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Abstract: A catalyst-free heterocyclization reaction of α-chloroglycinates with thiobenzamides
or thioureas leading to 2,4-disubstituted-5-acylamino-1,3-thiazoles has been developed.
The methodology provides straightforward access to valuable building blocks for pharmaceutically
relevant compounds.
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1. Introduction

Heterocyclic compounds are an integral part of many biologically active small molecules.
Indeed, many currently marketed drugs exhibit heterocycles as their core structures [1,2]. In particular,
compounds based on a 1,3-thiazole display a wide range of activities [3]. Therefore, increasing
attention has been devoted in recent years to the preparation of polysubstituted thiazoles, primarily for
pharmaceutical applications [4–7], but also in connection with problems in material science [8].
Of special relevance in medicinal chemistry are aminothiazoles and their derivatives [9–16].
Such compounds show potential in oncology [17,18], in the treatment of inflammatory conditions [19,20]
and neurological disorders [21]. Examples (Figure 1) include compound 1, an experimental CDK5
inhibitor for the treatment of Alzheimer’s disease [22], and avatrombopag 2, approved in 2018 the
treatment of adult thrombocytopenia [23].Molecules 2019, 24, x FOR PEER REVIEW 2 of 15 
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i.e., substances 4–5, became of special interest. Curiously, such thiazoles are scantly documented in 
the literature. For instance, the SciFinder database records only 47 compounds of the type 4, described 
in 11 publications as of this writing [25,26]. Substances of general structure 5 are even rarer (11 
compounds, 6 publications) [27,28]. Furthermore, good synthetic procedures that lead directly to 
compounds 4–5 are lacking. Possibly for these reasons, such heterocycles are quite uncommon in 
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Our interest in developing general methods for the synthesis of pharmaceutically relevant 
heterocyclic compounds [29–31] induced us to launch a program aiming to establish widely 
applicable procedures for the direct synthesis of the desired thiazoles. In drug discovery, the chemical 
modifications of thiazole ring moieties could be a useful tool in the discovery of new ways to make 
variations on existing drugs. But this approach is limited for organic chemists because there are only 
so many changes that can be made to a complex heterocyclic compound. The cyclization of 
polyfunctionalized acyclic precursors is much more advantageous for medical and biotechnological 
applications [32]. Taking into account a potential industrial development of the methodology, it was 
essential to avoid harsh reaction conditions, issues of regioselectivity that may result in the formation 
of multiple products, the need for costly catalysts, elaborate reaction protocols, and complex 
purification procedures. 

2. Results 

Among the numerous methods for thiazole synthesis [33–35], the venerable Hantzsch reaction 
[36] and its variants [37,38], i.e., the cyclocondensation of α-halocarbonyl compounds with 
thioamides or thioureas (Scheme 1, Equation 1), remains especially popular. This transformation 
reliably produces 1,3-thiazoles having alkyl, aryl, or heterocyclic substituents in good to excellent 
yields. Furthermore, the reaction requires no metallic catalysts, expensive reagents, or stringent 
measures to exclude moisture and air: a significant advantage in terms of environmental impact and 
total cost of the synthetic procedure. It appeared that the target compounds 4–5 could be accessed by 
a Hatzsch- 
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The research described herein finds its genesis in Dompé Farmaceutici’s identification of novel
thiazole derivatives such as 3 (Figure 2), with proven efficacy in the urology and pain areas [4,24]. As a
consequence of this discovery, congeners of 3 incorporating alkylamino-or acylamino substituents,
i.e., substances 4–5, became of special interest. Curiously, such thiazoles are scantly documented
in the literature. For instance, the SciFinder database records only 47 compounds of the type 4,
described in 11 publications as of this writing [25,26]. Substances of general structure 5 are even rarer
(11 compounds, 6 publications) [27,28]. Furthermore, good synthetic procedures that lead directly
to compounds 4–5 are lacking. Possibly for these reasons, such heterocycles are quite uncommon in
medicinal chemistry.
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Our interest in developing general methods for the synthesis of pharmaceutically relevant
heterocyclic compounds [29–31] induced us to launch a program aiming to establish widely applicable
procedures for the direct synthesis of the desired thiazoles. In drug discovery, the chemical modifications
of thiazole ring moieties could be a useful tool in the discovery of new ways to make variations on
existing drugs. But this approach is limited for organic chemists because there are only so many changes
that can be made to a complex heterocyclic compound. The cyclization of polyfunctionalized acyclic
precursors is much more advantageous for medical and biotechnological applications [32]. Taking into
account a potential industrial development of the methodology, it was essential to avoid harsh reaction
conditions, issues of regioselectivity that may result in the formation of multiple products, the need for
costly catalysts, elaborate reaction protocols, and complex purification procedures.

