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Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping
relative to awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molec-
ular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is probably
because the previous studies pooled transcripts from all brain cells, including neurons and glia. In Bellesi et al.
(2015) [1], we used the translating ribosome affinity purification technology (TRAP) and microarray analysis
to obtain a genome-widemRNAprofiling of astrocytes as a function of sleep andwake.We used bacterial artificial
chromosome (BAC) transgenic mice expressing eGFP tagged ribosomal protein L10a under the promoter of the
Aldh1L1 gene, a highly expressed astrocytic gene. Using this approach, we could extract only the astrocytic
mRNAs, and only those already committed to be translated into proteins (L10a is part of the translational
machinery).
Here, we report a detailed description of the protocol used in the study (Bellesi et al., 2015 [1]). Array data have
been submitted to NCBI GEO under accession number (GSE69079).

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications
rganism/cell
line/tissue
Adult heterozygous Aldh1L1–eGFP-L10a mice
x
 Either sex

quencer or
array type
Affymetrix GeneChip Mouse Genome 430 2.0 arrays
ata format
 Raw data: cell files; Normalized data: xls file

xperimental
factors
Sleep, spontaneous wake, 4 h sleep deprivation
xperimental
features
Microarray dataset of the effects of sleep and wake on
astrocytic gene expression
onsent
 All animal procedures followed the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and
facilities were reviewed and approved by the IACUC of the
University of Wisconsin-Madison
mple source
location
Madison, WI, US
1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69079.
. This is an open access article under
2. Experimental design, materials and methods

2.1. Experimental design

Three groups of adult heterozygous Aldh1L1–eGFP-L10a mice were
used (n = 6/group): awake mice (W) were collected during the dark
phase (~3–5 am) at the end of a long period of wake (N1 h, interrupted
by periods of sleep of b5min), and after spending at least 70% of thepre-
vious 6–7 h awake. Sleepingmice (S)were collected during the light pe-
riod (~3–5 pm), at the end of a long period of sleep (N45 min,
interrupted by periods of wake of b4 min), and after spending at least
75% of the previous 6–7 h asleep. Sleep deprived mice (SD) were spon-
taneously awake during most of the dark phase and then kept awake
during the first 4 h of the light period by exposure to novel objects.

2.2. Video monitoring of sleep and wake

To avoid risks of tissue damage and inflammation due to the implant
of EEG electrodes, video recordings were performed continuously with
infrared cameras and used to determine the behavioral state of mice
used in the study. We previously demonstrated that video-monitoring
consistently estimates total sleep timewith ~90% accuracy [2], although
it cannot distinguish NREM sleep from REM sleep. Motor activity was
quantified by custom-made video-based motion detection algorithms
with a time resolution of 1 s. The program detects animal motion
every second within a previously set monitored area corresponding to
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Fig. 1. a. Summary scheme of the TRAPmethod. b. Representative purification of 18S and 28S rRNA fromAldh1L1–eGFPL10a transgenicmice (green) as detected by Bioanalyzer PicoChips
(Agilent Technologies). Note that the purification did not occur in a wild type littermate used as a control (blue).
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the cage area, by calculating the numbers of pixels whose intensity
changed over time. Specifically, it compares the last current image
with the previous one and assigns a value in percent of changes in num-
ber of pixels occurring every second. These values and the relative time
are then saved in a txt report file and subsequently analyzed with
custom-made Matlab scripts (MATLAB and Statistics Toolbox Release
2015a, The MathWorks, Inc., Natick, Massachusetts, United States) [3].

2.3. Antibody preparation

To prepare antibody-bound beads Streptavidin MyOne T1
Dynabeads (Invitrogen) were incubated with biotinylated Protein L
(Fisher Pierce) for 35 min at RT in PBS 0.1 M using gentle end-over-
end rotation. Then, protein L-coated beads were collected on the
DynaMag-2 magnet (Invitrogen) and washed five times with PBS
0.1 M containing 3% (w/v) IgG and Protease-free BSA (Jackson
ImmunoResearch). Antibody binding was carried out in 0.15 M KCl
buffer (20 mM Hepes–KOH, 5 mM MgCl2, 150 mM KCl, 1% NP-40,
0.5 mM DTT, and 100 μg/ml Cycloheximide) for 1 h at room tempera-
ture using gentle end-over-end rotation with 50 μg each of two mono-
clonal anti-GFP antibodies (19C8 and 19F7, Memorial Sloan-Kettering
Cancer Center Monoclonal Antibody Core Facility). After antibody bind-
ing, beads were washed and resuspended in 0.15 M KCl buffer.

