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We show that in the inhomogeneous Lemâıtre-Tolman-Bondi space-time there are specific regions
in which repulsive gravity exists. To find these regions, we use an invariant definition of repulsive
gravity based upon the behavior of the curvature eigenvalues. In addition, we analyze the effects
of repulsive gravity on the dynamics of the gravitational collapse. In particular, we investigate the
collapse in the case of the parabolic solution for the effective scale factor of the Lemâıtre-Tolman-
Bondi metric, corresponding to the marginally bound case. Exploring the corresponding cut-offs at
which gravity becomes repulsive, we notice that black holes with dominant repulsive effects are not
excluded a priori. Indeed, we demonstrate that the collapse leads, in general, to the formation of a
central naked singularity; however, for particular values of the free parameters entering the model,
black holes with dominant repulsive gravity can exist. We show that the expected physical process
is not modified as the marginally bound condition is dropped out. Moreover, we show that this
is true independently of the hypothesis that the energy-momentum tensor is built up in terms of
pressureless matter. Further, we demonstrate that geodesic deviations can depend on the sign of the
curvature eigenvalues. Finally, we give an astrophysical interpretation of black holes with dominant
repulsive gravity. Indeed, we argue that compact objects with dominant repulsive gravity could be
interpreted as progenitors of Gamma Ray Bursts.

PACS numbers: 04.20.-q, 04.70.Bw, 04.70.-s

I. INTRODUCTION

Einstein’s general relativity describes the gravitational
collapse and predicts the existence of a particular case
of space-time singularities, dubbed black holes. Recent
observations represent a direct proof for the existence
of such objects [1]. Moreover, some theoretical studies
in general relativity indicate that besides black hole so-
lutions naked singularities may exist [2, 3]. In partic-
ular, a notable property of naked singularities is that
they appear as soon as the black hole parameters violate
the physical requirements for the existence of an event
horizon. But they can also exist under quite general as-
sumptions as exact solutions of the corresponding field
equations [4]. Consequently, naked singularity solutions
could exist even when no black hole counterpart exists
[5]. Thus, it is impossible to observe a singularity from
outside the horizon [6].

Despite rigorous studies1, no scenarios of gravitational
collapse corroborate the correctness of the conjecture and

∗Electronic address: roberto.giambo@unicam.it
†Electronic address: orlando.luongo@lnf.infn.it
‡Electronic address: quevedo@nucleares.unam.mx
1 Many attempts have been made to prove the cosmic censorship

hypothesis; see, for example, [7].

so there exists also the possibility that, under particular
conditions, naked singularities can appear during the evo-
lution of a mass distribution into a gravitational collapse
[8]. For example, it is believed that naked singularities
form more often if the collapse is very fast and when the
so-formed compact objects are not spherically symmetric.
An intriguing result indicates that in an inhomogeneous
collapse, a critical degree of inhomogeneity exists below
which black holes form [9]. Moreover, naked singularities
appear if the degree of inhomogeneity is bigger than the
critical value [10]. In conclusion, the collapse speed, the
shape of the collapsing object and even inhomogeneities
are important factors for determining the final state of
a collapse [11]. It follows that the study of inhomoge-
neous systems is relevant for understanding the physics
of naked singularities.

Another important aspect of naked singularities is the
presence of repulsive gravity, as has been shown for
Schwarzschild2, Kerr and Kerr-Newman space-times [12].
Moreover, during the past years, attempts have been
made to investigate the physical effects due to possi-
ble regions of repulsive gravity in the case of the homo-

2 The spherical case is essentially the simplest one. Indeed, one
can show that in this case the naked singularity is generated by
an effective negative mass situated at the origin of coordinates.
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geneous and isotropic Friedmann-Lemâıtre-Robertson-
Walker space-time, to solve the thorny issue of the ob-
served cosmic speed up [13–15]. In particular, in the
Friedmann-Lemâıtre-Robertson-Walker universe the re-
pulsive action of dark energy has been re-framed in terms
of repulsive gravity, counterbalancing the action of at-
tractive gravity. This alternative to dark energy, which
does not imply a modification of Einstein’s gravity [16],
is currently a different point of view for describing the ef-
fects of the observed cosmic speed up. In other words, the
dark energy dynamical problem is reviewed in terms of a
physical mechanism inside the Einstein equations them-
selves, providing a geometrical source term, in which one
imagines that, under certain circumstances, the geom-
etry could correspond to a repulsive field3. In view of
the aforementioned considerations, one can expect that
cosmological inhomogeneities could also be a scenario for
the study of naked singularities.