2. Results

Among the numerous methods for thiazole synthesis [33–35], the venerable Hantzsch reaction [36]
and its variants [37,38], i.e., the cyclocondensation of α-halocarbonyl compounds with thioamides or
thioureas (Scheme 1, Equation (1)), remains especially popular. This transformation reliably produces
1,3-thiazoles having alkyl, aryl, or heterocyclic substituents in good to excellent yields. Furthermore, the
reaction requires no metallic catalysts, expensive reagents, or stringent measures to exclude moisture
and air: a significant advantage in terms of environmental impact and total cost of the synthetic
procedure. It appeared that the target compounds 4–5 could be accessed by a Hatzsch-like reaction
between an α-chloroglycinate, 8, and a thioamide, 9, or thiourea, 11 (Scheme 2). Compounds 8 are
readily available starting with a Ben-Ishai addition of a primary amide, 6, to, e.g., ethyl glyoxylate,
followed by reaction of the resultant 7 with SOCl2 [39–42]. They are perfectly isolable and fairly
stable on storage at −20 ◦C with exclusion of moisture (two weeks at least) [43–47], even though the
halogen atom is quite labile. Also, they are normally obtained is a state of good to excellent purity;
therefore, it is generally expedient to use them directly. A caveat is that they are sensitive to the
action of bases, which cause rapid formation of polymeric products [41]. A noteworthy illustration
of this was provided in connection with their use in a useful oxazole synthesis: displacement of the
chlorine with a poorly basic aluminum acetylide results in the efficient formation of polysubstituted
oxazoles, but the action of basic alkali metal acetylides rapidly converts them into intractable mixtures
of products [43–47]. On such grounds, it seemed plausible that poorly basic, but highly S-nucleophilic,
thioamides/thioureas should combine with chlorogycinates 8 as desired.
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The exploration of the new methodology started with a study of the reaction of
N-benzoylchloroglycine ethyl ester, 8a, with thiobenzamide, 9a, (Scheme 3). When a solution of
the reactants in THF was stirred at room temperature overnight, a precipitate appeared. This material
consisted (NMR, MS) of a mixture of tautomers 10aa and 4aa of the expected product [48].
Unfortunately, the yield of product never exceeded 40%, regardless of solvent used (THF, DMF,
and MeCN). Also, conduct of the reaction at higher temperatures (refluxing conditions) resulted in
formation of complex mixtures. An HPLC-MS analysis of the reaction mixtures showed the presence
of a dimer of tentative structure 13, the formation of which is attributable to water contamination of
the solvents. The formation of presumed 13 was accelerated substantially when hydroxyglycinate
7a, R1 = Ph, was exposed to the CeCl3.7H2O-NaI system [49] in an attempt to effect conversion into
the corresponding iodide. Fortunately, the use of freshly dried THF suppressed the formation of
the dimeric product and greatly improved the yield of thiazoles. Furthermore, it transpired that it
was best to allow the reaction to proceed at r.t. for only 2 h. In all cases, the workup procedure
involved the removal of volatiles under vacuum, the resuspension of the solid residue in ether, and the
recovery of the solid product by filtration. The thiazoles thus obtained were of excellent quality and
required no further purification. Some of them existed in solution as mixtures of keto (10) and enol
(4) tautomers (NMR). The keto form exhibited a diagnostic 3J coupling between the C-5 and the NH
protons (≈7.4 Hz), consistent with literature values in related systems [50]. The enol form may be
the dominant/exclusive tautomer present in the solid state, as suggested by the broad OH signal
observed in the FT-IR spectrum (see Supplementary Materials). Representative examples of the new
transformation are shown in Table 1. It is apparent that the reaction tolerates both electron-donating
and electron-withdrawing substituents on either reactant (entries 5, 8 and 10).

It is worthy of note that chloroglycinates derived from conjugated amides are good substrates for
the present reaction (entry 4), even though they are quite poor for the oxazole-forming one [43–47].
It should also be stressed that the procedure is readily amenable to high-throughput chemical synthesis
and that its scope was found to be considerably broader than the 12 examples of Table 1 suggest.
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Thus, various points of diversification can be introduced to generate more complex molecules with
interesting biological activities.
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Entry R1 R2 Product (10 + 4) b Yield (%) c

1 Ph (8a) Ph (9a) 10aa + 4aa d 88
2 Piperonyl (8b) Ph (9a) 10ab + 4ab d 76
3 Et (8c) Ph (9a) 10ac + 4ac d 94
4 PhCH=CH (8d) Ph (9a) 10ad + 4ad d 81
5 Ph (8a) 4-NO2-C6H4 (9b) 10ba + 4ba d 74
6 Piperonyl (8b) 4-NO2-C6H4 (9b) 10bb + 4bb d 87
7 Et (8c) 4-NO2-C6H4 (9b) 10bc + 4bc d 94
8 Ph (8a) 4-MeO-C6H4 (9c) 10ca + 4ca 94
9 Piperonyl (8b) 4-MeO-C6H4 (9c) 10cb + 4cb d 68

10 Ph (8a) 4-Cl-C6H4 (9d) 10da + 4da d 78
11 Piperonyl (8b) 4-Cl-C6H4 (9d) 10db + 4db d 95
12 Et (8c) 4-Cl-C6H4 (9d) 10dc + 4dc d 90

a Typical procedure: a thioamide (1.0 mmol) was added to a stirred solution of α-chloroglycinate (1.0 mmol) in dry
THF under nitrogen. After 2 h, the solvent was removed under reduced pressure, and the residue was re-suspended
in Et2O and stirred for 1 h. The solid was collected by filtration to obtain a thiazole that required no further
purification. b Equilibrium mixture of keto (10) and enol (4) form. c As a mixture of tautomers. d Predominant
tautomer in DMSO-d6.

On a side note, substituted 2-thiazolinones/2-hydroxythiazoles are subject to
acid-catalyzed ring mutation reactions [51–53]. Concerns about the possible sensitivity of
5-thiazolinones/5-hydroxythiazoles 10/4 to analogous isomerization processes were rapidly allayed by
the observation that all such compounds remained unchanged upon storage for several weeks at
low temperature.

The use of a thiourea in lieu of a thioamide in the reaction just described successfully led to the
formation of compounds 5 in moderate to good yield (Table 2). No improvement in yields was observed
when the reaction was carried out in the presence of 1,8-bis-(dimethylamino)naphthalene (proton
sponge) [54]. The rate of product formation was also unaffected, providing additional evidence that
the target thiazoles do not form by an initial dehydrohalogenation of 8 to an acylimine and subsequent
nucleophilic addition thereto. Instead, they are likely to arise upon cyclization of intermediates 14
(Scheme 4, reaction pathway a), formed in turn by displacement of chlorine from 8 by the nucleophilic
sulfur center of the thioamide. Interestingly, all attempts to detect 14 or other possible intermediates
by ESI-MS techniques [55,56] met with failure (only reactants and products apparent in the spectra),
indicating that the cyclization of 14 to 12/5 must be very fast. We note in passing that substance 14 could
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theoretically produce heterocycle 15 by a cyclization reaction involving the amide group (pathway b).
However, no products of the type 15 were ever observed in our reactions, undoubtedly because of the
weaker electrophilic reactivity of the amide relative to the ester and the lack of aromatic character in 15.

Table 2. Formation of 5-Acylamino-2-amino-1,3-thiazole Derivatives from chloroglycinates and
thioureas a.
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1 Ph (8a) H (11a) 12aa d + 5aa 65
2 Ph (8a) 4-NO2-C6H4 (11b) 12ab d + 5ab 96
3 Ph (8a) 4-CH3O-C6H4 (11c) 12ac d + 5ac 97
4 Ph (8a) 4-CH3CO-C6H4 (11d) 12ad d + 5ad 77
5 Ph (8a) CH3CO (11e) 12ae d + 5ae 62
6 Piperonyl (8b) 4-NO2-C6H4 (11b) 12bb + 5bb d 75
7 Piperonyl (8b) 4-CH3CO-C6H4 (11d) 12bd + 5bd d 76
8 Et (8c) 4-NO2-C6H4 (11b) 12cb d + 5cb 81
9 Et (8c) 4-CH3CO-C6H4 (11d) 12cd d + 5cd 80

a Typical procedure: a thiourea (1.0 mmol) was added to a stirred solution of α-chloroglycinate (1.0 mmol) in dry
THF under nitrogen. After 2 h, the solvent was removed under reduced pressure, and the residue was re-suspended
in Et2O and stirred for 1 h. The solid was collected by filtration to obtain a thiazole that required no further
purification. b Equilibrium mixture of keto (12) and enol (5) form. c As a mixture of tautomers. d Predominant
tautomer in DMSO-d6.
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In conclusion, a Hantzsch construction of thiazoles 4–5 and 18 through the reaction of
α-chloroglycinate esters and congeners with thioamides or thioureas has been established. The target
compounds are obtained under mild conditions from readily available, inexpensive building
blocks through an environmentally benign process that requires no stringent control of reaction
parameters/atmosphere and no catalysts. The medicinal chemistry of the products is being actively
researched and pertinent results will be reported in due course.

