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We synthesized and characterized MOMO as a new small molecule analog of the

cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis.

The synthesis of MOMO had a key step in the Wittig olefination for the construction

of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility

of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without

presence of the less active (E)-diastereomer was favored from the methoxymethyl

ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol

aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a

weakly acidic environment allowed us to obtain a great quantity of climacostol in

biologically active (Z)-configuration. Results obtained in free-living ciliates that share the

same micro-environment of the climacostol natural producer Climacostomum virens

demonstrated that MOMO is well-tolerated in a physiological environment, while its

cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs.

cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In

mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and

apoptotic effects become evident only in mild extracellular acidosis. Data also suggested

MOMO being preferentially activated in the unique extra-acidic microenvironment

that characterizes tumoural cells. Finally, the use of the model organism Drosophila

melanogaster fed with an acidic diet supported the efficient activity and oral delivery of

MOMOmolecule in vivo. MOMO affected oviposition of mating adults and larvae eclosion.

Reduced survival of flies was due to lethality during the larval stages while emerging larvae

retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited

an extended damage (cell death by apoptosis) and the brain tissue was also affected

(reduced mitosis), demonstrating that orally activated MOMO efficiently targets different
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tissues of the developing fly. These results provided a proof-of-concept study on the pH-

dependence of MOMO effects. In this respect, MOM-protection emerges as a potential

prodrug strategy which deserves to be further investigated for the generation of efficient

pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds.

Keywords: small natural agents, ciliated protists,Wittig olefination, pH-activation, cytotoxic compound, apoptosis,

prodrug strategy

INTRODUCTION

In recent years, small molecules (molecular weight of <900
Daltons) with well-defined chemical structures and strong
biological properties have spurred research aimed at developing

new therapeutic agents (Gurevich and Gurevich, 2014). There are
indeed several benefits associated with the small molecules that
make them more efficient in the field of human health mainly

in proliferative, infectious, or neurodegenerative disorders
(Gurevich and Gurevich, 2014; Dhanak et al., 2017; Cheng
et al., 2018; Huck et al., 2018; Schiavone and Trabace, 2018).
Small organic molecules from nature, isolated and exploited

from plants, animals and microorganisms, have showed a great
translational potential (Nobili et al., 2009; Harvey et al., 2015).
Among the natural compounds isolated from aquatic eukaryotic
microorganisms (Catalani et al., 2016), climacostol [(Z)-5-(non-
2-en-1-yl)benzene-1,3-diol] is a resorcinolic lipid physiologically
produced by the freshwater ciliated protozoan Climacostomum
virens for chemical defense against unicellular and multi-
cellular predators (Masaki et al., 1999; Miyake et al., 2003).
We have described the antimicrobial activity of climacostol
and its synthetic analogs as well as their cytotoxic and pro-
apoptotic effects in multiple tumoural cells (Buonanno et al.,
2008, 2019; Fiorini et al., 2010; Petrelli et al., 2012; Quassinti
et al., 2013; Catalani et al., 2016; Perrotta et al., 2016; Zecchini
et al., 2019). Both in vitro and in vivo evidence demonstrated
that climacostol inhibits efficiently the viability/proliferation of
mouse melanoma cells, induces a persistent inhibition of tumor
growth and improves the survival of transplanted mice thus
triggering the cell death process as a result of DNA damage and
apoptosis (Catalani et al., 2016; Perrotta et al., 2016). Recently
we also showed that climacostol exerts a marked and sustained
accumulation of autophagosomes in tumors as the result of
dysfunctional autophagic degradation (Zecchini et al., 2019).
The up-regulation of p53 system is at the molecular crossroad
regulating both the anti-autophagic action of climacostol and
its role in the induction of apoptosis (Zecchini et al., 2019).
In agreement with the promising paradigm of dual targeting of
autophagy and apoptosis in cancer therapy our findings suggest
the efficacy of climacostol favoring the consideration of this
bioactive small molecule in drug discovery and development.

Cancer tissue often shows low pO2 values and an acidic
extracellular pH (median pH typically falls below 7.0) in both
human and rodent in vivo tumors (Wike-Hooley et al., 1984;
Tannock and Rotin, 1989; Calcinotto et al., 2012; Chen et al.,
2014). Although extracellular acidosis is considered as a toxic
consequence of fermentation that is detrimental to cells, it is
also recognized as a cytoprotective response, likely maintaining

mitochondrial function and cell viability (Khacho et al., 2014),
through various anti-inflammatory, anti-oxidant, and anti-
apoptotic mechanisms which limit the damage of tumoural
tissues (Stubbs et al., 2000; Swietach et al., 2014; Swenson, 2016;
Huber et al., 2017; Riemann et al., 2017; Viklund et al., 2017;
Damgaci et al., 2018). Besides its role in promoting cancer
growth and metastasis, the acidic tumor environment represents
a chemical barrier for many chemotherapeutics thus inducing
resistance (Stubbs et al., 2000; Huber et al., 2017; Viklund et al.,
2017; Damgaci et al., 2018). Growing evidence for the importance
of pH in cancer biology has solicited different attractive strategies
for therapy including the use of pH-responsive compounds that
display increased cytotoxicity at low pH (Adams et al., 2000;
Flowers et al., 2003; Wong et al., 2005; Valiahdi et al., 2013;
Swietach et al., 2014; Burns et al., 2016; Wang et al., 2018;
Sharma et al., 2019).

Similar to healthy tissues exposed to adverse side effects of
chemotherapy drugs, Climacostomum shares with other toxic
ciliates the necessity to avoid or limit autotoxicity that could
result by the exposition to its own toxin (Miyake et al.,
2001; Buonanno and Ortenzi, 2010; Buonanno et al., 2012,
2014, 2017b). As many multicellular poisonous organisms
equipped with specialized organs for safely storing venoms,
Climacostomum and other toxic ciliates have chosen to store
self-toxic compounds in specialized ejectable membrane-bound
organelles generally called extrusomes (Wolfe, 2000; Miyake
et al., 2001, 2003; Terazima and Harumoto, 2004). In addition
to the adoption of this “physical” shield and to further
limit autotoxicity in the cytoplasmic compartment, the ciliate
Pseudokeronopsis erythrina has chosen to synthesize their
chemical weapons as sulfonated (not-toxic) molecules prior
to store them as not-sulfonated (toxic) molecules into the
extrusomes (Anesi et al., 2016; Buonanno et al., 2017a). In
this work, we take the self-protection strategy evolved by
Pseudokeronopsis as a suggestion to allow a safer and target-
specific use of climacostol.

We have reported an innovative diastereoselective chemical
synthesis of climacostol to obtain a compound more effective
than the natural product (Fiorini et al., 2010). The importance
of (Z)-configuration with regard to the hydrocarbon chain
of climacostol is crucial for its biological activity. Since the
natural product is a mixture containing the less biologically
active (E)-diastereomer, a series of synthetic strategies have
been studied in the last years to obtain the (Z)-configuration.
The reduction of the corresponding intermediate alkyne to the
double bond is the original synthetic route in the synthesis
of bioactive alkenylphenols such as climacostol (Masaki et al.,
1999). However, stereoselective synthesis in the corresponding
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(Z)-diastereomer is still challenging in these metal catalyzed
reductions, especially when there are problems of shifting
double bonds. Moreover, the most used metals exhibit low
alkene selectivity due to their high efficiency in promoting
further reduction into alkanes, unless high toxic additives are
incorporated (Nikolaev et al., 2009; Chung et al., 2013). Although
the synthesis improved with the development of new metal
nanoparticles catalysts (Sharma and Sharma, 2016; Pedone et al.,
2017), the reductions catalyzed by metal nanoparticles tend to
aggregate over time, lowering the efficiency of their activities
(Chan et al., 2014). TheWittig olefination has thus been chosen as
a key step in the construction of the carbon-carbon double bond
in the alkenyl moiety of climacostol. In fact, theWittig reaction is
a versatile and reliable method for the production of substituted
alkenes due to easy application and good yields of the desired
products. The stereoselectivity of the Wittig reaction depends
on the substrates (Depré et al., 2017), and all the synthesis of
climacostol using the (Z)-selective Wittig reaction revealed the
presence of the (E)-diastereomer (Abe and Mori, 2001). The
importance of protection and deprotection of hydroxyl groups
in the synthesis of biologically active small molecules (Cappa
et al., 1999) helped us to solve the problem of the low quantity
of unwanted (E)-isomer. The choice of phenol group’s protection
necessary during the synthesis was particularly interesting in
avoiding isomerization of the final carbon-carbon double bond.
Only the methoxymethyl ether (MOM) protecting group allowed
us to efficiently synthesize climacostol in (Z)-configuration
biologically active (Fiorini et al., 2010). In particular, screening of
mild conditions in phenolMOM-protected allowed us to develop
slightly acidic environment (pH around 6.5) able to successfully
afford target resorcinol-based climacostol in quantitative yield
(Fiorini et al., 2010; Buonanno et al., 2019). This suggested
to directly use the MOM-protected molecule (hereafter called
MOMO) (Figure 1A) in order to test the ability of pH changes
to remove MOM and, possibly, restore the cytotoxic activity of
the native molecule climacostol. There are very few examples of
MOM-derivative compounds for which their biological activities
have been studied (Rowley et al., 1997; Mclennan et al., 2008;
Bischoff et al., 2014; Imaoka et al., 2018). To date no small
organic molecules containing MOM have been reported as
cytotoxic prodrugs.