In this work we focus our attention on the spher-
ically symmetric Lemâıtre-Tolman-Bondi (LTB) space-
time and investigate the effects of repulsive gravity that
emerge from the space-time itself. Our results indicate
that the probability of existence of naked singularities
cannot be neglected a priori, if one defines repulsive grav-
ity in terms of invariants of the curvature tensor [21, 22].
To do so, we present in this work the approach based
upon an invariant representation4 of the curvature tensor
and its eigenvalues [12], where repulsive gravity is defined
in an invariant way by considering the behavior of the
curvature tensor eigenvalues. We evaluate the extremal
points of the eigenvalues and show which regions indicate
a change in the behavior of gravity. We show that the
repulsion region is always located at a very short distance
from the central gravity source. In other words, we over-
come the wide number of intuitive approaches towards
repulsive gravity by means of our invariant definition and
we show the compatibility of these results in view of pre-
vious outcomes. We explore both the marginally and
non-marginally bounds and we highlight the necessary
condition for having a naked singularity. We also inves-
tigate the geodesic deviation equations (GDEs) in terms
of the curvature eigenvalues. We thus find how gravity
becomes repulsive directly from the GDEs as a conse-
quence of the eigenvalue change of sign. We demonstrate
that using the GDEs, it is possible to describe repulsion
regions that are compatible with those obtained from our
geometrically-invariant procedure. Afterwards, we show

3 The most popular mechanisms for repulsive gravity consist in 1)
characterizing dark energy by exotic fluids [17–19] or 2) consid-
ering extensions and/or modifications of Einstein’s gravity [20].
Hence, this mechanism can be considered as a robust third way
of handling the Universe dynamics, different from the aforemen-
tioned ones.

4 This definition can be applied to different types of naked singu-
larities. The physics of each application is reasonable and turns
out to give hints toward the physical properties of repulsion.

a critical case that can be interpreted as a black hole with
dominant repulsive effects. We interpret this case in the
framework of astrophysics and argue that the physical
formation of Gamma Ray Bursts may be well explained
in this scenario.

The paper is organized as follows. In Sec. II, we review
the invariant approach which is used to determine the
regions in space-time where repulsive gravity can exist.
The method is based upon the analysis of the behavior
of the curvature eigenvalues. In Sec. III, we present the
main features of the gravitational collapse in the inho-
mogeneous LTB space-time. Sec. IV is dedicated to the
analysis of the conditions under which the gravitational
collapse leads to the formation of naked singularities.
Moreover, we find all the repulsive regions of the LTB
space-time and compare their locations with the condi-
tions for the formation of singularities in Sec. V. Section
VI is devoted to studying the GDEs in our model, link-
ing changes in the qualitative behavior of their solutions
to repulsive gravity effects. In Sec. VII, we propose an
interpretation of our results in the framework of astro-
physics. We explore the possibility that the formation
of ultra-energetic objects, such as Gamma Ray Bursts,
can be explained within our theoretical model. Finally,
in Sec. VIII, we summarize and comment our results.

II. AN INVARIANT APPROACH TO
REPULSIVE GRAVITY WITH EIGENVALUES

Naked singularities have been shown to exist under
generic assumptions in general relativity, corresponding
to exact solutions. Every black hole solution possesses
a corresponding naked singularity counterpart, emerging
as black hole parameters violate the condition for event
horizon’s existence. The opposite case is not true at all.
So, it could happen that naked singularities exist with
no black hole counterparts. Thus, it is natural to wonder
whether naked singularities describe physical configura-
tions truly existing in Nature [23–26].

Mathematically speaking, with no experimental proofs
so far, a limitation is provided by the cosmic censorship
conjecture [27, 28]. Other studies indicate that singular-
ities can appear during the evolution of a mass distri-
bution into a gravitational collapse. For example, naked
singularities can appear if the degree of inhomogeneity
is larger than a given value; moreover, the frequency of
naked singularities formation is bigger if the collapse oc-
curs very rapidly and the object breaks down the spher-
ical symmetry somehow. Since these results show that
naked singularities can exist [29–32], the physical effects
around naked singularities become of interest in view of
modern observations. In particular, possible regions of
repulsive gravity can exist and the need of characterizing
them through an invariant definition is essential to pre-
dict effects from their existence. Phrasing it differently,
this can lead to a proof for the existence of regions where
repulsive gravity can become dominant.
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An invariant definition of repulsive gravity for a given
metric has been recently suggested, making use of the
curvature tensor eigenvalues [33, 34]. The results ob-
tained so far are physically meaningful because the in-
variant character of the definition, which is based upon
the use of and orthonormal frame ϑa and the formalism of
differential forms. The orthonormal frame is the simplest
choice for an observer to perform local time, space and
gravity measurements. In so doing, all the quantities as-
sociated with this frame become coordinate independent.
The corresponding orthonormal tetrad is determined by
the relationships

ds2 = gµνdx
µdxν = ηabϑ

a ⊗ ϑb , (1)

with ηab = diag(−1, 1, 1, 1), and ϑa = eaµdx
µ.