3. Materials and Methods

3.1. General

All reagents and solvents were purchased from commercial suppliers and used without further
purification, except THF (freshly distilled over metallic sodium) and DCM (freshly distilled over CaCl2).
All reactions were performed under nitrogen atmosphere. All glassware was oven dried at 100 ◦C for
at least 2 h prior to use. Merck pre-coated TLC plates (silica gel 60 GF254 0.25mm) furnished by Merck
KGaA (Darmstadt, Germany) were used for thin-layer chromatography (TLC). Compounds were
visualized under UV light, or in an iodine, chamber, or by staining with phosphomolybdic acid solution.
Proton (400 MHz), 13C (100 MHz), and 135DEPT spectra were recorded on a Varian Mercury 400 (Varian,
Inc., Palo Alto, CA, USA). Chemical shifts are reported in ppm from TMS and are referenced to solvent
signals (CDCl3: 7.26 ppm for the residual protio species in 1H, 77.2 ppm in 13C; DMSO-d6: 2.50 ppm
in 1H and 39.5 ppm in 13C). Coupling constants, J, are reported in hertz (Hz). Splitting patterns are
described as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). IR spectra (cm−1) were
recorded with a Perkin-Elmer FT-IR spectrometer Spectrum Two UATR (Perkin Elmer, Inc., Waltham,
MA, USA). Low-resolution ESI/APCI mass spectra were recorded with an Agilent 1100 MSD ion-trap
mass spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA) equipped with a standard
ESI/APCI source. Nitrogen served both as the nebulizer gas and the dry gas. The analyte (10 mg) was
dissolved in the appropriate mobile phase (1 mL) and introduced by direct infusion with a syringe
pump. High-resolution mass spectra (HRMS) were obtained with a HPLC Ultimate 3000 (Thermofisher
Scientific, MA, USA) coupled with a high-resolution Q Exactive Benchtop Quadrupole–Orbitrap
(Thermofisher Scientific, MA, USA). The NMR spectra of compounds were provided in Supplementary
Materials (Figures S1–S66).

3.2. General Procedure for the Synthesis of α-Hydroxyglycinates (7)

An amide (1.0 mmol) was added to a solution of ethyl glyoxylate (technical, 50% solution in
toluene, 1.2 eq) in toluene (1 mL) and the reaction was stirred overnight at 70 ◦C. The next morning a
white precipitate had appeared. The solvent was removed under reduced pressure and the residue was
suspended in Et2O. The precipitate of α-hydroxyglycinate ester was recovered by filtration and found
to be pure enough for the next step. Yields were generally quantitative. The following compounds
were thus prepared from appropriate amides:

Ethyl 2-benzamido-2-hydroxyacetate (7a) [57]: From benzamide. Yield: 98% as an amorphous white
solid. FTIR (neat, cm−1): 3380 (broad), 3307, 1750, 1646, 1536. 1H-NMR (400 MHz, DMSO-d6): δ 9.35
(d, J = 7.8 Hz, 1H), 7.93–7.84 (m, 2H), 7.58–7.52 (m, 3H), 6.57 (d, J = 6.46 Hz, 1H), 5.64 (t, J = 7.00 Hz,
1H), 4.15 (q, J = 7.1 Hz, 2H), 1.21 (t, J = 7.08 Hz, 3H). 13C-NMR (100 MHz, CDCl3): 170.41, 166.43,
133.98, 132.15, 128.81, 127.98, 72.38, 61.21, 14.50 HR-MS (ESI) calcd for C11H13NO4: [M + H]+ 224.0917,
found 224.0913.

Ethyl 2-(2-(benzo[1,3]dioxol-5-yl)acetamido)-2-hydroxyacetate (7b): From 2-(benzo[d][1,3]dioxol-5-yl)acetamide.
Yield: 98% as an amorphous white solid. FTIR (neat, cm−1): 3407 (broad), 3326, 1727, 1650, 1540.
1H-NMR (400 MHz, CDCl3): δ 6.79 (d, J = 7.8 Hz, 1H), 6.75–6.68 (m, 3H), 5.96 (s, 2H), 5.50 (d, J = 7.4 Hz,
1H), 4.26 (q, J = 7.2 Hz, 2H), 3.52 (s, 2H), 1.30 (t, J = 7.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3): δ 172.17,
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169.35, 148.34, 147.28, 127.38, 122.84, 109.87, 108.89, 101.36, 72.45, 62.81, 43.16, 14.14. HR-MS (ESI) calcd
for C13H15NO6: [M + H]+ 282.0972, found 282.0979.

Ethyl 2-hydroxy-2-propanamidoacetate (7c): From propanamide. Yield: 96% as an amorphous white
solid. FTIR (neat, cm−1): 3400 (broad), 3315, 1736, 1655, 1537. 1H-NMR (400 MHz, CDCl3): δ 6.98
(s, 1H), 5.60 (d, J = 7.7 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.27 (q, J = 7.5 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H),
1.14 (t, J = 7.5 Hz, 3H). 13C-NMR (100 MHz, CDCl3): δ 174.95, 169.73, 72.08, 62.60, 29.45, 14.13, 9.33.
HR-MS (ESI) calcd for C7H13NO4: [M − H]− 174.0771, found 174.0772.

Ethyl 2-cinnamamido-2-hydroxyacetate (7d): From cinnamamide. Yield: 95% an amorphous white
solid. FTIR (neat, cm−1): 3290 (broad), 3215, 1750, 1654, 1547. 1H-NMR (400 MHz, CDCl3): δ 7.68
(d, J = 15.6 Hz, 1H), 7.50 (dd, J = 6.7, 2.9 Hz, 2H), 7.40–7.28 (m, 3H), 7.11 (s, 1H), 6.46 (d, J = 15.6 Hz,
1H), 5.76 (d, J = 7.5 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). 13C-NMR (100 MHz,
CDCl3): δ 169.37, 166.61, 143.33, 134.38, 130.42, 129.06, 128.19, 119.18, 72.72, 62.93, 14.21. HR-MS (ESI)
calcd for C13H15NO4: [M + Na]+ 272.0893, found 272.0894.

