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Non-Gaussian normal diffusion in a fluctuating corrugated channel
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A Brownian particle floating in a narrow corrugated (sinusoidal) channel with fluctuating cross section
exhibits non-Gaussian normal diffusion. Its displacements are distributed according to a Gaussian law for
very short and asymptotically large observation times, whereas a robust exponential distribution emerges for
intermediate observation times of the order of the channel fluctuation correlation time. For intermediate to large
observation times, the particle undergoes normal diffusion with one and the same effective diffusion constant.
These results are analytically interpreted without having recourse to heuristic assumptions. Such a simple model
thus reproduces recent experimental and numerical observations obtained by investigating complex biophysical
systems.
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I. INTRODUCTION

Recent observations [1–6] of particle diffusion in fluctuat-
ing crowded environments manifestly contradict the common
belief that normal diffusion is associated with a Gaussian
distribution of spatial displacements. Indeed, if for simplicity,
we restrict ourselves to one dimensional (1D) geometries, the
displacement, �x(t ) = x(t ) − x(0), of a standard overdamped
Brownian particle suspended in a homogeneous Newtonian
fluid [7] (i) grows with time according to the Einstein-
Stokes law, 〈�x2(t )〉 = 2Dt ; and (ii) is distributed according
to a rescaled Gaussian probability density function (pdf),
p(�x/

√
t ) with half-variance D. Under these circumstances,

the random variable �x(t ) is said to undergo Gaussian normal
(or Fickian) diffusion.

There is no a priori reason why the diffusion of a tracer
in a time varying inhomogeneous medium should be Fickian.
In real biophysical systems, with increasing the observation
time the rescaled displacement distributions, p(�x/

√
t ), often

develop prominent exponential tails, whereas the tracers start
diffusing linearly in time. Such transient tails disappear only
for asymptotically large observation times (at times hardly
accessible to real experiments [1]), when finally the �x
distributions turn Gaussian, as predicted by the central limit
theorem, without appreciably changing the underlying diffu-
sion mechanism. Persistent diffusive transients of this type
have been detected in diverse experimental setups [1–3,8–10].
Extensive numerical simulations confirmed the occurrence
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of this remarkable phenomenon in crowded environments
consisting of slowly diffusing or changing microscopic con-
stituents (filaments [1,3], large hard spheres [4–6], clusters
[11,12], and other heterogeneities [13]).

The current interpretation of picture above postulates
the existence of one or more relaxation processes affecting
the suspension medium or the confining geometry, where the
tagged particle diffuses [1]. As long as the fixed time interval,
t , over which �x(t ) is measured is of the order of the relax-
ation time constant(s), τ , the particle displacement can obey
a non-Gaussian statistics. Through what mechanism, under
these conditions the particle’s diffusion retains its normal
character, may vary from case to case. To this purpose, a pop-
ular paradigm revolves around the heuristic notion of diffusing
diffusivity [14], whereas the environmental fluctuations are
modeled by means of an ad hoc random particle diffusion con-
stant, D(t ). On assuming that D(t ) is an Ornstein-Ulenbeck
process with average D and time constant τ , the distribution
p(�x/

√
t ) changes from exponential for t � τ to Gaussian

for t � τ . In both time regimes, the displacement diffusion
is normal, with 〈�x2(t )〉 = 2Dt [14]. This phenomenological
description, together with its more refined variations [15–21],
may qualitatively interpret a conspicuous body of diverse
experimental observations, but sheds little light on the under-
lying microscopic mechanisms.

In this paper, we investigate both numerically and ana-
lytically the directed diffusion of an overdamped Brownian
particle in a narrow quasi-1D corrugated channel [22,23] of
fluctuating width. Such a time variable geometry is inspired
to cell biology [24,25] and models the key ingredient of the
phenomenon under study, namely slow environmental fluctu-
ations. The relevant stochastic model is detailed in Sec. II.
The simulation results of Sec. III reproduce the essentials of
non-Gaussian normal diffusion [14] without having recourse
to the paradigm of diffusing diffusion: (1) the distribution
of the particle displacements along the channel is Gaussian
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for observation times either much shorter (local diffusion) or
much longer than the correlation time of the channel fluctu-
ation (channel diffusion), and exponential for a rather wide
interval of intermediate observation times. (2) A normal dif-
fusion law with the same channel diffusion constant extends
from intermediate to large observation times, thus implying
a nontrivial relationship between displacement pdf’s. The
compatibility of normal diffusion with different displacement
statistics is discussed in Sec. IV. (3) These effects are robust
as long as fluctuations randomly open and close the channel
constrictions. As remarked in the concluding Sec. V, the
compartmentalization of particle’s diffusion thus emerges as
a prerequisite of non-Gaussian normal diffusion.