To compute the Riemann curvature components, us-
ing this frame, we employ the first and second Cartan
equations,

dϑa = −ωab∧ϑb , Ωab = dωab+ω
a
c∧ωcb =

1

2
Rabcdϑ

c∧ϑd ,
(2)

whereas for the analysis of the eigenvalues we can con-
sider the bivector representation of the Riemann tensor.
This permits us to immediately get its irreducible rep-
resentation with respect to the Lorentz group. Using
the notations and conventions according to which each
bivector index A,B = 1, . . . , 6 corresponds to two tetrad
indices A→ ab, i.e., RAB → Rabcd with

1→ 01, 2→ 02, 3→ 03, 4→ 23, 5→ 31, 6→ 12,

the curvature tensor can be expressed through a (6 ×
6)−matrix [35]. In particular, all the irreducible compo-
nents of the Riemann tensor can be written via a bivector
representation by RAB = WAB + EAB + SAB , with5

WAB = σ3M + σ1N , (3a)

EAB = σ3P + σ1Q (3b)

SAB = −R

12
σ3 , (3c)

where σ1;3 = −→σ 1;3I, with −→σ 1;3 the well-known Pauli ma-
trices and I the identity matrix. Recasting this represen-
tation by means of (3×3)-matrices, we can write

RAB =

(
M1 L
L M2

)
, (4)

where

L =

 R14 R15 R16

R15 − κT03 R25 R26

R16 + κT02 R26 − κT01 −R14 −R25

 ,

M1 and M2 are 3× 3 symmetric matrices

M1 =

 R11 R12 R13

R12 R22 R23

R13 R23 −R11 −R22+κ
(
T
2 + T00

)
 ,

and finally

M2 =

 −R11 + κ
(
T
2 + T00 − T11

)
−R12 − κT12 −R13 − κT13

−R12 − κT12 −R22 + κ
(
T
2 + T00 − T22

)
−R23 − κT23

−R13 − κT13 −R23 − κT23 R11 + R22−κT33

,

with T = ηabTab. This is the most general form of a
curvature tensor that satisfies Einstein’s equations with
an arbitrary energy-momentum tensor, where κ ≡ 8πG

c4 .
Moreover, the traces of the matrices satisfy the relation-
ships

Tr(M1) = κ

(
T

2
+ T00

)
, (5)

Tr(M2) = κT00 (6)

Tr(RAB) = κ

(
T

2
+ 2T00

)
. (7)

All the physical information about curvature is contained
in the eigenvalues λi, i = 1, . . . 6 of the matrix RAB . Par-
ticularly, this approach is performed in an invariant way
since the eigenvalues behave as scalars under coordinate

transformations. It may happen that the sign of at least
one eigenvalue changes. In such a case, we interpret this
behavior as due to the presence of regions of repulsive
gravity. In the same manner, if the gravitational field is
finite at infinity, the eigenvalue must have an extremal at
some point before it changes its sign and, therefore, the
extremal point can be interpreted as the place of repul-
sion onset. Correspondingly, the zeros of the eigenvalues
determine the repulsive regions.

III. APPROACHING THE
LEMAÎTRE-TOLMAN-BONDI SPACE-TIME

We want to consider a spherically symmetric dust
cloud collapsing to a singularity in the inhomogeneous
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approach of the LTB metric. To do so, we can start by
solving Einstein’s equations, Rµν − 1

2gµνR = κTµν , for
a general spherical metric, written in co-moving coordi-
nates as

ds2 = −e2ν(r,t) dt2 + e2λ(r,t) dr2 +R(r, t)2 dΩ2 , (8)

and, under the assumption that T = −ε(r, t) dt⊗ ∂
∂t , we

get

ds2 = −dt2 +
R′(r, t)2

1 + f(r)
dr2 +R(r, t)2 dΩ2 , (9)

where prime denotes the partial derivative with respect
to r. In addition, we notice that the function R(r, t)
satisfies the evolution equation

Ṙ = −
√

2F (r)

R
+ f(r) , (10)

in which we take the negative root since we are inter-
ested in studying the collapse mechanism. The details
of calculations can be found in Appendix A. Here, dots
denote partial derivative with respect to time, t. One of
the two arbitrary functions F (r) is the well established
Misner-Sharp mass m = R

2 (1 − gµνR,µR,ν ) that plays
the role of generalizing the horizon. For the metric (8),
it generally reads

m =
R

2

(
1−R′2 e−2λ + Ṙ2e−2ν

)
, (11)

and, by virtue of the second relation of Eqs. (43) of
Appendix A, it turns out to be6 m = F (r) as in Eq.
(10).

The other function, namely f(r), is the so–called veloc-
ity function [36], since it is related to the velocity of the
dust cloud at initial time, once the mass profile F (r) and
an initial condition on R are fixed. Setting f too, one
solves Eq. (10) and finds the unknown function R(r, t),
representing the radius of the shell r at comoving time
t. The corresponding analysis of Eq. (10) leads to two
main cases, the first, f(r) = 0, is commonly known as
the marginally bound, and will be treated in full details
in the next Sections. The so called bound (resp. un-
bound) case, corresponding to f(r) < 0 (resp. f(r) > 0),
is more involved since an implicit resolution of Eq. (10)
is invoked, and will be treated in Section V B.

Therefore, let us consider f(r) = 0. Setting R = r at
t = 0 we can find the following explicit form for R(r, t):

R(r, t) = r[1− k(r)t]
2
3 , where k(r) =

3

2

√
2F (r)

r3
.

(12)

6 Notice that this happens as a consequence of the fact that we are
considering dust, i.e. matter with vanishing pressure. Without
this condition one gets a modified Misner-Thorne mass, leading
to a m = F (r, t) function, when radial and transverse pressures
are included into the LTB metric.