3.3. General Procedure for the Synthesis of α-Chloroglycinates (8)

Thionyl chloride (10 eq) was added dropwise to a suspension of a hydroxyglycinate (7) (1 mmol) in
dry DCM (1 mL) under nitrogen. The mixture was warmed to 40 ◦C and the progress of the reaction was
periodically checked by 1H-NMR. Full conversion typically required about 3 h. Excess thionyl chloride
was removed under high vacuum and the residue of crude chloride, yellowish solid, was immediately
used in subsequent coupling reactions without further purification to avoid degradation. Yields were
essentially quantitative. Since the compounds are unstable in water solution it was not possible to
perform an HPLC-MS analysis. The following compounds were thus prepared:

Ethyl 2-benzamido-2-chloroacetate (8a): From ethyl 2-benzamido-2-hydroxyacetate (7a). Yield 99% as an
amorphous white solid. 1H-NMR (400 MHz CDCl3): δ 7.84–7.80 (m, 2H), 7.63–7.54 (m, 1H), 7.56–7.45
(m, 2H), 6.49 (d, J = 9.74, 1H), 4.38 (q, J = 7.10, 2H), 1.39 (t, J = 7.09, 3H) 13C-NMR (400 MHz, CDCl3) δ
166.63, 166.01, 132.80, 132.39, 128.84, 127.42, 63.32, 60.55, 13.91.

Ethyl 2-(2-(benzo[1,3]dioxol-5-yl)acetamido)-2-chloroacetate (8b): From ethyl 2-(2-(benzo[1,3]dioxol-5-yl)
acetamido)-2-hydroxyacetate (7b). Yield: 99% as an amorphous yellow solid. 1H-NMR (400 MHz,
CDCl3): δ 6.82–6.68 (m, 4H), 6.23 (d, J = 9.8 Hz, 1H), 5.98 (d, J = 0.7 Hz, 2H), 4.28 (m, 2H), 3.56 (s, 2H),
1.31 (t, J = 7.1 Hz, 3H). 13C-NMR (100 MHz, CDCl3): δ 170.21, 166.43, 148.45, 147.44, 126.82, 122.81,
109.80, 108.98, 101.41, 63.32, 59.95, 43.27, 13.97.

Ethyl 2-chloro-2-propanamidoacetate (8c): From ethyl 2-hydroxy-2-propanamidoacetate (7c). Yield: 99%
as an amorphous pale yellow solid. 1H-NMR (400 MHz CDCl3): δ 7.07 (s, 1H), 6.27 (d, J = 9.6 Hz, 1H),
4.26 (q, J = 6.9 Hz, 2H), 2.31 (q, J = 7.0 Hz, 2H), 1.29 (t, J = 7.0 Hz, 3H), 1.13 (t, J = 7.0 Hz, 3H). 13C-NMR
(100 MHz CDCl3): δ 173.04, 166.67, 63.27, 60.16, 29.60, 13.97, 9.11.

Ethyl 2-chloro-2-cinnamamidoacetate (8d): From ethyl 2-cinnamamido-2-hydroxyacetate (7d). Yield: 99% as
an amorphous orange solid. 1H-NMR (400 MHz, CDCl3): δ 7.75 (d, J = 15.6 Hz, 1H), 7.56–7.51 (m,
2H), 7.42–7.37 (m, 3H), 6.90 (d, J = 9.7 Hz, 1H), 6.45 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz,
3H). 13C-NMR (100 MHz, CDCl3): δ 166.56, 164.61, 144.24, 134.10, 130.53, 128.98, 128.18, 118.60, 63.27,
60.43, 13.90.

3.4. General Procedure for the Synthesis of 5-Amido-4-Hydroxy Thiazoles 4 and Their Keto Tautomers 10

A thioamide (1.0 mmol) was added to a solution of a chloroglycinate 8 (1.0 mmol) in dry THF
(2 mL) under nitrogen and the reaction was stirred at room temperature for 2 h, whereupon a precipitate
appeared. The solvent was removed under reduced pressure and the residue was resuspended in Et2O.
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The suspension was stirred for 1 h, then the solid product was collected by filtration. This material was
of excellent quality and required no further purification unless otherwise specified. The following
thiazoles were thus obtained:

N-(4-hydroxy-2-phenyl-1,3-thiazol-5-yl)benzamide (4aa): From ethyl 2-benzamido-2-chloroacetate 8a and
benzothioamide. Yield 88% as an amorphous yellow solid. FTIR (neat, cm−1): 3380 (broad), 3252, 1655,
1634, 1521. 1H-NMR (400 MHz, DMSO-d6), Enol tautomer: δ 10.95 (bs, 1H), 10.62 (bs, 1H), 8.11–8.05
(m, 2H), 7.86–7.82 (m, 2H), 7.63–7.58 (m, 1H), 7.56–7.51 (m, 2H), 7.50–7.45 (m, 2H), 7.44–7.58 (m, 1H).
13C-NMR (100 MHz, DMSO-d6): δ 164.43, 154.79, 152.12, 134.08, 133.22, 132.43, 129.78, 129.62, 128.88,
128.42, 125.13, 108.59. HR-MS (ESI) calcd for C16H12N2O2S: [M + H]−: 295.0546, found 295.0546.

N-(4-hydroxy-2-phenyl-1,3-thiazol-5-yl)-1,3-benzodioxole-5-carboxaamide (4ab): From ethyl
2-(2-(benzo[1,3]dioxol-5-yl)acetamido)-2-chloroacetate 8b and benzothioamide. Yield 76% as
an amorphous pale yellow solid. FTIR (neat, cm−1): 3378 (broad), 3261, 1673, 1638, 1541. 1H-NMR
(400 MHz, DMSO-d6), Enol tautomer: δ 10.78 (bs, 1H), 10.74 (bs, 1H), 7.8–7.74 (m, 2H), 7.46–7.40 (m,
2H), 7.39–7.34 (m, 1H), 7.91–7.88 (m, 1H), 6.87–6.83 (m, 1H), 6.80–6.86 (m, 1H), 5.97 (s, 2H), 3.64 (s, 2H).
13C-NMR (100 MHz, DMSO-d6): δ 168.16, 153.33, 150.72, 147.59, 146.42, 134.15, 129.80, 129.61, 129.52,
124.93, 122.60, 109.97, 108.72, 108.56, 101.27, 41.31. HR-MS (ESI) calcd for C18H14N2O4S: [M + H]+:
355.0747, found 355.0748.