Here we report on the synthesis and characterization of
MOMO to yield a picture of its biological behavior, since the
use of pH to control the response of a molecule is of great
interest in the biomedical field. In particular, we provide here a
proof-of-concept study on the pH-dependence of MOMO effects
using different in vitro and in vivo systems with the aim to
identify a new prodrug strategy for the generation of efficient
pH-sensitive small organic molecules as pharmacologically active
cytotoxic compounds.

MATERIALS AND METHODS

Compounds
Chemically synthesized climacostol (C15H22O2, 5-[(2Z)-
non-2-en-1-yl]benzene-1,3-diol) was obtained as previously
described (Fiorini et al., 2010; Perrotta et al., 2016) and MOMO

(C19H30O4, 1,3-bis(methoxymethoxy)-5-[(2Z)-non-2-en-1-
yl]benzene) synthesis was detailed below and in the Results
section. Compounds were dissolved in absolute ethanol at 10
mg/ml stock, and stored in the dark at −20◦C until use. The
stock solutions were diluted in culture medium or diet for
ciliate/mammalian cell and Drosophila assays, respectively.
Where not indicated, the other reagents were purchased from
Sigma-Aldrich (Saint Louis, MO, USA).

Synthesis of MOMO
Chloromethyl Methyl Ether as a Solution in Toluene
A three-neck 500ml flask fitted with a thermometer,
reflux condenser, and addition funnel was charged with
dimethoxymethane (DMM, 44.25ml, 0.50mol, 1 equiv), toluene
(133ml, 3 volumes), and Zn(OAc)2 (9.2mg, 0.01%). Acetyl
chloride (35.5ml, 0.50mol, 1 equiv) was placed in the addition
funnel, and was then introduced into the reaction mixture at
a constant rate over 5min. The Zn(OAc)2 dissolved shortly
after addition of the AcCl was started. During the next 15min,
the reaction mixture warmed slowly to 45◦C, and then cooled
to ambient temperature over 3 h, at which time analysis of an
aliquot of the reaction mixture by Nuclear Magnetic Resonance
(NMR) indicated complete consumption of DMM. Solutions of
MOM-Cl in toluene prepared using this stoichiometry have a
density of 0.91 g/ml, are approximately 2.1M (18% w/w), and are
stable for months if adequately sealed. 1H NMR (CDCl3): δ 5.28
(s, 2H, MOM-Cl), 3.49 (s, 3H, MeOAc), 3.64 (s, 3H, MOM-Cl),
2.02 (s, 3H, MeOAc).

Methyl 2-[3,5-Di(methoxymethoxy)phenyl]acetate (3)
To a stirred solution of methyl (3,5-dihydroxyphenyl)acetate
(2, 0.50 g, 2.94 mmol) in toluene (60ml) were added i-Pr2NEt
(20ml, 11.5 mmol) and a 18% w/w solution of chloromethyl
methyl ether in toluene (2.1M, 5.6ml, 11.76 mmol) dropwise
at 0◦C under N2. The mixture was warmed to r.t. and stirred
overnight. CH2Cl2 was removed in vacuum, the residue taken up
in Et2O (45ml), washed with 10% aq HCl (2 × 30ml), H2O (2
× 30ml), aq 10% NaOH (2 × 30ml), and brine (45ml), dried
(MgSO4), and concentrated at reduced pressure. The residue was
purified by silica gel column chromatography (hexanes–EtOAc,
8:2) to give the title compound (0.68 g, 86%) as a colorless oil. IR
(neat): 3005, 1730, 1605, 1200, 840 cm−1. 1 H NMR (400 MHz,
CDCl3): δ = 3.40 (s, 6H), 3.62 (s, 2H), 3.69 (s, 3H), 5.15 (s, 4H),
6.60–6.65 (m, 3 Arom). 13C NMR (100 MHz, CDCl3): δ = 41.0,
51.8, 57.2, 92.3, 98.7, 105.5, 139.0, 157.9, 172.6. MS (EI): m/z =
270 [M+], 238, 211, 121, 45 (100). Anal. Calcd for C13H18O6: C,
57.77; H, 6.71. Found: C, 57.75; H, 6.70.

2-[3,5-Di(Methoxymethoxy)phenyl]acetaldehyde (4)
A solution of DIBAL-H in toluene (1.0M, 2.21ml, 2.21 mmol)
was added to a stirred and cooled solution of 3 (0.50 g, 1.85
mmol) in dry toluene (10ml) at −78◦C under N2. The reaction
mixture was allowed to warm to −60◦C while stirring for
3 h, then cooled to −78◦C again, and afterwards quenched
with MeOH (5ml). The mixture was filtered through Celite,
and the resulting solid was washed with Et2O (75ml). The
filtrate and washings were successively washed with H2O (2 ×
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FIGURE 1 | (A) Molecular structures of climacostol (1) and MOMO. (B) Total synthesis of MOMO.

20ml) and brine (2 × 20ml), dried (MgSO4), and concentrated
under reduced pressure. The residue was purified by column
chromatography on silica gel (EtOAc–hexanes, 8:2) to give the
title compound 4 (0.43 g, 96%) as a pale yellow oil. IR (neat):
3006, 2822, 1735, 1598, 1190, 880 cm−1. 1H NMR (200 MHz,
CDCl3): δ = 3.60 (d, J = 2.1Hz, 2H), 5.75 (s, 4H), 6.30–6.35 (m,
3 Arom), 9.57 (d, J = 2.1Hz, 1H). 13C NMR (50 MHz, CDCl3):
δ = 52.6, 56.6, 92.7, 99.3, 104.6, 138.7, 158.6, 200.0. MS (EI): m/z
= 240 [M+], 180, 152, 123, 45 (100). Anal. Calcd for C12H16O5:
C, 59.99; H, 6.71. Found: C, 59.98; H, 6.68.

n-Heptyltriphenylphosphonium Bromide
To a solution of 1-bromoheptane (25 mmol) in toluene (50ml)
was added Ph3P (7.20 g, 27.5 mmol). After refluxing for 48 h, the
reaction mixture was cooled to r.t. and the solvent was removed
under reduced pressure. The crude product was dissolved in
CH2Cl2 (15ml), then added dropwise to Et2O (75ml). After
stirring for 1 h, the precipitate was filtered and dried under
vacuum affording the title compound in pure form (9.92 g, 92%);
white crystals; mp 165◦C. IR (neat): 3050, 1424, 1265, 895 cm−1.
1H NMR (400 MHz, CDCl3): δ = 0.80 (t, J = 6.7Hz, 3H), 1.15–
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1.21 (m, 8H), 1.59–1.61 (m, 2H), 3.80–3.86 (m, 2H), 7.60–7.65
(m, 15 Arom), 9.57 (d, J = 2.1Hz, 1H). 13C NMR (100 MHz,
CDCl3): δ = 14.5, 22.0, 22.9, 28.7, 30.5, 31.1, 31.7, 119.0, 130.7,
133.9, 134.9.