II. FLUCTUATING CHANNEL MODEL

The dynamics of an overdamped (or massless) Brownian
particle in a channel is modeled by the Langevin equation
ṙ(t ) = √

D0ξ(t ), where r = (x, y) are the particle’s coordi-
nates and the translational fluctuations ξ(t ) = [ξx(t ), ξy(t )] are
zero-mean, white Gaussian noises with autocorrelation func-
tions 〈ξi(t )ξ j (0)〉 = 2δi, jδ(t ), with i, j = x, y. The strength
of ξi(t ) is the free-particle diffusion constant, D0, which
is typically proportional to the temperature of the suspen-
sion fluid. Without loss of generality, we considered a two-
dimensional (2D) sinusoidal channel with axis oriented along
x and symmetrically confined transverse coordinate, |y| �
w(x, t ), where

w(x, t ) = (yL/2)[ε2 + (1 − ε2) sin2(πx/xL )]. (1)

Here, yL and xL are respectively the maximum width and the
length of the unit channel cell, and ε2yL is the fluctuating
width of the pores located at x = 0 mod(π ). We assume for
simplicity that ε(t ) obeys the Ornstein-Uhlenbeck equation

ε̇ = −(ε − ε0)/τ +
√

Dε/τ 2ξε(t ), (2)

where the noise ξε(t ) has the same statistics of, but is uncor-
related with the thermal noises, ξ(t ). Unless stated otherwise,
we set ε0 = 0, so that the average pore width is 〈ε2〉yL with
〈ε2〉 .= σ 2

ε = Dε/τ . In order to ignore hydrodynamic effects
[23], we addressed the case of pointlike particles in highly
viscous suspension fluids. Accordingly. we assumed that,
for small channel fluctuations, the varying pressure exerted
by the walls on the fluid does not sensibly modulate the
particle’s diffusion constant, D0, neither in space nor in time.
In practice, to modulate the effective width of the channel
pores without incurring this difficulty, one can simply apply
a tunable external gating potential [23].

We numerically integrated the particle Langevin equation
in the free space inside the channel by means of a Milstein
algorithm [26]; we imposed reflecting boundary conditions
at the channel’s walls, y = ±w(x, t ), and took stochastic
averages over not fewer than 105 particle’s trajectories with
random initial conditions.

III. THE CASE OF OPENING-CLOSING PORES

The statistics of the particle displacement, �x(t ),
depends on the observation time, t , as shown in
Fig. 1, where three different pdf regimes are clearly

FIG. 1. Diffusion regimes in a fluctuating channel. The rescaled
displacement pdf’s, p(�x/

√
t ), are computed for short, large, and

intermediate observation times t , respectively, in the top-right in-
set, bottom-left inset, and main panel. Simulation parameters are:
yL = 1, xL = π , D0 = 1, Dε = 3, ε0 = 0, and τ = 200. The relevant
Gaussian and Laplace distributions are represented by solid curves.
The half-variance of the Gaussian fitting curves in the insets are B =
D0 = 1 (top right) and B = D = 0.145 (bottom left); the exponential
decay constant is α = 0.325 (main panel). The parameters α and B
are defined in the text.

distinguishable: two distinct Gaussian distributions,
p(�x/

√
t ) = (4πB)−1/2 exp(−�x2/4Bt ), at very short

and large t values (insets) and an exponential (or Laplace)
distribution, p(�x/

√
t ) = (2α)−1 exp(−�x/α

√
t ), over an

extended intermediate t range. The short-t Gaussian regime
describes the free Brownian diffusion inside a single channel
cell, far from the walls, which occurs for time intervals
not larger than τL = min{x2

L/8D0, y2
L/8D0}. Under these

circumstances, the fitting parameter B turned out to coincide
with D0, as expected [7].