N-(4-hydroxy-2-phenyl-1,3-thiazol-5-yl)propanamide (4ac): From ethyl 2-chloro-2-proaonamidoacetate 8c
and benzothioamide. Yield: 94% as an amorphous pale yellow solid. FTIR (neat, cm−1): 3393 (broad),
3277, 1649, 1636, 1527. 1H-NMR (400 MHz, DMSO-d6), Enol tautomer: δ 10.68 (s, 1H), 7.78 (m, 2H),
7.48–7.31 (m, 3H), 2.39 (q, J = 7.6 Hz, 2H), 1.06 (t, J = 7.6 Hz, 3H). 13C-NMR (100 MHz, DMSO-d6):
δ 170.42, 152.56, 149.91, 133.82, 129.19, 129.04, 124.51, 108.50, 27.96, 9.83. HR-MS (ESI) calcd for
C12H12N2O2S: [M + H]+: 249.0692, found 249.0690.

(2E)-N-(4-hydroxy-2-phenyl-1,3-thiazol-5-yl)-3-phenylacrylamide (4ad): From ethyl 2-chloro-2-cinnammidoacetate
8d and benzothioamide Yield: 81% as an amorphous yellow solid. FTIR (neat, cm−1): 3200 (broad),
3108, 1638, 1628, 1525. 1H-NMR (400 MHz, DMSO-d6), Enol tautomer: δ 11.05 (s, 1H), 7.87–7.78 (m,
2H), 7.60 (m, 3H), 7.50–7.37 (m, 6H), 7.08 (d, J = 15.8 Hz, 1H). 13C-NMR (100 MHz, DMSO-d6): δ 161.63,
153.13, 150.39, 140.47, 134.76, 133.76, 129.88, 129.18, 129.09, 129.06, 127.74, 124.54, 120.39, 108.64. HR-MS
(ESI) calcd for C18H14N2O2S: [M + H]+: 323.0849, found 323.0848.

N-(4-hydroxy-2-(4-nitrophenyl)-1,3-thiazol-5-yl)benzamide (4ba): From ethyl 2-benzamido-2-chloroacetate
8a and 4-nitrobenzothioamide. Yield 74% as an amorphous deep red solid. FTIR (neat, cm−1): 3376
(broad), 3268, 1671, 1629, 1542. 1H-NMR (400 MHz, DMSO-d6), Enol tautomer: δ 10.91 (s, 1H), 8.32–8.25
(m, 2H), 8.09–8.05 (m, 2H), 8.04–7.98 (m, 2H), 7.65–7.59 (m, 1H), 7.57–7.51 (m, 2H). 13C-NMR (100 MHz,
DMSO-d6): δ 164.66, 152.92, 151.00, 147.84, 139.84, 133.03, 132.59, 128.91, 128.49, 125.72, 125.04 112.05.
HR-MS (ESI) calcd for C16H11N3O4S: [M − H]−: 340.0397, found 340.0397.

N-[4-hydroxy-2-(4-nitrophenyl)-1,3-thiazol-5-yl]-1,3-benzodioxole-5-carboxamide (4bb): From ethyl
2-(2-(benzo[1,3]dioxol-5-yl)acetamido)-2-chloroacetate 8b and 4-nitrobenzothioamide. The product
existed in solution as a mixture of two tautomers. Yield: 87% as an amorphous red solid. FTIR (neat,
cm−1): 3340 (broad), 3231, 1670, 1629, 1538. 1H-NMR (400 MHz, DMSO-d6), Enol tautomer: δ 11.15 (s,
1H), 11.07 (s, 1H), 8.26 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 8.7 Hz, 2H), 6.92–6.82 (m, 2H), 6.79 (s, 1H), 5.98 (s,
2H), 3.68 (s, 2H). 13C-NMR (100 MHz, DMSO-d6): δ 167.91, 151.07, 148.92, 147.17, 146.73, 146.02, 139.55,
129.16, 125.02, 124.64, 122.19, 111.95, 109.54, 108.15, 100.85, 42.10. HR-MS (ESI) calcd for C18H13N3O6S:
[M − H]−: 398.0452, found 398.0451.
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N-[4-hydroxy-2-(4-nitrophenyl)-1,3-thiazol-5-yl)propanamide (4bc): From ethyl 2-chloro-2-propanamidoacetate
8c and 4-nitrobenzothioamide. Yield: 94% as an amorphous red solid. FTIR (neat, cm−1): 3400 (broad),
3403, 1650, 1641, 1576. 1H-NMR (400 MHz, DMSO-d6), Enol tautomer: δ 10.98 (s, 1H), 10.80 (s, 1H),
8.28–8.23 (m, 2H), 8.03–7.98 (m, 2H), 2.44 (d, J = 7.6 Hz, 2H), 1.08 (t, J = 7.6 Hz, 3H). 13C-NMR (100 MHz,
DMSO-d6): δ 170.67, 150.77, 148.54, 146.64, 139.63, 124.93, 124.58, 112.19, 27.78, 9.64. HR-MS (ESI) calcd
for C12H11N3O4S: [M − H]−: 292.0397, found 292.0398.

N-(4-hydroxy-2-(4-methoxyphenyl)-1,3-thiazol-5-yl)benzamide (4ca) and N-[2-(4-methoxylphenyl)-4-oxo-4,
5-dihydro-1,3-thiazol-5-yl]benzamide (10ca): From ethyl 2-benzamido-2-chloroacetate 8a and
4-methoxybenzothioamide. The product existed in solution as a mixture of tautomers 4ca and
10ca. Yield 94% as an amorphous bright yellow solid. FTIR (neat, cm−1): 3360 (broad), 3235, 1650,
1638, 1527, 1211. 1H-NMR (400 MHz, DMSO-d6): Enol tautomer 4ca: δ 10.86 (s, 1H), 8.09–8.03 (m, 2H),
7.80–7.74 (m, 2H), 7.62–7.56 (m, 1H), 7.55–7.47 (m, 2H), 7.06–6.99 (m, 2H), 3.80 (s, 3H). Keto tautomer
10ca: δ 9.84 (d, J = 7.41, 1H), 7.93–7.85 (m, 2H), 7.63–7.45 (m, 4H), 7.21–7.15 (m, 2H), 6.24 (d, J = 7.40; 1H),
3.90 (s, 3H). 13C-NMR (100 MHz, DMSO-d6): δ 192.84, 188.98, 166.47, 165.58, 164.45, 160.79, 155.31,
151.97, 133.30, 132.87, 132.68, 132.38, 131.20, 129.06, 128.87, 128.37, 127.94, 126.81, 126.75, 124.96,
115.36, 115.03, 107.24, 63.22, 56.36, 55.80. HR-MS (ESI) calcd for C17H14N2O3S: [M + H]+: 327.0797,
found 327.0796.