(Z)-1-[3,5-Dimethoxymethoxy)phenyl]non-2-ene

(MOMO)
To a suspension of n-heptyltriphenylphosphonium bromide,
previously dried by three azeotropic distillations with anhydrous
benzene, (1.92 g, 4.34 mmol) in anhydrous THF (20ml) was
added a solution of sodium hexamethyldisilazide (NaHDMS) in
THF (1.0M, 4.64ml, 4.64 mmol) at 0◦C, and the mixture was
stirred at r.t. for 1 h. A solution of 4 (0.30 g, 1.24 mmol) in
THF (15ml) was added to the ylide at −10◦C and the resulting
mixture was stirred at 0◦C for 4 h, and finally stirred at r.t. for 1 h.
Sat. aq NH4Cl (10ml) was added to the mixture and extracted
with EtOAc (3 × 20ml). The combined organic phases were
washed with brine (2 × 20ml) and dried (MgSO4). Filtration
and concentration of the mixture under reduced pressure gave
the crude material, which was purified by chromatography on
silica gel (EtOAc–hexanes, 1:9) to give 0.35 g (90%) of MOMO

as a colorless oil. IR (neat): 3003, 1590, 1155, 885 cm−1. 1HNMR
(200 MHz, CDCl3): δ = 0.92 (t, J = 6.6Hz, 3H), 1.26-1.42 (m,
8H), 2.14-2.21 (m, 2H), 3.30 (d, J = 5.9Hz, 2H), 3.46 (s, 6H), 5.15
(s, 4H), 5.52–5.61 (m, 2H), 6.65 (d, J = 2.2Hz, 1H Arom.), 6.71
(d, J = 2.1Hz, 2H Arom.). 13CNMR (50 MHz, CDCl3): δ = 14.3,
22.9, 27.5, 29.3, 29.9, 32.3, 33.9, 56.2, 94.6, 102.5, 110.0, 127.7,
131.6, 144.0, 158.6. MS (EI):m/z = 322 [M+], 245, 212, 137, 123,
45 (100). Anal. Calcd for C19H30O4: C, 70.77; H, 9.38. Found: C,
70.76; H, 9.37.

Spectroscopy
All NMR spectra were acquired by Varian 400 or Varian
Gemini 200 Spectrometers using standard NMR tubes at 298K,
and operating at 400 or 200 MHz for 1H and at 100 or 50
MHz for 13C. Residual protic solvent CHCl3 (δH = 7.26) was
used as the internal reference, and 13C NMR spectra were
recorded using the central resonance of CDCl3 (δC = 77.0) as
the internal reference. Spectrophotometry was performed by a
Fourier-Transform InfraRed (FTIR) spectrometer Perkin-Elmer
UATR-2 system. Mass spectrum was recorded on an Agilent
5,988 gas-chromatographwith amass-selective detectorMSDHP
5,790MS, utilizing electron ionization (EI) at an ionizing energy
of 70 eV. A fused silica column (30m × 0.25mm HP-5; cross-
linked 5% PhMe siloxane, 0.10µm film thickness) was used with
helium carrier flow of 30 ml/min. The temperature of the column
was varied, after a delay of 3min from the injection, from 65 to
300◦C with a slope of 15◦C min−1.

Ciliated Protists Assays
Cultures
Euplotes aediculatus clone EA-III (Buonanno et al., 2017b),
Euplotes eurystomus (collected in Macerata, Italy), Paramecium
multimicronucleatum clone TL-2 (Buonanno et al., 2017a), and
Paramecium tetraurelia stock 51 (Buonanno et al., 2013) were
cultured in Synthetic Medium for Blepharisma (SMB) (1.5mM
NaCl, 0.05mM KCl, 0.4mM CaCl2, 0.05mM MgCl2, 0.05mM

MgSO4, 2mM Na-phosphate buffer at pH 6.8, 2µM EDTA).
Cells were fed with the flagellate Chlorogonium elongatum,
cultivated as previously described (Buonanno, 2005), or in
Jaworski’s Medium (JM) solution. Spirostomum ambiguum stock
Pol-5 (Buonanno et al., 2012) and Spirostomum teres stock Pol-
1 were cultured in bacterized culture medium as previously
described (Buonanno and Ortenzi, 2010).

Toxicity
Cytotoxicity was evaluated in triplicate samples of 10 ciliate
cells placed in depression slides with 250 µl of physiologic
SMB (pH 6.8) or slight acidic SMB (pH 6.3, obtained by
slowly adding, with stirring, 1N HCl), containing vehicle or
increasing concentrations of toxins (from 0.5 to 20µg/ml) for
24 h. The number of surviving ciliates (normal morphology and
locomotion) was counted and the median lethal concentrations
(LC50) of treatments was estimated (Buonanno, 2009). To analyse
the cytotoxic effects of a sublethal concentration of MOMO on
growing and reproduction of ciliates, single specimens of E.
aediculatus, E. eurystomus, or P. multimicronucleatum were fed
with the flagellate C. elongatum and placed in 250 µl of different
solutions prepared with MOMO (0.5µg/ml) in slight acidic SMB
(pH 6.3) or physiologic SMB. Cells were also placed in both acidic
SMB or SMB as control. The experiment was conducted in 9
replicates for each single species and solutions. The cells were
analyzed after 1 h and every 24, 48, 72, and 96 h. The induction
of necrosis was assessed by light microscopy analyzing about 100
cells of E. aediculatus, E. eurystomus, P. multimicronucleatum, P.
tetraurelia, S. ambiguum, and S. teres, treated with 5µg/ml of
MOMO for 20min, in both physiologic and acidic SMB.

Mammalian Cell Assays
Cell Cultures
Murine melanoma B16-F10 cells, C2C12 mouse myoblasts and
NIH/3T3 mouse fibroblasts (Bizzozero et al., 2014; Cazzato
et al., 2014; Assi et al., 2015; Basiricò et al., 2015; Cervia
et al., 2016; Perrotta et al., 2016) were cultured in Iscove’s
or Modified Eagle Medium high glucose supplemented with
10% heat-inactivated fetal bovine serum, glutamine (2mM),
penicillin/streptavidin (100 U/ml), 1% Hepes 1M (Euroclone),
pH 7.2 (physiologic culture medium) (Cervia et al., 2002,
2003, 2005). Cells grown at 37◦C in a humidified atmosphere
containing 5% CO2 (logarithmic growth phase, routine passages
every 3 days). Culture media were aseptically adjusted to final
pH 7.1, 6.9, 6.7, 6.5, and 6.3 (acidic culture medium) by slowly
adding, with stirring, 1 N HCl.

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

Bromide (MTT) Assay
Mammalian cell viability was determined by MTT assay using
published protocols (Cervia et al., 2006, 2007, 2013; Armani
et al., 2007; Di Giuseppe et al., 2011; Perrotta et al., 2014).
MTT absorbance was quantified spectrophotometrically using
a Glomax Multi Detection System microplate reader (Promega,
Milano, Italy).
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Immunofluorescence Detection of Caspase 3 Activity
Using published protocols (Cervia et al., 2016; Cammalleri et al.,
2017; Amato et al., 2018), cells cultured in 120-mm coverslips
were fixed in 4% paraformaldehyde (PFA) in 0.1M PBS, pH
7.4, for 10min and overnight stained with the anti-cleaved-
caspase 3 primary antibody at 4◦C (Cell Signaling Technology,
Danvers, MA, USA), in phosphate buffer saline (PBS) containing
0.5% Triton X-100. Cells were then stained with the appropriate
Alexa Fluor secondary antibodies (Life Technologies) for 1 h
and cover-slipped in a ProLong Gold Antifade Mountant (Life
Technologies), stained with fluorescein phalloidin (cytoskeleton
detection) (Life Technologies) and DAPI (nuclei detection).
Slides were analyzed using a Zeiss LSM 710 inverted confocal
microscope. Images were then optimized for contrast and
brightness using Adobe Photoshop.