For larger observation times, the particle becomes sen-
sitive to confinement [22]. The escape from one cell into
the adjacent ones requires diffusing through narrow pores,
a mechanism that takes relatively long waiting times. On
extending the approximate techniques of Ref. [27] to the case
of fluctuating pores, one estimates a characteristic mean-first
exit time (MFET)

τ0 = x2
L

8D0

1

〈|ε|〉 = x2
L

8D0

√
πτ

2Dε

. (3)

Here, τ0 is the time the particle takes to diffuse from inside
a cell up to the center of its left or right exit pore. Accord-
ingly, the time constant of the corresponding discrete intercell
jumping process is 2τ0 and the channel diffusion constant is
thus well approximated by [23,27]

D = x2
L/4τ0. (4)

On the other hand, the correlation time of the fluctuating pore
width, ε2(t ), is 2τ , see Eq. (2). In view of these timescales,
one is led to anticipate that the three distinct regimes of the
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FIG. 2. Normal diffusion in a fluctuating channel: time depen-
dence of 〈�x2n〉1/n for different n. Simulation parameters are: yL = 1,
xL = π , D0 = 1, ε0 = 0, Dε = 3, and τ = 200. The parallel straight
lines represent the expected values for the higher order moments
(n > 1) in terms of the fitted normal diffusion law for 〈�x2(t )〉 in
the Gaussian and exponential regimes (see text). The vertical lines
delimit the three pdf regimes of Fig. 1 and are positioned respectively
at t = τL, 2τ0 and 2τ . (Inset:) Ratio μx/3 � α2/B vs τ at large t .
The numerical quantifier μx is defined in Sec. IV and was computed
here for t = 2τ ; for an ideal exponential transient μx/3 = π/2 − 1
(horizontal line).

rescaled pdf illustrated in Fig. 1 must hold for observation
times t � τL, 2τ0 � t � 2τ and t � 2τ , respectively.

In the asymptotic regime, t � 2τ , the particle diffusion
along the channel is normal (i.e., 〈�x2〉 is a linear function
of t , Fig. 2), which allows a direct numerical determination of
the constant D of Eq. (4). Moreover, the intercell jumping pro-
cess yields a Gaussian distribution of the discretized particle
displacements (Brownian random walker [7]). This suggests
that asymptotically B = D, as discussed below.

The exponential transient, 2τ0 � t � 2τ , thus bridges two
Gaussian limits, t → 0 with B = D0, and t → ∞ with B =
D. Most remarkably, the same Laplace law (i.e., one decay
constant α) fits all �x/

√
t distributions over about one decade

of observation times. The similarity with recent experimental
observations is apparent [1–6]. The short-t Gaussian regime
cannot be reproduced by the diffusing diffusion model of
Ref. [14], as there the intracell diffusion time, τL, was im-
plicitly set to zero. We notice that the exponential transient
interval can be expanded by decreasing σ 2

ε while increasing
τ . In the present case, however, this condition leads soon to
extremely long simulation runs.

A defining property of channel diffusion is featured in
Fig. 2. One normal diffusion law with the same diffusion
constant, D, fits all numerical data for 〈�x2(t )〉 with t �
2τ0, i.e., in correspondence with both the Laplace and the
asymptotic Gaussian distributions. To assess the Gaussian
nature of the normal diffusion for t → 0 and t → ∞, we
explicitly computed a few higher moments 〈�x2n〉 with n �
1, also reported in Fig. 2. We checked that in both limits
〈�x2n〉1/n = [(2n − 1)!!]1/n〈�x2〉, as expected for Gaussian
�x distributions. Instead, for the Laplace pdf’s fitted in
Fig. 1, one would expect 〈�x2n〉1/n = [(2n!)/2n]1/n〈�x2〉.
The agreement between these latter estimates and the actual

FIG. 3. Role of the fluctuation time correlation: (a) displacement
pdf, p(�x/

√
t ), and (b) diffusion, 〈�x2〉 vs t for increasing τ .

Simulation parameters are: yL = 1, xL = π , D0 = 1, ε0 = 0, and
Dε = 3. The straight lines on the right-hand side of (b) are the linear
fits employed to extract the D constant, whereas the solid lines in
(a) are the corresponding Gaussian curves, p(�x/

√
t ), defined in

the text, with B = D. For short t , all curves in (b) collapse on one
linear branch with diffusion constant D0, also denoted by a straight
line. (Inset) D vs τ for different Dε (see legend). All other simulation
parameters are as in the main panel.

diffusion data in the intermediate t domain is qualitative good,
only, which we attributed to the deviations from the Laplace
distributions, apparent at �x/

√
t � α.