N-[4-hydroxy-2-(4-methoxyphenyl)-1,3-thiazol-5-yl)-1,3-benzodioxole-5-carboxamide (4cb): From ethyl
2-(2-(benzo[1,3]dioxol-5-yl)acetamido)-2-chloroacetate 8b and 4-methoxybenzothioamide. Yield 68%
as an amorphous yellow solid. FTIR (neat, cm−1): 3366 (broad), 3255, 1668, 1641, 1546. 1H-NMR
(400 MHz, DMSO-d6), Enol tautomer: δ 10.82 (s, 1H), 7.71 (d, J = 5.9 Hz, 2H), 7.10–6.63 (m, 5H), 5.98
(s, 2H), 3.79 (s, 3H), 3.62 (s, 2H). 13C-NMR (100 MHz, CDCl3): δ 167.49, 160.11, 153.32, 149.96, 147.14,
145.97, 129.43, 126.51, 126.03, 122.14, 114.61, 109.53, 108.12, 106.95, 100.84, 55.33, 40.97. HR-MS (ESI)
calcd for C19H16N2O5S: [M + H]+: 385.0853, found 385.0851.

Synthesis of N-[2-(4-chlorophenyl)-4-hydroxy-1,3-thiazol-5-yl]benzamide (4da): From ethyl
2-benzamido-2-chloroacetate 8a and 4-chlorobenzothioamide. Yield 78% as an amorphous
yellow solid. FTIR (neat, cm−1): 3392 (broad), 3255, 1675, 1633, 1534. 1H-NMR (400 MHz, DMSO-d6),
Enol tautomer: δ 10.94 (s, 1H), 8.08–8.03 (m, 2H), 7.87–7.81 (m, 2H), 7.63–7.57 (m, 1H), 7.56–7.49 (m, 4H).
13C-NMR (100 MHz, DMSO-d6): δ 164.47, 153.28, 152.22, 134.14, 133.15, 132.95, 132.48, 129.67, 128.90,
128.43, 126.78, 109.15. HR-MS (ESI) calcd for C16H11ClN2O2S: [M − H]−: 329.0156, found 329.0158.

N-[2-(4-chlorophenyl)-4-hydroxy-1,3-thiazol-5-yl]-1,3-benzodioxole-5-carboxamide (4db): From ethyl
2-(2-(benzo[1,3]dioxol-5-yl)acetamido)-2-chloroacetate 8b and 4-chlorobenzothioamide. Yield 95%
as an amorphous yellow solid. FTIR (neat, cm−1): 3355 (broad), 3267, 1663, 1638, 1534. 1H-NMR
(400 MHz, DMSO-d6), Enol tautomer: δ 10.80 (s, 2H), 7.76 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H),
6.91–6.80 (m, 2H), 6.76 (m, 1H), 5.96 (s, 2H), 3.63 (s, 2H). 13C-NMR (100 MHz, DMSO-d6): δ 167.68,
151.28, 150.30, 147.11, 145.95, 133.36, 132.57, 129.16, 126.08, 122.11, 109.48, 108.92, 108.07, 100.78, 40.80.
HR-MS (ESI) calcd for C18H13ClN2O4S: [M − H]−: 387.0212, found 387.0214.

N-[2-(4-chlorophenyl)-4-hydroxy-1,3-thiazol-5-yl]propanamide (4dc): From ethyl 2-chloro-2-propanamidoacetate
8c and 4-chlorobenzothioamide. The product existed as a mixture of two tautomers. Yield: 90% as
an amorphous orange compound. FTIR (neat, cm−1): 3450 (broad), 3285, 1650, 1635, 1525. 1H-NMR
(400 MHz, DMSO-d6), Enol tautomer: δ 10.52 (s, 1H), 7.77 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H),
2.38 (q, J = 7.6 Hz, 2H), 1.05 (t, J = 7.6 Hz, 3H). 13C-NMR (100 MHz, DMSO-d6): δ 171.17, 151.63, 150.70,
133.95, 133.33, 129.86, 126.74, 109.76, 28.46, 10.41. HR-MS (ESI) calcd for C12H11ClN2O2S: [M −H]−:
281.0157, found 281.0158.
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3.5. General Procedure for the Synthesis of 5-Amido-2-Amino Thiazoles 5 and Their Keto Tautomers (12)

A thiourea (1 mmol) was added to a solution of a chloroglycinate 8 (1.0 mmol) in dry THF (2 mL)
under nitrogen and the reaction was stirred at room temperature for 2 h, whereupon a precipitate
appeared. The solvent was removed under reduced pressure and the residue was resuspended in Et2O.
The suspension was stirred for 1 h, then the solid thiazole was collected by filtration. This material was
of excellent quality and required no further purification unless otherwise specified. The following
thiazoles were thus obtained:

N-(2-amino-4-oxo-1,3-thiazol-5-yl)benzamide (12aa): From ethyl 2-benzamido-2-chloroacetate 8a and
thiourea. Yield: 65% as an amorphous yellow solid. FTIR (neat, cm−1): 3351 (broad), 2869, 2521, 1776,
1667, 1619, 1563, 1484. 1H-NMR (400 MHz, DMSO-d6), Keto tautomer: δ 9.58 (d, J = 8.11 Hz, 1H), 9.17
(bss, 1H), 8.93 (bs, 1H), 7.92–7.85 (m, 2H,), 7.60–7.53 (m, 1H,), 7.53–7.46 (m, 2H), 6.08 (d, J = 8.09 Hz,
1H). 13C-NMR (100 MHz, DMSO-d6): δ 185,81, 181.13, 166,94, 133.34, 132.42, 128.92, 127.95, 64.19.
13C-DEPT-135-NMR (100 MHz, DMSO-d6): δ 132.42, 128.93, 127.95, 64.19 (CH). HR-MS (ESI) calcd for
C10H9N3O2S: [M + H]+: 236.0488, found 236.0489.