In this case, the solution is completely determined by
the choice of the mass F (r), that in the following will
be taken in the class C∞([0, rb]) for some rb > 0. The
value rb represents the comoving boundary of the star:
Moreover, an external matching with the Schwarzschild
solution of mass M = F (rb) at the junction hypersurface
{r = rb} is possible, since the radial pressure vanishes
along this hypersurface7 [37].

We will also suppose that the mass F (r) is a non neg-
ative function such that the initial energy ε0(r) := ε(r, 0)
is a decreasing function of r, which continuously extends
until the central shell r = 0 in order for the solution to
be completely regular at t = 0. Using Einstein equations
we obtain

ε(r, t) =
F ′(r)

4πR2(r, t)R′(r, t)
(13)

and then by virtue of Eq. (12), we immediately get

ε0(r) ≡ ε(r, 0) =
F ′(r)

4πr2
. (14)

To guarantee that Eq. (14) is mathematically well-
defined in r = 0, it must necessarily be

F (r) = F0r
3 + Fnr

3+n +O(r4+n) , (15)

with n a positive integer number that can be chosen ar-
bitrarily. Moreover, since the Misner-Thorne mass, Eq.
(11) might be positive definite, we should have

n > 0, F0 > 0, Fn < 0, (16)

which guarantee that F (r) > 0 and ε′(0, r) < 0. Further-
more, the condition Fn < 0 guarantees that, departing
from the center, the mass decreases.

Choosing, up to scaling, F0 = 2
9 and defining the pos-

itive parameter a := − 9
4Fn, we have from (12) and (15)

that k(r) is normalized as k(0) = 1 and reads:

k(r) = 1− arn +O(rn+1). (17)

In the following we will see that fixing the positive param-
eter a and the integer n determines the collapse endstate
of the dust cloud.

IV. SINGULARITY FORMATION

From Eq. (13), we see that a singularity occurs either
for R = 0 or whenR′ = 0. Recalling Eq. (12), we see that
the first case corresponds to either r = 0 or t = 1/k(r).
In principle, the region r = 0 is not a true singularity for
all collapsing times t, as one can see by obtaining that

7 For the sake of completeness, it identically vanishes on all the
internal space-time.
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ε(0, t) =
2

3
(1− t)−2 , (18)

and, therefore, the central shell becomes singular at time
t = 1, corresponding to the value of the singular function
for r = 0:

ts(r) =
1

k(r)
= 1 + arn +O(rn+1) (19)

that marks, for each shell r ∈ [0, rb], the time of collapse.
The boundary region where R = 0 is called a shell focus-
ing singularity, but we must first exclude that R′ does not
vanish along the evolution, prior to R = 0, i.e. that a
shell crossing singularity forms before the shell is focus-
ing. With cumbersome algebra, one obtains that R′ = 0
if t = tsc(r), where

tsc(r) =
1

k(r) + 2
3rk
′(r)

. (20)

In the following we presume k′(r) < 0 as r > 0 (which
is compatible with the sign choices made in (16), due
to (17)), in order to have tsc(r) > ts(r) and then no
shells crossing singularity appear. Hence, t = ts(r) repre-
sents the actual future boundary of the space-time. Note
that the denominator in the righthand side of (20) equals
3ε0(r)
2k(r) and so it is a strictly positive quantity. This fact

will be useful in later applications. .
To study the collapse endstate, it is worthwhile recall-

ing that the aforementioned assumptions exclude that
the noncentral singularities {(ts(r), r) : r > 0} are naked
[38]. That notwithstanding, one finds that the apparent
horizon, implicitly defined by R = 2m, is described by a
curve in the (r, t)–plane given by

th(r) =
1

k(r)

(
1− 8

27
k(r)3r3

)
= ts(r)−

8

27
k(r)2r3,

(21)
and, therefore, the central shell r = 0 becomes trapped at
time th(r) = 1, i.e. the same co-moving time it collapses.
Thus, it is possible that the null outgoing geodesics, emit-
ted from the central singularity (r, t) = (0, 1), may exist
in the region II = {t < th(r)}, giving rise to a (locally)
naked singularity. It is a consolidate result [36, 39, 40]
that the parameters a and n defined in (17) dictate this
possibility. In particular, it has been shown that the sin-
gularity is naked if n = 1, 2 and n = 3 but in this critical
case it must be

a > ac := 26+15
√
3

3 F0 ' 3.85 . (22)

In the other cases, the central singularity is covered by
the horizon as well as the non-central ones. The proof
is obtained by a careful study of the null geodesic equa-
tion asymptotically near r = 0, and it is remarkable that

the above picture remains qualitatively unaffected for a
larger class of models, including LTB models where a
nonzero arbitrary function f(r) is taken8.