Western Blotting
Using published protocols (Perrotta et al., 2015, 2018; Catalani
et al., 2016), cells were homogenized in RIPA lysis buffer,
supplemented with a cocktail of protease inhibitors (cOmplete;
Roche Diagnostics, Milano, Italy). Equal amounts of proteins
were separated by 4–20% SDS-polyacrylamide gel electrophoresis
(Criterion TGX Stain-free precast gels and Criterion Cell system;
Bio-Rad, Hercules, CA, USA) and transferred onto nitrocellulose
membrane using a Bio-Rad Trans-Blot Turbo System. The
membranes were probed using the anti-cleaved-caspase 3
primary antibody (Cell Signaling Technology, Danvers, MA,
USA). After the incubation with the appropriate horseradish-
peroxidase-conjugated secondary antibody (Cell Signaling
Technology), bands were visualized using the Clarity Western
ECL substrate with a ChemiDoc MP imaging system (Bio-Rad).
To monitor for potential artifacts in loading and transfer among
samples in different lanes, the blots were routinely treated
with the Restore Western Blot Stripping Buffer (ThermoFisher
Scientific, Waltham, MA, USA) and re-probed with the goat
anti-LDH-A (Santa Cruz Biotechnology, Dallas, TX, USA).
Bands were quantified for densitometry using the Bio-Rad Image
Lab software.

Drosophyla melanogaster Assays
Fly Strain
Oregon-R (Bloomington Drosophila Stock Center, Indiana
University Bloomington, IN, USA) was used for all experiments.
Flies were cultured for one generation at constant density prior
to exposure of eggs or adults.

Dietary Conditions
Flies were raised on a standard corn meal agar food (pH 5.5)
at 25◦C. We prepared our fly food as follows: for 1.2 l of water
100 g of live yeast, 110 g of glucose, 100 g of corn meal and 8 g
of agar were added and dissolved in warm water. The mixture
was autoclaved and allowed to cool down slowly. The fungicide
Nipagin (3 g dissolved in 16ml of absolute ethanol) was added
when the temperature reached∼50◦C, and the mixture was then
dispensed into vials. For each experiment, wild type flies were
reared on 4ml of either the standard medium (control flies)

or MOMO-treated diet (experimental flies). The two MOMO-
treated diets contained 100 or 300µg/ml MOMO; at least 5
vials per dose per experiment were prepared. Standard diet with
MOMO vehicle was used as control.

Mating Procedure and Developmental Assays
Populations of adult flies (3 days old) were placed in vials (15
females and 10 males) for mating and eggs laying. Vials were
visually inspected to ensure copulation was occurring; within
5–30min, all females were typically paired with males. After 3
days, flies were removed and larval development was checked
twice daily. In particular, the number of larvae emerged from
food (third instar larvae) at day 5/6 was recorded. Individual
eggs were also gently picked after a 24 h copulation of untreated
adults using 2% agar plates supplemented with apple juice. We
added PBS onto the plate and gently wiped the apple-agar surface
with a soft-thin brush. Eggs were then washed in PBS, counted
and separated under a stereo microscope in new food vials, i.e.,
control and experimental diet (50 eggs each), before counting
eclosed third instar larvae at day 5/6 and their development
into adult. When indicated, females were collected as virgins
before housing with males and the individual laid eggs after
mating were counted at day 3. For size measurements at least
30 different larvae were considered for each experimental group.
Larval length was measured by graph. To determine weight,
larvae were frozen and weighed using an ultramicro balance
(with high resolution of up to 0.0001 mg).

TUNEL and Cleaved-Caspase 3 Staining
Eclosed third instar larvae were fixed in 4% PFA in 0.1M
PBS, pH 7.4, overnight. Each larva was cut at A7 abdominal
segment and the anterior part was post-fixed for 5 h at 4◦C.
Fixed tissues were transferred to 25% sucrose in PBS and stored
at 4◦C for at least 12 h. Samples were then cut at 15µm with
a cryostat, mounted onto positively charged slides and stored
at −20◦C until use. TUNEL method (DeadEnd Fluorometric
TUNEL System, Promega) was performed according to the
manufacturer’s instructions and Fluoroshield Mounting Medium
containing DAPI (Abcam, Cambridge, UK) was used for nuclei
detection. Alternatively, sections were treated for 1 h with
5% bovine serum albumin BSA and 10% of normal goat
serum (Life Technologies) in PBS containing 0.5% Triton X-
100. Overnight incubation was performed with anti-cleaved-
caspase 3 primary antibody (Cell Signaling Technology, Danvers,
MA, USA), in PBS containing 0.5% Triton X-100, at 4◦C.
Sections were then stained with the appropriate Alexa Fluor
secondary antibody (Life Technologies) for 1.5 h and finally
cover-slipped with Fluoroshield Mounting Medium containing
DAPI. TUNEL images were acquired by a Zeiss Axioskop 2
plus microscope equipped with the Axiocam MRC photocamera
and the Axiovision software (Carl Zeiss, Oberkochen, Germany).
Cleaved-caspase 3 immunostaining images were acquired by
a Zeiss LSM 710 inverted confocal microscope. Images were
optimized for contrast and brightness using Adobe Photoshop
(Adobe Systems, Mountain View, CA, USA).
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Mitotic Index
To analyse mitotic parameters, brains from the third instar larvae
were dissected in hypotonic solution (0,8% sodium citrate) and
fixed at room temperature in a freshly prepared mixture of
acetic acid/methanol/H2O (11:12:2) for 30 s. Single fixed brains
were then transferred into small drops of 45% acetic acid on
a very clean, dust-free non-siliconized coverslip, for 2min. A
clean slide was lowered onto the coverslip and gentle squashed.
Slide was frozen in liquid nitrogen, coverslip was removed with a
razor blade and slide immediately immersed in absolute ethanol
at −20◦C for 15min. Slides were air-dried and DAPI stained,
0.2µg/ml in 2x saline sodium citrate (20x: 0.15M NaCl, 0.015M
sodium citrate) to detect chromatin andmitotic figures (Fabbretti
et al., 2016). Mitotic index was defined as the number of mitotic
cells per optical field (Volpi et al., 2013). The optical field was
the circular area defined by a 100x Zeiss objective/1.30 Plan-
NEOFLUAR, using 10x oculars and the Optovar set at 1.25 (Zeiss
Axiophot microscope). Every optical field occupied by brain
tissue was scored (three brains each slide, at least 50–100 optical
fields per slide).

Statistics
LC50 (the median lethal concentration), IC50 (the concentration
producing half the maximum inhibition), and Emax (the
maximum effect) were determined by non-linear regression
curve analysis of the concentration-effect responses. The
difference in sample means of LC50 were expressed by the
95% level of confidence, essentially according to the procedure
previously described (Buonanno, 2009). Potency values among
concentration-response curves were compared by the F-test.
Statistical significance of raw data between the groups in each
experiment was evaluated using one-way ANOVA followed
by the Newman-Keuls post-test (multiple comparisons). Data
belonging from different experiments were represented and
averaged in the same graph. The GraphPad Prism software
package (GraphPad Software, San Diego, CA, USA) was used.
The results were expressed as means ± SEM of the indicated
n values.

RESULTS

Synthesis of MOMO
The key step for the synthesis of MOMO is the
(Z)-diastereoselective Wittig reaction on intermediate 4

(Figure 1B), that has been developed in the diastereoselective
climacostol synthetic strategy (Fiorini et al., 2010), and some
of biologically active analogs of climacostol (Buonanno et al.,
2019). The possibility of obtaining the target (Z)-alkenyl
MOMO derivative in very good yield and without presence
of the (E)-diastereomer is favored from the MOM-protecting
group of hydroxyl functions in aromatic ring of aldehyde
4. Compound 4 was subjected to Wittig reaction with n-
heptyltriphenylphosphonium salt, prepared using NaHMDS
(Dickschat et al., 2005). The generated ylide reacts fast to produce
(Z)-olefin, and the side reactions, such as homo-olefination of
Wittig reagent, was inhibited by the presence of CeCl3.