N-[2-(4-nitroanilino)-4-oxo-4,5-dihydro-1,3-thiazol-5-yl]benzamide (12ab): From ethyl 2-benzamido-2-hydroxyacetate
8a and 4-nitrobenzothiourea. Yield 96%, as an amorphous yellow solid. FTIR (neat, cm−1): 3370
(broad), 2854, 2508, 1783, 1672, 1621, 1532, 1492. 1H-NMR (400 MHz, DMSO-d6), Keto tautomer:
δ12.22 (s, 1H), 9.72 (s, 1H), 8.24–8.22 (m, 2H), 7.87–7.85 (m, 2H), 7.58–7.48 (m, 3H), 7.14 (s, 1H),
6.17 (d, J = 7.7 Hz, 1H).13C-NMR (100 MHz, DMSO-d6): δ 166.77, 132.95, 132.70, 129.05, 128.81, 127.94,
125.66, 122.40. HR-MS (ESI) calcd for C16H12N4O4S: [M − H]−: 355.0506, found 355.0502.

N-[2-(4-Methoxyanilino)-4-oxo-4,5-dihydro-1,3-thiazol-5-yl]benzamide (12ac): From ethyl
2-benzamido-2-hydroxyacetate 8a and 4-methoxythiourea. Yield 97% as a yellow waxy solid.
FTIR (neat, cm−1): 3345 (broad), 2965, 2510, 1770, 1665, 1615, 1523. 1H-NMR (400 MHz, DMSO-d6)
Keto tautomer: δ 11.78 (bs, 1H), 9.62 (d, J = 7.9 Hz, 1H), 7.90–7.78 (m, 2H), 7.66–7.47 (m, 4H), 7.02–6.89
(m, 3H), 6.15 (d, J = 8.0 Hz, 1H), 3.77 (s, 3H). 13C-NMR (100 MHz, DMSO-d6): δ 186.18, 175.72,
166.99, 156.92, 133.09, 132.70, 132.01, 129.05, 127.74, 122.59, 114.62, 62.81, 55.76. HR-MS (ESI) calcd for
C17H15N3O3S: [M − H]−: 340.0761, found 340.0760.

N-[2-(4-acetylanilino)-4-oxo-4,5-dihydro-1,3-thiazol-5-yl]benzamide (12ad): From ethyl
2-benzamido-2-hydroxyacetate 8a and 1-(4-acetylphenyl)thiourea. Yield 77% as a yellow
waxy solid. FTIR (neat, cm−1): 3358 (broad), 2948, 2505, 1776, 1670, 1622, 1578, 1511.1H-NMR
(400 MHz, DMSO-d6) Keto tautomer: δ 9.74 (s, 1H), 7.99–7.47 (m, 9H), 7.05 (s, 1H), 6.13 (d, J = 7.7 Hz,
1H), 2.54 (s, 3H).13C-NMR (100 MHz, DMSO-d6): δ 196.66, 166.29, 142.68, 132.90, 132.16, 130.30, 129.76,
128.53, 127.48, 121.21, 119.91, 26.56. M.W.: 353.4, ESI-MS: [M − H]− m/z = 352.0. HR-MS (ESI) calcd for
C18H15N3O3S: [M − H]−: 352.0761, found 352.0759.

N-(2-acetamido-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)benzamid (12ae): From ethyl
2-benzamido-2-chloroacetate and N-carbamothioylacetamide. Yield 62% as an amorpohous
off-white solid. FTIR (neat, cm−1):3363 (broad), 2896, 2501, 1768, 1654, 1637, 1581. 1H-NMR (400 MHz,
DMSO-d6), Keto tautomer: δ 9.57 (d, J = 7.5 Hz, NH), 7.90–7.85 (m, 2H), 7.62–7.55 (m, 1H), 7.54–7.45 (m,
2H), 5.81 (d, J = 7.5 Hz, 1H), 2.20 (s, 3H). 13C-NMR (100 MHz, DMSO-d6):δ185.70, 180.00, 173.40, 166.59,
133.13, 132.53, 129.00, 127.88, 59.90, 24.42.13C-DEPT-135-NMR (100 MHz, DMSO-d6): δ =132.54, 129.01,
127.88, 63.76, 59.91, 24.41. HR-MS (ESI) calcd for C12H11N3O3S: [M + H]+: 278.0594, found 278.0594.

N-[4-hydroxy-2-(4-nitroanilino)-1,3-thiazol-5-yl]-2H-1,3-benzodioxole-5-carboxamide (5bb): From ethyl
2-(2-(benzo[1,3]dioxol-5-yl)acetamido)-2-chloroacetate 8b and 4-nitrothiourea. The product existed
as a mixture of two tautomers. Yield: 75% as an amorphous solid. FTIR (neat, cm−1): 3360 (broad),
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2867, 2517, 1778, 1679, 1630, 1523, 1501.1H-NMR (400 MHz, DMSO-d6), Enol tautomer: δ 9.31
(d, J = 7.5 Hz, 1H), 8.11 (dd, J = 9.2 Hz, 3H), 6.86 (bs, 1H), 6.84–6.69 (m, 3H), 5.99 (s, 2H), 3.43 (s,
2H).13C-NMR (100 MHz, DMSO-d6): δ 177.89, 171.62, 147.78, 146.62, 144.23, 143.07, 129.47, 125.85,
125.15, 122.82, 121.47, 113.04, 110.10, 108.78, 101.49, 41.83. HR-MS (ESI) calcd for C18H14N4O6S:
[M − H]−: 413.0561, found 413.0562.

N-[2-(4-Acetylanilino)-4-hydroxy-1,3-thiazol-5-yl]-2H-1,3-benzodioxole-5-carboxamide (5bd). From ethyl
2-(2-(benzo[1,3]dioxol-5-yl)acetamido)-2-chloroacetate 8b and 4-acetophenylthiourea. The product
existed as a mixture of two tautomers. Yield: 76% as an amorphous yellow solid. FTIR (neat, cm−1):
3371 (broad), 2985, 2507, 1768, 1668, 1617, 1574, 1486. 1H-NMR (400 MHz, DMSO-d6) Enol tautomer:
δ 9.26 (d, J = 7.5 Hz, 1H), 7.94 (m, 3H), 7.03–6.79 (m, 4H), 5.98 (s, 2H), 3.41 (s, 2H), 2.55 (s, 3H). 13C-NMR
(100 MHz, DMSO-d6): δ 196.72, 170.90, 147.13, 145.96, 142.42, 132.96, 129.78, 129.08, 122.15, 121.19,
119.97, 109.44, 108.10, 100.83, 41.20, 26.60. HR-MS (ESI) calcd for C20H17N3O5S: [M −H]−: 410.0816,
found 410.0815.