On the other hand, the Laplace and the large-t Gaussian
fitting pdf curves introduced above, yield the same channel
diffusion constant, D, only under the condition α2 = B. How-
ever, the inset of Fig. 2 shows that, for the parameters of
Fig. 1, 0.8 < α/

√
B < 0.9. The ratio α/

√
B thus serves as

a measure of the exponential character of the displacement
statistics across the normal diffusion transient dominated by
channel fluctuations. An estimate of this ratio is obtained in
Sec. IV.

The role of the timescale τ is further illustrated in Fig. 3.
As the MFET of Eq. (3) increases like τ 1/2, for large τ

the diffusion curves 〈�x2(t )〉 develop a plateau in the range
τL � t � τ0. During this time interval, the diffusing particle
“fills up” the 2D channel cell where it was initially injected,
attaining a temporary maximum displacement 〈�x2〉 � x̄2,
where x̄ = π/4 is the average half-width of the cell w(x),
Eq. (1), for σε → 0. This diffusion plateau is represented in
Fig. 2 by a horizontal line.
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The numerical estimates of the channel diffusion constant,
D, for t � 2τ0 and the fitting parameter B of the Gaussian
�x pdf for t � 2τ were anticipated to coincide. Simulation
data. like those reported in Fig. 3, confirmed our expectations,
within the statistical error, for all choices of the simulation
parameters. Moreover, on combining Eqs. (3) and (4), one
expects that D/D0 = 2(2Dε/πτ )1/2, also in fairly close agree-
ment with the numerical data plotted in the inset of Fig. 3(b).

Finally, we notice that on lowering τ the slopes of the
normal diffusion branches for t � τL and t � 2τ0 tend to co-
incide, that is D (and B) tend to D0. This is due to the fact that
the average pore width, 〈ε2〉yL, grows like Dε/τ . As a result,
for 〈ε〉 � 1 the effective channel bottlenecks are no longer
located at x = 0mod{π}, but rather at x = π/2mod{π}, and
have fixed width, yL. Accordingly, from Eq. (3), τ0 = x2

L/8D0

and the channel diffusion constant of Eq. (4) is D = D0.

IV. EXPONENTIAL NORMAL DIFFUSION

In Sec. III, we showed that on increasing the observation
time larger than twice the MFET, (i) the displacement distri-
bution evolves from Laplacian to Gaussian, and (ii) the same
normal diffusion law holds for any t . A simple argument, first
introduced in Ref. [14], can be generalized to support these
conclusions.

Let us model a particle trajectory in the x direction as the
sum of random small steps, �xi, taken at discretized times,
ti = i�t , where i = 1, . . . N , and �t = 1, for simplicity. The
position of the particle at time N is, therefore, xN = ∑N

i=1 �xi.
Accordingly,

〈
x2

N

〉 =
N∑

i=1

〈
�x2

i

〉 + 2
∑
i 
= j

′〈�xi�x j〉, (5)

where
∑′

i 
= j stays for
∑N−1

i=1

∑N
j=1+1. Contrary to the standard

model of Brownian random walker [7], normal diffusion at
time N sets in under the generic condition that the step
directions are uncorrelated, 〈�xi�x j〉 = 0, that is for mirror-
symmetric distributions, p(�xi ), with variances, 〈�x2

i 〉, pos-
sibly different, but of the same order.

Following the authors of Ref. [14], one can further assume
that during each unit time step the particle’s diffusion is
normal with time-dependent constant, Di, i.e.,

p(�xi ) = (4πDi )
−1/2 exp

( − �x2
i /4Di

)
,

with unspecified Di distribution, p(Di ). It follows immediately
that 〈

x2
N

〉 = 2〈D〉N, (6)

and 〈
x4

N

〉 − 3
〈
x2

N

〉2 = 12(〈D2〉 − 〈D〉2)N

+ 24
∑
i 
= j

′(〈DiDj〉 − 〈Di〉〈Dj〉), (7)

where 〈D〉 ≡ 〈Di〉 for the relevant choice of p(Di ).
Suppose now that two particle steps, �xi and �x j are

statistically uncorrelated, i.e., 〈DiDj〉 = 〈Di〉〈Dj〉, only for
|i − j| > τ . We then distinguish two limiting cases:

(i) N � τ , where

μx =
〈
x4

N

〉 − 3
〈
x2

N

〉2
〈
x2

N

〉2 = 3μD

N
→ 0, (8)

with μD = (〈D2〉 − 〈D〉2)/〈D〉2. A vanishing μx hints at a
Gaussian xN distribution as obtained from numerical simula-
tion.