In the synthesis of climacostol and its analogs, the protection
of hydroxyl groups as MOM not only ensured the preparation
of the desired (Z)-alkenyl intermediate without the presence of
(E)-diastereomer, but allowed the development of an efficient
methodology for the final MOM-deprotection. This occur in
mild acidic conditions (pH around 6.5) to free hydroxyl groups
without olefin isomerization and in excellent yield (Fiorini et al.,
2010; Buonanno et al., 2019). The ability to synthesize the
MOMO target compound without the presence of any impurities
that could interfere with its biological activity was also crucial.
Generally, the MOM group is introduced by treatment of the
hydroxyl derivatives with very reactive chloromethyl methyl
ether (MOM-Cl). Even if less toxic reagents are available, the
MOM-Cl is no more dangerous than other chemicals. However,
it is known that MOM-Cl commercially available is typically
contaminated with dichloromethyl methyl ether, a by-product
of its preparation, which is reported to be highly carcinogenic
(Narasaka et al., 1984). For this reason, we attempted a number
of methods for the introduction of the MOM groups in 2

which do not rely on the chloride. The methods are all based
on the use of CH2(OCH3)2 (dimethoxymethane) with various
catalysts (Shyamsundar et al., 2018). Unfortunately, all the
methodologies were not satisfactory for our phenol moiety,
owing to such drawbacks as very low yield and long reaction
time. Also, the catalysts were not easily obtained, expensive, and
unrecoverable. Consequently, we utilized a method for the rapid
preparation of a solution of MOM-Cl in toluene (18% w/w)
by the Zn(OAc)2-catalyzed exchange reaction between acetyl
chloride and dimethoxymethane (Berliner and Belecki, 2005).

FIGURE 2 | (A) FTIR and (B) EI-MS spectra of MOMO.
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This solution does not contain the dichloromethyl methyl ether
by-product, it is stable for several months if adequately sealed,
it is able to give intermediate 3 in very good yield, and above all
the excess reagent is decomposed onworkup, therebyminimizing
exposure to carcinogenic compounds. The subsequent reduction
of 3 with DIBAL-H afforded the desired aldehyde 4 with an
excellent yield.

Spectroscopic Analysis of MOMO
The structure of MOMO was established mainly on the basis of
analysis of NMR, FTIR spectroscopic, and mass spectrometry
data. Compound MOMO was obtained as colorless oil, and
FTIR spectrum displayed the absence of the strong 970 cm−1

band for the (E)-geometry (Figure 2A) to suggest the only (Z)-
geometry for the disubstituted double bond (Vanaller et al., 1983).
The mass spectrum of this compound (Figure 2B) exhibited a
molecular ion [M+] peak at m/z 322 in the electron ionization
mass spectrum (EI-MS), which corresponded to the molecular
formula C19H30O4 ofMOM-climacostol protected. The presence
of a peak base at m/z 45 is in agreement with a methoxymethyl
moiety, and assignment of the double bond at C-2′ was based
on the fragment ion peak observed at m/z 212 resulting from
MacLafferty rearrangement of aromatic ring, and this was a
confirmation that in our conditions the Wittig reaction proceeds

without isomerization 1
2′ ,3′-11′ ,2′ of the carbon-carbon double

bond in the alkenyl chain (Knödler et al., 2007).
Analysis of the 1H NMR spectroscopic data confirmed a

pair of aromatic meta-coupled protons at δ 6.65 and δ 6.71,
as well as proton signals belonging to two methoxyl groups
(-OCH3) at δ 3.46 and oxymethyl ethers (-OCH2O-) at δ 5.15
(Figure 3A). A terminal methyl at δ 0.92, olefinic methines at
δ 5.52–5.61 (overlapped), and an allylic methylene at δ 3.30
confirm the presence of an alkenyl chain with the carbon-
carbon double bond between C-2′ and C-3′. The assignment
of the double bond at C-2′ was also based on the 13C NMR
(Figure 3B) chemical shift value of the two allylic carbons at
δ 33.9 and δ 32.3. It is reported that the chemical shift values
of the allylic carbons of (E)-diastereomer in alkenylresorcinols
are greater than values of (Z)-diastereomer (Liu et al., 2009).
The presence of a single diastereomer, however, did not permit
to assign the configuration of the double bond by comparison
with literature data of both diastereomer (Al-Mekhlafi et al.,
2012). Also, the proton signals H-2′ and H-3′ in 1H NMR
spectrum were not well-separated, and measuring the value
of the coupling constant of the olefinic protons in the 1D
spectrum was difficult. All these experimental observations
in 1H NMR and 13C NMR spectra allowed us to observe
the presence of a single diastereomer, but not to solve the
configuration (Z) or (E) of the single diastereomer. Unlike what
observed for the climacostol and its analogs, we confirmed
MOMO as a product having a (Z)-configuration by a ROESY
analysis (Crouch et al., 1990). The 1H-1H ROESY (Rotating
from Overhause Effect SpectroscopY) is useful for determining
which signals arise from protons that are close to each other
in space even if they are not bonded (Kessler et al., 1987), and
remarkable cross-peaks were detected between the methylene
protons in C-1’ and between methylene protons in C-4′ (red

circles in Figure 3C). This interesting cross-peaks detected at
room temperature can be observed in the (Z)-configuration
diastereomer, where the protons involved are closer in space
than in the (E)-diastereomer, for which the cross-peaks should
not be observed. This means that the two protons in C-1’ are
on the same side of the protons in C-4’, further demonstrating
the importance of MOM-protecting group to obtain the (Z)-
configuration for the disubstituted double bond of the small
molecule MOMO.

pH-Induced Activation of MOMO in
Native Systems
The basic functions of climacostol are to defend the ciliate
Climacostomum virens from predators or to assist the ciliate
carnivorous feeding (Masaki et al., 1999; Miyake et al.,
2003), likely reducing the competition for food resources.
To assess the cytotoxicity of the prodrug MOMO in native
system, the LC50 of MOMO (increasing concentrations from
0.5 to 20µg/ml) in physiologic (pH 6.8) or mild acidic
(pH 6.3) SMB was obtained treating four prey (Paramecium
tetraurelia, P. multimicronucleatum, Spirostomum ambiguum,
and S. teres) and two competitors (Euplotes aediculatus
and E. eurystomus) of C. virens for 24 h. Data were also
compared with those previously obtained with native compound
climacostol in physiologic SMB (Buonanno et al., 2019).
As summarized in Table 1, no toxicity for MOMO was
reported in SMB at pH 6.8. Of interest, the cytotoxic
effects of MOMO become evident in acidic SMB, comparable
with climacostol.

Accordingly, when the ciliates were acutely treated with
5µg/ml of MOMO for 20min in acidic SMB, they showed
evident signs of necrosis, a form of cell injury characterized
by loss of plasma membrane integrity and uncontrolled release
of cellular components into the extracellular space (Figure 4A).
Similar results were obtained with climacostol (Buonanno et al.,
2019). In contrast, the solution of MOMO resuspended in
physiological SMB did not display any toxic effect on all the
three species used. No toxicity was detected for acidic SMB or
for control vehicle diluted in acidic SMB (data not shown). In
addition, to detect potential effects of sublethal concentrations of
MOMO in acidic SMB (pH 6.3), specimens of E. aediculatus, E.
eurystomus and P. multimicronucleatum were fed and incubated
withMOMO (0.5µg/ml) in acidic SMB. Cells exposed toMOMO
at increasing times showed normal morphology and locomotion
with no sign of necrotic processes. They were also compared with
those growing in physiological conditions for their fission rate.
The results indicated that the proliferative capability of MOMO-
treated cells was effectively inhibited (Figure 4B). In contrast,
no difference in fission rate was detected for the three species
exposed to MOMO in physiological conditions.

Overall, the collected data demonstrate that MOMO is well-
tolerated by ciliate species in a physiological environment, while
its cytotoxicity (activation) is rapidly and efficiently triggered by
mild acidification of the medium. Worth of note, the biological
activity (cytostatic vs. cytotoxic) of acidified-MOMO observed in
ciliated protists can be modulated in a dose-dependent manner.
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FIGURE 3 | (A) 1H-NMR, (B) 13C-NMR, and (C) 1H-1H ROESY spectra of MOMO.
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TABLE 1 | Median lethal concentrations (LC50: µg/ml) of MOMO obtained in six

ciliate species.