V. REPULSIVE REGIONS

To investigate the repulsion regions in the LTB met-
ric, we follow the approach outlined in Sec. II. In the
parabolic case, the orthonormal tetrad can be chosen as

ϑ0 = dt , ϑ1 = R′dr , ϑ2 = Rdθ , ϑ3 = R sin θdϕ .
(23)

The computation of the corresponding curvature matrix
is straightforward and the analysis of its eigenvalues leads
to

λ1 =
R̈′

R′
, λ2 =

Ṙ2 − f
R2

, (24)

λ3 = λ5 =
R̈

R
, λ4 = λ6 =

ṘṘ′ − 1
2f
′

RR′
. (25)

According to the definition of repulsive gravity de-
scribed in Sec. II, a change of sign in any eigenvalue
indicates the presence of a region in which repulsion dom-
inates over attraction. We thus search for the zeros of the
λi’s belonging to the region J = {0 ≤ t < ts(r)}.

A. Changing signs of eigenvalues

Using Eq. (10), and recalling that, along the evolution,
R′ > 0 to enable shells do not interact to each other and
Ṙ < 0 to guarantee the collapse, in J , it is easy to get:

• λ1 changes sign where

2F (r)R′(r, t) = F ′(r)R(r, t); (26)

the zeroes are given by the set (r, t1(r)), where

t1(r) =
1

k(r)

(
1 +

4rk′(r)

3k(r) + 2rk′(r)

)
= 1− 4n− 3

3
arn +O(rn+1). (27)

Note that, as we have observed before, the quantity
3k(r) + 2rk′(r) is strictly positive.

• λ2 > 0 and λ3 = λ5 = − F (r)
R(r,t)3 < 0. Both the

eigenvalues do not change sign.

• λ4 = λ6 change sign where Ṙ′ does, i.e. where

F (r)R′(r, t) = F ′(r)R(r, t) (28)

8 See [41, 42] for details.
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up to a given radius. Strong departures are found for th that turns out to be the most sensible curve to a.

This happens on the points (r, t4(r)), where

t4(r) =
1

k(r)

(
1 +

rk′(r)

3k(r) + 2rk′(r)

)
= 1− n− 3

3
arn +O(rn+1) (29)

The shapes of t1 and t4 have been reported in Figs. 1
and 2 for different values of n and r, distinguishing the
cases n = 1, 2, 3 from n ≥ 4. Observe that, from the
exact expressions (27) and (29), and recalling k′(r) < 0,
we always have t1(r) > t4(r), ∀r ∈]0, rb].
Let us now study the mutual positions of the curves t1(r)
Eq. (27), t4(r) Eq. (29), th(r) Eq. (21) in the (r, t)–plane
near the centre r = 0, as the parameters n and a defined
in Eq. (17) vary. We remark that at r = 0 all these
curves coincide with each other and with the singular
curve ts(r). For r > 0 sufficiently close to r = 0, it is
found that:

• in case n = 1, 2, we have t1(r) < t4(r) < th(r):
both λ1 and λ4 changes sign before the shell labeled

r gets trapped;

• in case n ≥ 4, we have that th(r) < t1(r) < t4(r):
both λ1 and λ4 changes sign after the shell labeled
r gets trapped;

• in the critical case n = 3, where both naked singu-
larities and black holes may take place – depending
on the value of a, we find that:

– if a < 2
27 then th(r) < t1(r) < t4(r);

– if a ∈] 2
27 ,

8
27 [ then t1(r) < th(r) < t4(r);

– if a > 8
27 then t1(r) < t4(r) < th(r);

in the – highly non generic – transition cases, one
should in principle consider higher order terms of
k(r). With some calculus one finds that λ4 changes
sign on the horizon in case F (r) = 3

2W
(

4
27r

3
)
,
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where W (z) is the principal branch of Lambert9

W–function (t4(r) = th(r)). Analogously, the
choice of mass F (r) = 3

8W
(
16
27r

3
)

corresponds to
a situation where λ1 exactly changes sign on the
horizon (t1(r) = th(r)).

We can conclude that, in all situations where a cen-
tral naked singularity occurs, both λ1 and λ4 changes
sign before horizon formation. However, this feature also
appears in some situations of the critical case n = 3,

a < ac = 2(26+15
√
3)

27 , where the central singularity is not
naked.

B. Analysis of the f(r) 6= 0 case

Let us now drop out the marginally bound hypothesis
and to see whether our previous results are preserved or
not.

To do so, using again the initial condition R = r at
t = 0, one can integrate Eq. (10), obtaining t ≡ t(r,R),
i.e. t as a function of (r,R) [43]

t(r,R) =

√
s3

2F (r)
Γ

(
− f(r)s

2F (r)

)∣∣∣∣∣
s=r

s=R

, (30)

where Γ(y) is the function

Γ(y) =



− arcsinh
√
−y

(−y)3/2 −
√
1−y
y , y < 0,

2
3 , y = 0,

arcsin
√
y

y3/2
−
√
1−y
y , 0 < y ≤ 1.

Thus, concerning this case it is useful to perform the anal-
ysis within the so–called area radius coordinate system
(r,R). This region is well-defined in the collapse state,

because Eq. (10) dictates Ṙ < 0, so that R plays the
role of a sort of ’reverse’ comoving time. This analysis
has been successfully used in [41, 42] to find a broader
class of collapsing solutions whose endstate – black hole
vs naked singularity – has been classified in terms of the
Taylor expansion of some functions, thus including the
present model as a special case.