N-[2-(4-nitroanilino)-4-oxo-4,5-dihydro-1,3-thiazol-5-yl]propanamide (12cb). From ethyl
2-chloro-2-propanamidoacetate 8c and 4-nitrothiourea. Yield 81% as an amorphous yellow
solid. FTIR (neat, cm−1): 3367 (broad), 2875, 2512, 1783, 1665, 1618, 1561, 1497. 1H-NMR (400 MHz,
DMSO-d6), Keto tautomer: δ 9.10 (bs, 1H), 8.41–7.60 (m, 4H), 7.13 (bs, 1H), 5.95 (d, J = 7.6 Hz, 1H),
2.16 (q, J = 7.3 Hz, 2H), 0.98 (t, J = 7.5 Hz, 3H).13C-NMR (100 MHz, DMSO-d6): δ 173.57, 173.46,
173.08, 171.14, 143.56, 125.17, 122.09, 58.72, 27.93, 9.20. HR-MS (ESI) calcd for C12H12N4O4S: [M − H]−:
307.0506, found 307.0503.

N-[2-(4-acetylanilino)-4-oxo-4,5-dihydro-1,3-thiazol-5-yl]propanamide (12cd). From ethyl
2-chloro-2-propanamidoacetate 8c and 1-(4-acetylphenyl)thiourea. Yield 80% as an amorphous yellow
solid. FTIR (neat, cm−1): 3355 (broad), 2976, 2512, 1764, 1669, 1624, 1595, 1506.1H-NMR (400 MHz,
DMSO-d6), Keto tautomer: δ 12.04 (s, 1H), 11.48 (s, 1H), 9.03 (d, J = 8.2 Hz, 1H), 8.18–7.67 (m, 2H),
7.00 (s, 1H), 5.94 (d, J = 7.6 Hz, 1H), 2.54 (s, 3H), 2.15 (q, J = 15.1, 7.5 Hz, 2H), 0.97 (t, J = 7.6 Hz, 3H).
13C-NMR (100 MHz, DMSO-d6):δ 197.4, 174.2, 174.0, 133.6, 130.4, 121.8, 120.6, 28.6, 27.2, 10.0. HR-MS
(ESI) calcd for C14H15N3O3S: [M − H]−: 304.0761, found 304.0760.

N-(1-Chloro-2-oxo-2-phenylethyl)propenamide (16). Thionyl chloride (10 eq) was added dropwise to a
suspension N-(1-hydroxy-2-oxo-2-phenylethyl)propionamide (1 mmol) in dry DCM (1 mL) under
nitrogen. The mixture was stirred at 40 ◦C and the progress of the reaction was monitored by 1H-NMR.
Upon complete conversion (ca. 3h), excess thionyl chloride was removed under high vacuum to leave a
yellowish solid residue of crude 15, which was used without further purification. Yield: 99%. 1H-NMR
(400 MHz, CDCl3): δ 8.10–8.06 (m, 2H), 7.69–7.63 (m, 1H), 7.56–7.50 (m, 2H), 7.18 (d, J = 9.2 Hz, 1H),
2.39 (q, J = 7.6 Hz, 2H), 1.22 (td, J = 7.6, 3.6 Hz, 3H). 13C-NMR (100 MHz, CDCl3): δ 194.67, 174.39,
134.39, 133.07, 129.51, 128.83, 72.32, 29.65, 9.40.

3.6. General Procedure for the Synthesis of 5-Amido-4-Phenyl Thiazoles (18)

A thioamide (1 mmol) was added to a solution of N-(1-chloro-2-oxo-2-phenylethyl)propionamide
(16) (1.0 mmol) in dry THF (2 mL) under nitrogen, and the mixture was stirred at room temperature
overnight. Upon complete conversion (no more 16 visible by TLC; eluent: DCM/MeOH 95/5) the
solvent was removed undero reduced pressure. The residue was re-suspended in Et2O and stirred for
several hours. The solid 5-amido-4-phenylthiazole was collected by filtration. The following thiazoles
were thus obtained:

N-(2,4-diphenyl-1,3-thiazol-5-yl)propanamide (18a): From N-(1-chloro-2-oxo-2-phenylethyl)propenamide
(16) and benzothioamide. Yield: 90% as an amorphous yellow solid. FTIR (neat, cm−1): 3226, 1650,
1595, 1536. 1H-NMR (400 MHz, DMSO-d6): δ 10.65 (s, 1H), 7.96–7.91 (m, 2H), 7.81 (d, J = 7.3 Hz, 2H),
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7.50 (dt, J = 6.3, 5.4 Hz, 5H), 7.40 (s, 1H), 2.48–2.43 (m, 2H), 1.11 (t, J = 7.5 Hz, 3H). 13C-NMR (100 MHz,
DMSO-d6): δ 172.37, 158.76, 141.32, 134.07, 133.43, 129.77, 129.22, 128.64, 128.14, 127.76, 125.60, 28.25,
9.54. HR-MS (ESI) calcd for C18H16N2OS: [M − H]−: 307.0911, found 307.0911.

Synthesis of N-[2-(4-nitrophenyl)-4-phenyl-1,3-thiazol-5-yl]propanamide (18b): From
N-(1-chloro-2-oxo-2-phenylethyl)propanamide (16) and 4-nitrobenzothioamide. Yield: 87%
as an amorphous brown solid. FTIR (neat, cm−1): 3231, 1648, 1599, 1541. 1H-NMR (400 MHz,
DMSO-d6): δ 10.89 (s, 1H), 8.34–8.28 (m, 2H), 8.20–8.14 (m, 2H), 7.82–7.76 (m, 2H), 7.56–7.49 (m, 2H),
7.45–7.40 (m, 1H), 2.52–2.50 (m, 2H), 1.11 (t, J = 7.5 Hz, 3H). 13C-NMR (100 MHz, DMSO-d6): δ 172.41,
155.30, 147.47, 141.54, 139.17, 133.73, 132.29, 128.70, 128.29, 128.01, 126.34, 124.54, 28.21, 9.44. HR-MS
(ESI) calcd for C18H15N3O3S: [M − H]−: 352.0761, found 352.0757.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/21/3846/
s1, Figures S1–S8: The NMR spectra of α-hydroxyglycinates 7(a–d), Figures S9–S16: The NMR spectra of
α-chloroglycinates 8(a–d), Figures S17–S40: The NMR spectra of 5-amido-4-hydroxy thiazoles 4 and their keto
tautomers 10, Figures S41–S60: The NMR spectra of 5-amido-2-amino thiazoles 5 and their keto tautomers 12,
Figures S61–S66: The NMR spectra of 5-amido-4-phenyl thiazoles 16–18.
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