Ciliate species MOMO (pH 6.8) MOMO (pH 6.3) Climacostol

E. aediculatus >20 1.31 (0.48−3.58) 0.83 (1.62−1.79)*

E. eurystomus >20 1.28 (0.10−1.66) 0.70 (0.65−0.76)

P. multimicronucleatum >20 2.21 (1.57−3.11) 0.88 (0.18−4.45)*

P. tetraurelia >20 1.46 (1.04−2.05) 0.90 (0.37−2.19)*

S. ambiguum >20 2.12 (1.27−3.53) 1.66 (1.43−1.92)*

S. teres >20 1.90 (1.08−3.34) 1.68 (1.55−1.83)*

Viability was assessed after 24 h incubation with increasing concentrations of MOMO in

physiologic SMB (pH = 6.8) and in acidic SMB (pH = 6.3). No sign of cytotoxicity was

detected for the solutions of acidic SMB mixed with vehicle control (ethanol 2%; data

not shown). The LC50 values were obtained by non-linear regression analysis of three

independent experiments, with the 95% confidence limits in parenthesis. Data were also

compared with those obtained with native compound climacostol in physiologic SMB.
*: (Buonanno et al., 2019).

pH-Induced Activation of MOMO in
Mammalian Cells
We examined the effects of MOMO on cell viability in vitro
mouse B16-F10 melanoma cells. Cells were firstly analyzed
by MTT assay in physiologic culture medium (pH 7.2) after
cell treatment with increasing concentrations of MOMO. In
agreement with previous reports (Catalani et al., 2016; Perrotta
et al., 2016; Zecchini et al., 2019), the native climacostol, used
as a control compound, dose-dependently decreased melanoma
cell viability by almost 100% (Emax) when applied for 24 h
(Figure 5A). In contrast, the MTT absorbance was reduced
by MOMO (44% inhibition) only at the highest concentration
tested, i.e., 100µg/ml, while the lower concentrations were
devoid of activity.

Then, to test if extracellular acidification may effectively
activate MOMO molecule, melanoma cell viability was assessed
in culture medium ranging from pH 7.1 to 6.3. In particular,
cells were incubated in the absence (vehicle) and presence of
MOMO for 3 and 6 h. As shown in Figure 5B, short treatments
with MOMO at 30 and 100µg/ml significantly decreased MTT
absorbance in cells exposed to pH 6.3 medium, but not to more
alkaline medium. The role of pH was then further dissected using
increasing concentrations of MOMO at increasing times. In
physiologic culture medium (pH 7.2) MOMO partially reduced
B16-F10 cell viability only at 100µg/ml and after long exposures,
i.e., 18 and 24 h, while cell incubation in mild acidic medium (pH
6.3) efficiently increased MOMO activity (Figure 5C). Of notice,
at 18 and 24 h even 3µg/ml MOMO (the lower concentration
tested) significantly decreased MTT absorbance vs. control. In
addition, 100µg/ml MOMO exerted its maximal effect (almost
100% inhibition) between 18 and 24 h thus indicating that
the cytotoxic effect of MOMO is markedly enhanced in acidic
extracellular environment. During prolonged cell culture the
pH of the medium normally decreased as also indicated by the
yellow color of the phenol red. Accordingly, similarly to the
native climacostol, MOMOdose-dependently decreased B16-F10
cell viability when applied for 48 h, even in physiologic culture
medium (Figure 5D).

Immunostaining with a fluorescently labeled antibody that
binds specifically to cleaved-(active) caspase 3, an hallmark of
apoptosis, revealed that B16-F10 cells treated with submaximal
MOMO (30µg/ml, 9 h) expressed active caspase 3 when exposed
to pH 6.3 but not pH 7.2 medium (Figure 6A). No specific
stain was observed in control medium. These results were
confirmed by western blot experiments since MOMO-treated
melanoma cells in mild acidic culture medium (pH 6.3) showed
a significant increase of cleaved-caspase 3 expression when
compared to control (Figure 6B); thus demonstrating the pro-
apoptotic effects of pH-activatedMOMO in tumor cells, similarly
to the native climacostol (Buonanno et al., 2008; Perrotta et al.,
2016; Zecchini et al., 2019).

We also tested the cytotoxic activity of MOMO in
immortalizedmouse cells of non-tumor origin (non-transformed
cells). Climacostol, used as a reference compound, potently and
efficiently inhibited the MTT absorbance of NIH/3T3 fibroblast
cells cultured for 24 h in physiologic medium (Figure 7A). No
effects of MOMO were detected at pH 7.2 whereas, surprisingly,
it displayed only a slight efficacy (Emax ca. 40%) in mild acidic
(pH 6.3) culture medium. Additionally, 9 h after NIH/3T3 cell
treatment with 30 and 100µg/ml MOMO no detectable effects
on MTT absorbance were achieved in physiologic and acidic
culture medium, while 30µg/ml climacostol (pH 7.2 medium)
robustly decreased cell viability (Figure 7B). Similar results were
obtained with C2C12 myoblast cells (Figure 7C). In addition,
NIH/3T3 and C2C12 cells treated with 100µg/ml MOMO
for 9 h did not express cleaved-caspase 3 immunostaining
when exposed to both physiologic and acidic culture medium,
while caspase 3 activation was observed in the presence of
climacostol (30µg/ml, 9 h) in physiologic culture medium
(Figures 7D,E). Taken together these results indicate the very
low cytotoxic/pro-apoptotic activity of MOMO vs. cultured
NIH/3T3 and C2C12 cells.

The simplest explanation may rely on the fact that cells
experience different challenges to the low extracellular pH, which
depend both on the individual cell and cell type (Salameh et al.,
2014). We thus measured the extracellular pH of NIH/3T3,
C2C12 and B16-F10 cells cultured for 9 h in both physiologic
and acidic culture medium. As show in Figure 7F, in the
presence of NIH/3T3 and C2C12 cells, but not B16-F10, the acidic
culture medium become robustly alkaline and this likely affects
(negatively) MOMO activation.

In vivo Toxicity of MOMO in
Drosophila melanogaster
The fruit fly D. melanogaster was then used as it is considered
a very potent in vivo tool to detect the potential damaging
effect of new compounds (Pandey and Nichols, 2011). In the
fly life cycle, larvae hatch from eggs and eat continuously,
stopping only to molt twice after first instar and second instar
stages. During this time, larvae consume nutrients in preparation
for pupation. At 5/6 days after egg laying, third instar larvae
leave the food and “wander” as they prepare to undergo
metamorphosis into the adult fly. Of notice, an acidic diet is
the standard practice for maintaining D. melanogaster since
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FIGURE 4 | MOMO cytotoxicity in native systems. (A) Cell death effects of MOMO (5µg/ml) in acidic SMB at pH 6.3 (b, d, f, h, j, l) and in physiological SMB (a, c, e, g,

i, k) on six species of ciliated protists: Euplotes aediculatus (a, b), Euplotes eurytomus (c, d), Paramecium multimicronucleatum (e, f), Paramecium tetraurelia (g, h),

Spirostomum ambiguum (i, j) and Spirostomum teres (k, l). Necrosis was observed only for MOMO solutions in acidic SMB after 20min for all ciliate used. Arrows

indicate plasma membrane swellings or fractures. The images are representative of 10 independent observations. Scale bars = 100µm. (B) Growth curves of

Euplotes aediculatus, Euplotes eurystomus, and Paramecium multimicronucleatum in acidic SMB (pH 6.3) and physiologic SMB (pH 6.8) both in the absence and in

the presence of MOMO (0.5µg/ml). All specimens were fed in order to compare their ability to multiply. Each point (n = cell number) is representative of

9 independent experiments.

helps to suppress bacterial growth, increases food palatability
and consumption and extends the lifespan compared with flies
on either neutral or alkaline pH food (Deshpande et al., 2015).

For these reasons Drosophila is a suitable model to test MOMO
activated by low pH. In addition, the feeding experiments in
Drosophila are important to support the efficient activity and
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FIGURE 5 | MOMO cytotoxicity in melanoma cells. Mouse B16-F10 cells were treated with increasing concentrations of MOMO and climacostol for (A) 24 h or (D)

48 h, before MTT assay. The data points are representative of 4–10 independent experiments. MTT assay after B16-F10 cell treatment with: (B) 30 and 100µg/ml

MOMO (3 or 6 h incubation) in culture medium ranging from pH 7.1 to 6.3, (C) increasing concentrations of MOMO (3, 9, 18, and 24 h incubation) in physiologic (pH

7.2)/acidic (pH 6.3) culture medium. Data are representative of at least 6 independent experiments. **p < 0.001 and ***p < 0.0001 relative to the respective control.