To this aim, we can immediately observe that require-
ments similar to those made in the marginally bound
case – see Eq. (13) and following discussion – lead to
the assumption that F (r) is given again by Eq. (15). In
addition, we have

f(r) = f0r
2 + fm̃r

2+m̃ +O(r3+m̃), (31)

9 Sometimes called ProductLog function.

where m̃ is a positive integer. It will be also necessary to
consider the function

H(r,R) = 2F (r) +Rf(r), (32)

that by construction contains third order leading terms,
whereas the following leading term is of order N =
min{n, m̃ + 1}. As proved in [41, 42], the central sin-
gularity is naked if N = 1, 2 or N = 3 but it must be

a := −
∫ 1

0

(2F3 + f3τ)
√
τ

2(2F0 + f0τ)3/2
dτ >

2F0

3
ξc, (33)

where ξc = 26+15
√
3

2 . It is straightforward to see that
Eq. (33) reduces to Eq. (22), in the previously dis-
cussed marginally bound case. The asymptotic behavior
near the centre of the apparent horizon turns out to be
Rh(r) = 2F0r

3 +O(r4) as before.
Thus, to evaluate repulsive gravity effects, we first ob-

serve that again the only significant cases are given by
λ1 and λ4 = λ6, and the equations where a sign change
occurs are given again by (26) and (28), respectively.

To translating these equations in area radius coordi-
nates, let us compute the curves R1(r) and R4(r) where
the eigenvalues change sign. With some calculations one
finds that the leading terms of this curves is of order
r(2N+3)/3. We conclude that, when N = 1, 2, given r
sufficiently small, both R1(r) and R4(r) are larger that
Rh(r). As a consequence, during the collapse both eigen-
values change their signs before the apparent horizon. In
the critical caseN = 3 we haveRj(r) ∼= Rj0r

3, j ∈ {1, 4},
with

Rj0 =

(
6a

j

√
2F0

)2/3

,

and when the singularity is naked, using Eq. (33), we see
that Rj0 > 2F0 and then again both eigenvalues change
their signs before the apparent horizon.

Then, we can conclude again that an eigenvalue sign
change is a necessary but not sufficient condition for the
formation of a central naked singularity.

VI. GETTING REPULSIVE GRAVITY FROM
GEODESIC DEVIATION

The GDEs describe gravitational effects in terms of
the relative acceleration between geodesic motions [45–
47], involving the Riemann curvature tensor. Hence, it
should be possible to work out the above approach of
repulsive gravity even in the framework of GDEs. We
can thus confront our technique with GDEs, by rewriting
the corresponding equations in terms of the curvature
eigenvalues and checking what happens as the eigenvalues
change signs.

Let xα(σ, τ) be a congruence of geodesics in such a
way that, for each fixed σ, the map τ 7→ xα(σ, τ) is a
geodesic; in particular, γ(τ) := x(0, τ) will be called the
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reference geodesic. The velocity field along each geodesic
is given by uα(σ, τ) = ∂τx(σ, τ), whereas nα is the vector
field linking two nearby geodesics, nα(σ, τ) = ∂σx

α(σ, τ).
Then γ̇α(τ) = uα(0, τ), and the deviation from the ref-
erence geodesic is described by the vector field Jα(τ) :=
nα(0, τ). It is well-known that Jα is a Jacobi vector field
along γ, satisfying the GDEs

J̈α(τ) +Rαµνξ(γ(τ)) γ̇µ(τ)Jν(τ)γ̇ξ(τ) = 0, (34)

where Rαµνξ is the Riemann curvature tensor expressed
in terms of the Christoffel symbols of the Levi–Civita
connection of gµν as Rαµνξ = Γαµξ,ν − Γαµν,ξ + ΓηµξΓ

α
ην −

ΓηµνΓαηξ.

Let us take a null radial geodesic for the metric (9) as

reference geodesic, γ̇1 =

√
1+f(γ1)

R′(γ0,γ1) γ̇
0. Moreover, we can

limit ourselves to the case of a geodesic congruence on
the equatorial plane, x2 = θ = π/2, in such a way that
n2 – and then J2 – vanishes. Then the GDE (34) takes
the form (the argument τ is dropped out)

J̈0 + λ1

(
J0 −

R′
(
γ0, γ1

)√
1 + f (γ1)

J1

)
(γ̇0)2 = 0, (35a)

J̈1 + λ1

(√
1 + f (γ1)

R′ (γ0, γ1)
J0 − J1

)
(γ̇0)2 = 0, (35b)

J̈3 + (λ4 − λ3) (γ̇0)2J3 = 0 , (35c)

showing that indeed the geodesic deviation can depend
on the sign of the curvature eigenvalues. From the above
equations, we first observe that the third equation is not
affected by a sign change of the eigenvalues, since λ4−λ3
holds a definite sign in our model. This should not sur-
prise due to the specificity of the reference geodesic fixed
here. It is worthwhile recalling that the same happens
for a spherically symmetric space-time with charge. In-
deed, in the case of the Reissner-Nordström space-time,
one can find that the counterpart of equation (35c) is

trivially J̈3 = 0. In our case, the spherical symmetry is
analogously preserved and we find J̈3 = KJ3, where K
is a constant that depends upon the fixed sign of λ4−λ3.
The corresponding exponential solutions are thus easy to
get.