2.4. Tissue collection, translating ribosome affinity purification and RNA
extraction

The TRAP protocol has been developed by [4,5] and it has been also
previously described in [6]. Under anesthesia S, SD andWmice (n= 6/
group) were decapitated and the forebrain regions (striatum and cere-
bral cortex) were quickly dissected. Tissue was placed in 2 ml of chilled
Lysis Buffer (20 mM Hepes KOH, 5 mM MgCl2, 150 mM KCl, 0.5 mM
DTT, 100 μg/ml Cycloheximide, protease inhibitors, 20 μl Rnasin, 20 μl
Superasin) and homogenized with a Teflon-Glass homogenizer. Ho-
mogenateswere then centrifuged at 4 °C for 10min at 2000×g to obtain
a post-nuclear supernatant. NP-40 (1% final) and DHPC (30 mM final)
were added to the supernatant, mixed by gentle inversion and incu-
bated on ice for 5 min. Next, samples were again centrifuged at 4 °C
for 10 min at 20,000 ×g to obtain a post-mitochondrial supernatant.
This fractionwas combinedwith the GFP antibody-coated beads and in-
cubated o/nwith gentle end-over-end rotation at 4 °C. Beads were then
collectedwith themagnet andwashed four times in high-salt polysome
wash buffer (20mMHepes–KOH, 5 mMMgCl2, 350mMKCl, 1% NP-40,
0.5 mM DTT, and 100 μg/ml Cycloheximide). After washes, beads were
collected, resuspended and vortexed in 100 μl Lysis Buffer with ß-
Mercaptoethanol from the Absolutely RNA Nanoprep kit (Agilent) and
incubated for 10 min at RT. As illustrated in Fig. 1a, the RNA was ex-
tracted from both the immunoprecipitated (IP) and the supernatant
(unbound fraction; UB) fractions. The IP RNA, which represents the
mRNA immunoprecipitated from the astrocytes, was separated from
the beads with the magnet and purified following the Nanoprep proto-
col, while the UB RNA, which represents themRNA of the remaining not
precipitated cells, was isolated using the RNeasy Mini kit (Qiagen). Fi-
nally, RNA levels in IP and UB samples were assessed by a Qubit Fluo-
rometer (Invitrogen) with the Quant-iT RNA assay kit (Invitrogen,
Q32852) and the quality of the RNA was assessed using the Agilent
2100 Bioanalyzer (Agilent) (see Fig. 1b for a representative example).
2.5. Microarray: labeling, hybridization and data analysis

For IP and UB samples (6 IP and 2 UB for each of the 3 experimental
groups, S, SD,W), 5 ngof purifiedmRNAwas amplifiedwith theOvation
PicoWTA system (NuGen, #3300). Five micrograms of amplified mate-
rial was then fragmented, biotin labeled with the Encore Biotin Module
(NuGen, #4200), hybridized to Affymetrix GeneChip Mouse Genome
430 2.0 arrays (n=24, one chip per sample) following Affymetrix stan-
dard protocol, and scanned using the GC3000 7G scanner (Affymetrix).
Array data analysis was performed using the Bioconductor Limma pack-
age [7]. For both IP and UB replicates, GeneChip Cel files were imported
into Bioconductor, data were converted to log2 scale, and normalized
within each behavioral state group using Robust Multi-array Average
(RMA) [8] implemented in the Bioconductor package affy (Fig. 2).

To obtain a measure of the enrichment, the expression intensity of
each IP probeset was compared against its UB expression using the
Welch's t-test with Benjamini and Hochberg FDR multiple test correc-
tion. Probesets with IP/UB ratio N 2 and p b 0.01 were considered
enriched, while probesets with IP/UB ratio b 2 and p b 0.01were consid-
ered depleted. Finally, to independently verify the validity of the TRAP
method, IP/UB ratios for 200 “top” genes previously found to be
enriched in astrocytes, oligodendrocytes, and neurons [8]were calculated
(Fig. 3).
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Fig. 2. Distribution of probeset intensities for S, W, SD IP samples (first three rows; letters (a–f) indicate single mice) and for UB samples (last raw) before and after RMA normalization.

Fig. 3. Scatter plots shownormalizedmean expression values for IP (x-axis, n=18, 6/group) andUB (y-axis, n=6, 2/group) samples of S,Wand SDgroups. Themiddle diagonal black line
indicates equal expression. In all three experimental groups, the top 200 genes identified by [8] as specific for astrocytes (red) are enriched in IP samples, whereas most of the top 200
genes specific for oligodendrocytes (yellow) and neurons (blue) are enriched in S, W and SD UB samples.
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