Results are expressed by setting the absorbance of the reduced MTT in the respective control (vehicle-treated) samples, i.e., absence of compounds, as 100%.
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FIGURE 6 | MOMO-induced apoptosis in melanoma cells. Mouse B16-F10

cells were cultured in the presence of 30µg/ml MOMO or vehicle (CTRL) for

9 h in physiologic (pH 7.2)/acidic (pH 6.3) culture medium. (A)

Immunofluorescence imaging of cleaved-caspase 3 (punctate green pattern).

DAPI (blue) and phalloidin (red) were used for nuclei and cytoskeleton

detection, respectively. Inserts represent enlarged image details. Scale bar =

20µm. (B) Western blotting image of cleaved-caspase 3. LDH was used as

internal standard. Low panel: densitometric analysis of cleaved-caspase 3.

Results are expressed as fold change of CTRL. **p < 0.001 relative to CTRL.

Images and data are representative of 6 independent experiments.

oral delivery of the molecule in vivo, as a first step toward
evaluating the biological effects of prodrug MOMO in a non-
target multicellular organism.

We determined if D. melanogaster development was affected
upon ingestion of MOMO (Figure 8A). Mating flies were placed
in vials containing standard Drosophila diet (pH 5.5) mixed with
MOMO at increasing concentrations. After eggs laying, flies were

removed and larval survival was checked measuring the number
of third instar larvae emerged from food. As shown in Figure 8B,
third instar larvae number was significantly reduced in both
100 and 300µg/ml MOMO-treated groups when compared to
control (vehicle-treated). Results exhibited a dose-dependent
response to treatments as the effect of 300µg/ml MOMO was
more pronounced, thus indicating the efficiency of acidic pH
on the biological activation of MOMO molecule. Similar results
were obtained counting the number of eclosed larvae emerging
from food in vials containing an equivalent number of eggs
(Figure 8C). Noteworthy, reduced survival was limited to the
larval stages, as the percentage of developed adults, which
represents the amount of adults out of the total number of eclosed
larvae was not significantly different for flies reared on MOMO
food vs. flies reared in control food (Figure 8D). In addition,
when females of Drosophila were collected as virgins before
copulation, the number of laid eggs in 100µg/mlMOMO-treated
group vs. control was significantly reduced (Figure 8E).

Third instar larvae were then sampled from the experimental
groups and analyzed for the body length and weight, as
convenient indicators to determine whether MOMO treatment
induced changes in body growth of surviving larvae. Larvae
emerged from control food or supplemented with increased
concentrations of MOMO had comparable body traits
(Figure 9A). In Drosophila food passes sequentially through the
foregut, anterior midgut, middle midgut, and posterior midgut,
and nutrient absorption takes place along this way in a manner
similar to that in humans (Miguel-Aliaga et al., 2018). We thus
investigated the oral toxicity of MOMO in surviving larvae
assessing common features of apoptotic cell death by TUNEL
labeling and cleaved-caspase 3 immunostaining of midgut
digestive tract, which corresponds analogously to the small
intestine of humans (Buchon et al., 2013; Miguel-Aliaga et al.,
2018). As shown in Figure 9B, third instar larvae developed in
the presence of MOMO appeared TUNEL-positive. In particular,
100µg/ml MOMO exposure caused a positive TUNEL staining
in the nuclei of midgut cells, demonstrating the occurrence of
apoptotic DNA fragmentation. Active caspase 3 was found in the
cytoplasm of midgut cells located in the same TUNEL-positive
area of the gastrointestinal tract (Figure 9C). Of notice, a dose-
dependent increase in apoptosis was observed since the labeling
of samples fed with 300µg/ml MOMO considerably increased.

Consistent with a reduced proliferation of neural cells, the
brains of surviving larvae fed with increasing concentrations of
MOMO had a significant lower mitotic index when compared
to control, although the presence of apoptotic phenomena was
not detected (Figure 10A). Accordingly, the third instar larval
brains developed either in the absence or in the presence of
MOMO were TUNEL-negative (Figure 10B). Similar results
were obtained with the immunofluorescence analysis of active
caspase 3 (Figure 10C).

DISCUSSION

The drug delivery system based on pH has emerged as an
ideal carrier for many drugs, including anti-tumor agents,
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FIGURE 7 | MOMO cytotoxicity/apoptosis in non-transformed mouse cells. (A) NIH/3T3 fibroblasts were treated with increasing concentrations of MOMO for 24 h in

physiologic (pH 7.2)/acidic (pH 6.3) culture medium, before MTT assay. Climacostol in physiologic medium was used as a reference compound. The data points are

representative of 5–6 independent experiments. MTT assay after (B) NIH/3T3 fibroblasts or (C) C2C12 myoblasts treatment with 30 and 100µg/ml MOMO (9 h

incubation) in physiologic (pH 7.2)/acidic (pH 6.3) culture medium. Climacostol (30µg/ml, 9 h, pH 7.2 medium) was used as a reference compound. Data are

representative of 4 independent experiments. ***p < 0.0001 relative to the respective control. Results are expressed by setting the absorbance of the reduced MTT in

the respective control (vehicle-treated) samples, i.e., absence of compounds, as 100%. Immunofluorescence imaging of cleaved-caspase 3 (punctate green pattern)

in (D) NIH/3T3 and (E) C2C12 cells cultured in the presence of 100µg/ml MOMO or vehicle (CTRL) for 9 h in physiologic (pH 7.2)/acidic (pH 6.3) culture medium.

Climacostol (30µg/ml, 9 h, pH 7.2 medium) was used as a reference compound. DAPI (blue) and phalloidin (red) were used for nuclei and cytoskeleton detection,

respectively. Inserts represent enlarged image details. Scale bar = 20µm. (F) Measurements of pH of physiologic and acidic culture medium after 9 h incubation in the

absence (CTRL) and in the presence of NIH/3T3, C2C12, and B16-F10 cells (plated at the same density in 100 mm-Petri dishes). ***p < 0.0001 relative to the

respective CTRL.
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FIGURE 8 | MOMO toxicity in Drosophila melanogaster. (A) Experimental schedule. a: flies mating and eggs laying on standard food (15 females and 10 males); b:

eggs sampling and splitting on new standard food (vehicle) or containing MOMO (100, 300µg/ml), n = 5 per group; c: third instar larvae sampling; d: flies mating and

eggs laying (15 females and 10 males) on standard food (vehicle) or containing MOMO (100, 300µg/ml), n = 5 per group; e: adults removing; f: third instar larvae

sampling. (B) Number of third instar larvae emerging from vials at day 5/6. Results are expressed by setting the control (CTRL, vehicle) as 100%. (C) Third instar larvae

emerging at day 5/6 from vials containing an equivalent number of eggs (50). Results are expressed by setting the number of eclosed larvae vs. the number of eggs.

(D) Number of flying adults vs. the number of eclosed third instar larvae. (E) Number of laid eggs when females of Drosophila were collected as virgins before

copulation. Results are expressed by setting the CTRL as 100%. Data are representative of 5 independent experiments. *p < 0.01, **p < 0.001, and ***p < 0.0001

relative to CTRL.
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FIGURE 9 | MOMO-induced apoptosis in gut of Drosophila melanogaster. Third instar larvae emerging at day 5/6 from vials containing control food (CTRL, vehicle) or

supplemented with increased concentrations of MOMO were analyzed. (A) Body length and weight. Results are expressed by setting the CTRL as 100%. Data are

representative of 5 independent experiments. (B) TUNEL and (C) cleaved-caspase 3 staining of midgut digestive tract. DAPI (blue) was used for nuclei detection. Data

are representative of at least 15 larvae collected in 5 independent experiments. Scale bar = 50µm.

and is related to the acidic extracellular microenvironment
in damaged tissues and some acidic organelles like lysosome
and endosome (Swenson, 2016; Sharma et al., 2019). Here we
report on the cytotoxic properties of a new small molecule, a
synthetic precursor of the natural compound climacostol, which
is efficiently activated in mild extracellular acidosis, a common
biological consequence of anaerobic metabolism.