(ii) N � τ , where

μx =
〈
x4

N

〉 − 3
〈
x2

N

〉2
〈
x2

N

〉2 � 3μD. (9)

μx = 3 would correspond to an exponential distribution of xN ;
the coefficient μD is thus a measure of the deviation of the
actual xN distribution from the ideal Laplace distribution.

To apply the argument above to the model under study,
the time step �t has to be taken not shorter than τ0, i.e.,
the argument does not hold for the intracell diffusion. The
corresponding coefficient μD can be estimated analytically by
adapting the procedure of Ref. [27] to the case of a fluctuating
channel, namely,

μD � 〈ε2〉 − 〈ε〉2

〈ε〉2
= π

2
− 1. (10)

On the other hand, on adopting the Laplace distribution
p(�x/

√
t ) for xN and the normal diffusion law, 〈�x2〉 =

2Dt , instead of Eq. (6), that is, 〈D〉 = D = B, numerator and
denominator of μx can be calculated explicitly to obtain

μx = 3α4

B2
. (11)

Finally, on comparing Eqs. (9)–(11), one estimates α/B1/2 �
0.86, in fairly close agreement with the numerical data re-
ported in the inset of Fig. 2.

V. CONCLUSIONS

So far, by setting ε0 = 0 in Eq. (2) we assumed that the
fluctuations of the channel cause the opening and closing of
its pores. Of course, in most cases the pores remain open at
all times, with ε0 > 0 and slightly fluctuating cross-section.
Therefore we investigated how the non-Gaussian normal
diffusion mechanism depends on ε0. In the main frame of
Fig. 4, we plotted the rescaled displacement pdf’s at t = 2τ

for the simulation parameters of Fig. 1, except that ε0 is
increased from 0 up to well above σε. One sees immediately
that on widening the pores, the rescaled pdf’s change from
exponential at ε0 = 0, see Fig. 1, to Gaussian with B = D,
for ε0 � σε. The dependence of D on ε0 in the absence and
presence of channel fluctuations is compared in the inset of
Fig. 4. For ε0 � σε, the diffusion constant grows insensitive
to the fluctuation strength, Dε. The obvious conclusion is
that non-Gaussian normal diffusion only occurs when the
fluctuations of the channel walls are strong enough to actually
open and close the pores. Note that in the absence of channel
fluctuations, Dε = 0, our data for D are well fitted by Eq. (4),
with τ0 given by the first Eq. (3) upon replacing 〈ε〉 with
ε0 [27].
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FIG. 4. Role of the fixed pore width ε0: p(�x/
√

t ) at t = 2τ for
increasing ε0 (see legend). Other simulation parameters are: yL = 1,
xL = π , D0 = 1, Dε = 3, and τ = 200. The solid curve represents a
normalized Gaussian distribution with B = D, D being fitted from
the normal diffusion data (inset). (Inset) Channel diffusion constant,
D, as a function of ε0 in the presence (Dε = 3) and absence (Dε = 0)
of channel fluctuations. The dashed line is the analytical prediction
D/D0 = 2ε0 [27]; the values ε2

0 = σ 2
ε and D/D0 at ε0 = 0 are de-

noted by a vertical and a horizontal arrow, respectively.

The results of Fig. 4 illustrate the importance of diffusion
compartmentalization during intermediate observation time

intervals, 2τ0 � t � 2τ . For ε0 > σε, the tagged particle dif-
fuses along the channel at all times, with only weakly cor-
related open-pore crossings; hence a Gaussian displacement
distribution. In sharp contrast, for ε0 < σε, the pore crossings
of the trapped particle grow more and more time correlated;
hence the exponential tails of p(�x/

√
t ) discussed in Sec. IV.

This description is consistent with the subordination mecha-
nism advocated in Ref. [20].

The microscopic model investigated in this paper, despite
its simplicity, was proven to reproduce most of the intriguing
properties of the phenomenon known as non-Gaussian normal
diffusion. Such a phenomenon has emerged as ubiquitous in
soft matter physics, which suggests a number of promising
generalizations of the present model by incorporating addi-
tional sources of randomness [28], for instance, by decorre-
lating channel’s pore spacing and fluctuations [29] or exciting
size and configurational fluctuations of the diffusing particles
[30], each on a suitably long timescale. Their combined action
is expected to make the conclusions of the present study even
more robust.
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