A different behavior happens for J̈0 and J̈1. In this
case, it is easy to show that the sign of the eigenvalues
influences the dynamics. To show that, we can perform
a qualitative study of the first couple of the above equa-
tions. We then approximate them nearby a given point
of the reference geodesic and we study the behavior of
the Jacobi field near that point. We can assume the first
component of four-velocity to be identically one and pos-

ing a ≡ R′√
1+f(r)

, we get

J̈0 = −λ1J0 + aλ1J
1 , (36)

J̈1 = −λ1
a
J0 + λ1J

1 , (37)

where we set the following initial conditions
((J0)′(0), ((J1)′(0)) = (0, 0). In such a way, we do
not observe acceleration effects that are not purely
gravitational. In fact, there are no acceleration effects
induced by the initial conditions if we impose that the
first derivatives vanish as above.

The solutions of Eqs. (36) are

J0 = j0 +
λ1
2
τ2
(
j1a− j0

)
, (38)

J1 = j1 +
λ1
2a
τ2
(
j1a− j0

)
, (39)

where we chose the following initial conditions: J0(0) ≡
j0 and J1(0) ≡ j1. Notice that v0 ≡ j0−aj1

2 6= 0, because
otherwise the initial Jacobi vector would be parallel to
the initial velocity of the geodesic and, therefore, the vari-
ation would be entirely lying on the reference geodesic.
Consequently, we can recast our equations with the vari-
ables u = 1

2 (t− ar), v = 1
2 (t+ ar). Then, we obtain

1

2
(J0(τ)− aJ1(τ)) = v0 , (40)

1

2
(J0(τ) + aJ1(τ)) = w0 − τ2v0λ1 , (41)

where w0 ≡ j0 + aj1 has a definite sign.
Now we can observe that the norm of the above vec-

tor increases or decreases, depending on the sign of λ1.
This is interpreted as follows: the sign of the eigenvalue
influences the dynamics of the Jacobi field J , indicating
how gravity acts over the dynamics itself. This is phys-
ically due to the fact that gravity changes its sign and
confirms the goodness of the approach that makes use of
eigenvalues. A more general approach can be performed
as one extends the previous calculation to a non-radial
case. There, a similar result can be obtained, indicating
again that the repulsive character of gravity depends on
the sign of the curvature eigenvalues.

VII. THEORETICAL DISCUSSION ON
COMPACT OBJECT FORMATION

As mentioned above, the change of eigenvalue signs,
leading to the presence of repulsive regions before the
horizon forms, turns out to be a necessary condition to
have a naked singularity, albeit not sufficient. Conse-
quently, to enable the formation of a naked singularity,
one might admit the existence of further physical mech-
anisms entering the above puzzle, with the property of
delaying the horizon formation.

Further, if gravity becomes repulsive, the correspond-
ing eigenvalues change their behavior, i.e. showing at
which surface (r, t) repulsive gravity becomes dominant.
However, the region where the eigenvalue vanishes im-
plies that the eigenvalue provides an extremal at some
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hyperplane before it changes its sign, so that the repul-
sion region is the first extremal that appears in a curva-
ture eigenvalue as we approach the origin of coordinates
from infinity. This indicates that the onset of repulsion
occurs if only one of the eigenvalues changes sign, inde-
pendently from the rest.

In other words, the mechanism of the repulsive onset
does not affect the formation of a naked singularity with
repulsive gravity and is not against the formation of black
holes in which the repulsive effects are dominant. In view
of previous investigations [12, 44], we notice that the only
possibility, to allow black holes with dominating repulsive
interactions, is to take into account the inhomogeneity of
the LTB metric.

So, without adding any further mechanism that selects
naked singularities instead of black holes, a possible in-
terpretation of the case n = 3 is that the LTB metric is
a source for the creation of highly emitting compact ob-
jects, subject to an explosion due to their “instability”.
Here, the involved masses, for the cases of black holes
and/or naked singularities, are huge. So, the simplest
approach, involving the discussed LTB collapse, suggests
that Gamma Ray Bursts may form. In such a case, the
progenitors are interpreted as LTB black holes dominated
by repulsive gravity. Rephrasing it differently, we can say
that Gamma Ray Burst progenitors could be LTB black
holes, in which the repulsive effects are dominant, since
inhomogeneities lead somehow to instabilities pushing up
the black hole to explode10.

VIII. FINAL OUTLOOKS AND PERSPECTIVES

In this work, we investigated the dynamics of the grav-
itational collapse in the inhomogeneous LTB space-time
and, in particular, the cases in which naked singularities
appear. In addition, we explored the possibility to get
repulsive gravity in particular regions. We also discussed
how repulsive gravity affects the dynamics of the collapse.
To do so, we applied an invariant prescription, according
to which the presence of repulsive gravity can be detected
through the behavior of the curvature tensor eigenval-
ues. The advantage is that eigenvalues are scalars with
respect to coordinate transformations. In fact, we used
the intuitive approach that if an eigenvalue changes sign
at a given space-time region, it indicates that repulsive
gravity dominates over attractive gravity in that region.

