come from cerebrospinal fluid (CSF), but 

performing spinal taps on our participants would have increased risks to participants, and 

would have not been well-tolerated (Hopkins et al. 2012). Although measurements of 

inflammatory markers can also be found in plasma samples, previous research has 

demonstrated that plasma levels of inflammatory markers cannot be used to identify relative 

changes in the CSF (Watkins et al. 2009).

Some researchers have questioned the proposed mechanism underlying the clinical utility of 

glial inhibitors for opioid abuse, citing that opioids are immunosuppressive (Eisenstein 

2011). However, the nature of the interaction between opioids and glia is most likely 

multifaceted. The robust nature of the preclinical findings, combined with the current 

clinical data, suggests that there is a need for further clinical assessment with glial 

modulators. Opioid agonist maintenance and antagonism are effective clinical tools used to 

manage opioid abuse. However, concerns regarding abuse potential and compliance stress 

the need for continued development of non-opioid pharmacotherapies (Substance Abuse and 

Mental Health Services Administration 2014; Wright et al. 2016). Medications acting 

through glial mechanisms may meet this need.
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Figure 1. 
Self-administration (± SEM) of heroin for the PIO 0mg (n=16) and PIO 45 mg (n=14) 

conditions, assessed usingthe verbal choice procedure during Days 1–4 (upper panel). Self-

administration (± SEM) of heroin using a progressive-ratio procedure following 4 days of 

access to placebo or active heroin (lower panel).
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Figure 2. 
Mean (± SEM) subjective ratings of heroin “Desire” during Days 1–4 (upper panel), and 

Day 5 “Want” of heroin (lower panel) for the PIO 0 mg and PIO 45 conditions. * Indicates 

significance at p<0.05.
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Table 1.

Representative study design.

Week 1 Week 2 Week 3

5–7 Days M T W Th F M T W Th F

Stabilization Verbal Choice Self-Admin: 
Heroin

Heroin PR Self-Admin & 
Cue Sessions

Verbal Choice Self-Admin: 
Placebo

Heroin PR Self-Admin & 
Cue Sessions

Bup/Nal 8/2 mg + PIO 0 mg or 45 mg
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Table 2.

Sample demographics.

Participants (%) or Median (Std. Dev.)

PIO 0 mg (n = 16) PIO 45 mg (n = 14) p-value

Age 44.5 (8.1) 42.4 (8.6) NS

Sex

 Male 15 (94) 28 (93) NS

 Female 1 (6) 1 (7)

Ethnic/Racial Category

 Asian – 1 (7)

 African American 4 (25) 3 (21) NS

 Caucasian 6 (38) 3 (21)

 Hispanic/Latino 5 (31) 4 (29)

 More than One Race/Unreported 1 (6) 3 (21)

Heroin Use

 Heroin Use (bags/day) 6.5 (2.7) 6.9 (4.3) NS

 Years of Use 18.5 (9.4) 12.0 (9.1) .06

Route of Administration

 Preference

 Intranasal 9 (56) 7 (50) NS

 Intravenous 7 (54) 7 (50) NS

Concomitant Substance Use

 Nicotine (Yes) 13 (81) 13 (92) NS

 Cigarettes per Day 12.9 (11.5) 9.3 (4.4) NS

 Cocaine (Yes) 7 (43.7) 5 (35.7) NS

 Alcohol (Yes) 7 (43.7) 12 (41) NS

 Marijuana (Yes) 2 (12.5) 5 (35.7) NS
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