MOMO as a Cytotoxic Prodrug
The results obtained on free-living ciliates demonstrate that
MOMO is capable, in mild acidic environment (pH 6.3),
to restore the cytotoxic activity of climacostol, whereas no
adverse effect is induced by MOM-protected climacostol on
ciliates resuspended in physiological buffer (pH 6.8). The
substantial stability of MOMO at neutral pH and its easily
transformation under acidic conditions in the anti-protozoa
cytotoxic climacostol, appears particularly interesting in the
light of the potential treatment of some human protozoarian
diseases, such as leishmaniasis and malaria, respectively, caused
by parasites of genera Leishmania and Plasmodium. In the case of
Leishmania, amastigotes live inside the strongly hydrolytic and
acid environment (pH around 5.0) of parasitophorous vacuoles

(PVs) in macrophages of mammalian hosts (Miguel et al., 2007;
Pal et al., 2017). They may represent an ideal target for MOMO
that could reach the infected cells as a non-toxic compound,
while assuring a safe and exclusive release of active climacostol
in PVs. Among the genus Plasmodium, the only species capable
of producing fatal complications is P. falciparum, for which it
was reported that development of a high burden of parasites,
in slightly acidic conditions, can decrease local extracellular pH
until values ranging between 6.2 and 6.4 (Zougbédé et al., 2011).
In addition, in vivo pH measurements of the parasite digestive
vacuole (PDV) resulted in values ranging around 5.2 (Kuhn
et al., 2007). Also in this case, the acidic pH revealed both in
the extracellular medium surrounding infected red blood cells
and in PDV, appears as the ideal chemical trigger for MOMO,
so allowing in situ releasing of climacostol and avoiding systemic
adverse events. It is worthy to note that, if required, the biological
activity of the activated MOMO can be easily modulated to
induce either a cytostatic or a cytotoxic effect.

The known toxicity of chemotherapy, also on non tumoural
cells, often depends on the chemical structure of the used
drug which may also be greatly affected by the surrounding
environment. In this respect, tumor cell metabolism is
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FIGURE 10 | MOMO toxicity in brains of Drosophila melanogaster. Third instar larvae emerging at day 5/6 from vials containing control food (CTRL, vehicle) or

supplemented with increased concentrations of MOMO were analyzed. (A) Mitotic index: images (upper panel) and analysis (lower panel). Scale bar = 100µm.

Results are expressed as fold change of CTRL. *p < 0.01 relative to CTRL. (B) TUNEL and (C) cleaved-caspase 3 staining of Drosophila brains. DAPI (blue) was used

for nuclei detection. Scale bar = 20µm. Images and data are representative of at least 15 larvae collected in 5 independent experiments.
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fundamentally different from that in normal tissue since active
transports and acid-extrusion are important in metabolically
active cancer cells, setting the intracellular resting pH by the
decrease of intracellular protons (Hulikova et al., 2013). Our
study shows the efficient cytotoxic and pro-apoptotic effects
of MOMO on mouse melanoma cells. In contrast to the
native compound climacostol, MOMO displayed a marked
pH-sensitivity since its toxic effects become evident only in mild
extracellular acidosis while no detectable actions were achieved
in more alkaline culture medium. This indicates that MOMO
is chemically tailored in the acidic tumor cell medium to form
the effective toxic compound climacostol (Buonanno et al.,
2008, 2019; Fiorini et al., 2010; Petrelli et al., 2012; Quassinti
et al., 2013; Catalani et al., 2016; Perrotta et al., 2016; Zecchini
et al., 2019). Of interest, the pH values inducing MOMO activity
are in line with the acidic extracellular pH often measured in
both human and rodent in vivo tumors, including melanoma
xenografts (Wike-Hooley et al., 1984; Tannock and Rotin, 1989;
Calcinotto et al., 2012; Chen et al., 2014). A low extracellular pH
may decrease the cellular accumulation and activity of weakly
basic cytotoxic compounds as chemotherapeutic agents are
(Stubbs et al., 2000; Thews et al., 2007, 2014; Viklund et al., 2017),
since the passive diffusion of drugs into cells occurs mainly when
they are uncharged. pH-responsiveness has always been a hot
topic in the controlled drug release field (Sharma et al., 2019).
Indeed, there is a general agreement that effective prodrugs
should be tailored chemically to become more efficacious in
the tumor milieu, as for instance through chemical activation
at low pH and/or O2 tension (Swietach et al., 2014; Sharma
et al., 2019). In this respect, we provide evidence on the very
low activity of MOMO, but not climacostol, vs. immortalized
mouse cells of non-tumor origin, even in acidic conditions, thus
suggesting MOMO being preferentially activated in the unique
extra-acidic microenvironment that characterizes tumoural cells.
The use of pH-responsive compounds effective in the low-pH
tumor microenvironment may represent an effective strategy
for lowering the cost of treatment and reducing side effects
(Adams et al., 2000; Flowers et al., 2003; Wong et al., 2005;
Valiahdi et al., 2013; Swietach et al., 2014; Burns et al., 2016;
Wang et al., 2018). We thus identify MOMO as new therapeutic
target capable of freeing cytotoxic climacostol more easily in
the cancer cells themselves than in normal ones. In this respect,
MOM-protection emerges as a potential prodrug strategy which
deserves to be further investigated by multiple in vivo assays.

The preliminary findings presented here in the model
organism Drosophila support the efficient activity and oral
delivery of MOMO molecule in vivo. Results indicated that
MOMO feeding of mating adults affects oviposition. In addition,
the eclosion of larvae reared on food containing MOMO was
negatively affected. Likely, the MOMO protected molecule is
activated by the low pH of food during oral intake, although
an additive role of the acidic conditions of the digestive tract
cannot be excluded. Reduced survival of D. melanogaster was
due to lethality during the larval stages while emerging larvae
had comparable body traits when compared to control and
retained their ability to develop into flying adults. Interestingly,
we found that surviving eclosed larvae exhibited an extended

damage (cell death by apoptosis) in the gut, further corroborating
the notion that orally activated MOMO is consumed and
assimilated. Feeding of adult D. melanogaster with bleomycin,
an anticancer drug that is also widely used as a DNA-
damaging agent, caused lethality and enterocyte-specific damage
and cell loss in the gut (Amcheslavsky et al., 2009). Because
brain tissue of larvae was also affected (reduced mitosis),
although, as expected, to a lesser extent when compared to
midgut, active MOMO exhibited prolonged toxic effect after
oral intake and gut absorption. It has been observed that the
first wave of neurogenesis in D. melanogaster occurs during
embryonic stages, but most of adult brain neurons developed
during the larval stages (Homem and Knoblich, 2012; Kohwi
and Doe, 2013). In addition, midgut cells have an high
proliferating/regeneration rate, even in adult flies (Amcheslavsky
et al., 2009; Tian et al., 2017). Accordingly, our data revealed
that MOMO efficiently targets different tissues of the developing
fly with high metabolic/proliferating activity, such as midgut
and brain.

CONCLUSIONS

Currently, a great deal of effort is aimed at discovering novel
small molecules or to small molecule derivatives exhibiting the
optimum in potency/selectivity, and to exploit new therapeutic
indications (Nobili et al., 2009; Gurevich and Gurevich, 2014;
Harvey et al., 2015; Dhanak et al., 2017; Cheng et al., 2018; Huck
et al., 2018; Schiavone and Trabace, 2018). Living organisms
have a high ability to synthesize complex molecular structures
with defined biological properties, and the climacostol is a
typical example as small molecule (Nobili et al., 2009; Harvey
et al., 2015; Catalani et al., 2016). The great advantage in
the development of MOM-protecting group in the chemical
synthesis of climacostol is not just to provide the best way
to solve supply problems, but MOMO can be used as a
precursor in biosynthetic transformations. The pH-activated
cytotoxic MOMO shows how the synthetic chemistry excels in
the invention of unnatural small molecules, another step to use
the combination of chemistry and biology in the production of
efficient prodrug systems to new applications.
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