On the other hand, an independent way to measure
the effects of gravity through curvature is by using the
geodesic deviation. Accordingly, we performed an analy-
sis of the geodesic deviation equations in the LTB space-

10 For the sake of clearness, this speculation involves the LTB case
only. A more general demonstration that the rate of inhomo-
geneities may give hints toward the formation of Gamma ray
Burst is beyond the purposes of this paper.

time and found that indeed the curvature eigenvalues en-
ter the equations explicitly and their sign affect directly
the deviation. This shows that the intuitive approach
of using curvature eigenvalues to determine the charac-
ter of gravity can be verified by using the more physical
approach of geodesic deviation.

Thus, we investigated all the zeros of the eigenvalues
and compared their locations in space-time with the con-
ditions under which naked singularities appear in the case
of parabolic and non-parabolic LTB space-times. We
found a coincidence between the appearance of naked
singularities and repulsion regions, implying that repul-
sive gravity effects are relevant for studying the dynamic
behavior of naked singularities. Analogous results have
been found in the context of naked singularities with
black hole counterparts [44] and in homogeneous and
isotropic cosmological models [48].

We also found a particular case in which the gravita-
tional collapse, leading to the formation of a black hole,
is also accompanied by a change of sign in one eigen-
value. This seems to be a very special solution in which
the parameters are forced to satisfy specific cut-off con-
ditions. Particularly, we got this result more akin to an
actual black hole dominated by repulsive gravity. Thus,
our interpretation is that the inhomogeneous LTB metric
provides a new physical case, in which a black hole with
dominant repulsive gravity can exist.

We increased complexity working out the f(r) 6= 0
case. One basic motivation for this choice is that a non-
perfectly marginally bound case can occur in general. We
found that the outcomes did not go in the opposite direc-
tion of our f(r) = 0 case and, in exchange for the cost of
complexity, one gets analogous outcomes as previously
found. We therefore recovered LTB black holes domi-
nated by repulsive gravity. Hence, we concluded that
black holes with dominating repulsive effects are a phe-
nomenon whereby the hypothesis of dust is not essential.
In other words, the picture is extended to matter differ-
ent from pure dust, in agreement with previous efforts
developed in the literature.

Nevertheless, there are no serious astrophysical pro-
posals for actually detecting black holes with dominat-
ing repulsive effects. We therefore pursued a more con-
crete theoretical goal sketching out physical speculations
on compact objects based on this phenomenon. For the
sake of clearness, we should stress that the change of
signs of eigenvalues is a necessary condition to get re-
pulsive gravity. So, assuming that repulsive effects are
present, we apply our results to astrophysical objects.
In so doing, we interpreted Gamma Ray Burst forma-
tion as a consequence of LTB inhomogeneities. Indeed,
the here-developed mathematical scheme points out that
our results are not a stand-out exception and black holes
with dominating repulsive regions may be interpreted as
progenitors for highly-energetic compact objects, such as
Gamma Ray Bursts. Our treatment has been obtained
in the framework of LTB metric only. Future efforts will
clarify whether this can happen as genuine signature due
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to inhomogeneities. Moreover, we will clarify the mecha-
nisms behind the born of Gamma Ray Burst progenitors
in view of our results, giving additional examples in the
field of astrophysics.
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Appendix A

Einstein’s gravity in the case of LTB metric leads to

Gtt = − 2m′

R′R2
+

2Ṙe−2ν

R′R

(
Ṙ′ − Ṙν′ − λ̇R′

)
, (42a)

Grr = − 2ṁ

ṘR2
− 2R′e−2λ

ṘR

(
Ṙ′ − Ṙν′ − λ̇R′

)
, (42b)

Gtr =
2e−2ν

R

(
Ṙ′ − Ṙν′ − λ̇R′

)
, (42c)

Grt = −2e−2λ

R

(
Ṙ′ − Ṙν′ − λ̇R′

)
, (42d)

Gθθ = Gφφ =
1

R

{
e−2λ[(ν′′ + ν′2 − ν′λ′)R+R′′ +R′ν′ −R′λ′]− (42e)

e−2ν [(λ̈+ λ̇2 − λ̇ν̇)R+ R̈+ Ṙλ̇− Ṙν̇]
}
. (42f)

Solving Einstein’s equations (42) for ν, λ,R and ε and using (42a)–(42c) we find

m′ = 4πεR2R′, ṁ = 0, Ṙ′ = Ṙν′ + λ̇R′ = 0. (43)

So, m = F (r) and ν = ν(t), and by means of dT
dt = eν(t), we imagine that eν(t) = 1, i.e. ν(t) ≡ 0, having Ṙ′

R′ = λ̇ which

is perfectly solvable to give R′ = eg(r)+λ, with g(r) the initial setting. Simply imposing all the above conditions, we

get F (r) = R
2

(
1 + Ṙ2 − e2g(r)

)
, and solving it with the position f(r) = e2g(r) − 1, permits one to determine R(t, r)

as in Eq. (10).
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