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Abstract: The pharmacological activation of A3 receptors has shown potential usefulness in the
management of bowel inflammation. However, the role of these receptors in the control of visceral
hypersensitivity in the presence of intestinal inflammation has not been investigated. The effects of
AR170, a potent and selective A3 receptor agonist, and dexamethasone (DEX) were tested in rats
with 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis to assess their tissue inflammatory
parameters. The animals received AR170, DEX, or a vehicle intraperitoneally for 6 days, starting
1 day before the induction of colitis. Visceral pain was assessed by recording the abdominal responses
to colorectal distension in animals with colitis. Colitis was associated with a decrease in body weight
and an increase in spleen weight. The macroscopic damage score and tissue tumor necrosis factor
(TNF), interleukin 1β (IL-1β), and myeloperoxidase (MPO) levels were also enhanced. AR170, but not
DEX, improved body weight. Both drugs counteracted the increase in spleen weight, ameliorated
macroscopic colonic damage, and decreased TNF, IL-1β, and MPO tissue levels. The enhanced
visceromotor response (VMR) in rats with colitis was decreased via AR170 administration. In rats with
colitis, AR170 counteracted colonic inflammatory cell infiltration and decreased pro-inflammatory
cytokine levels, thereby relieving visceral hypersensitivity.

Keywords: A3 adenosine receptors; immune cells; experimental colitis; DNBS; visceral pain;
oxidative stress

1. Introduction

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, are complex
multifactorial inflammatory diseases of the gut, driven by genetic, luminal, and environmental factors,
leading to an overactive intestinal immune response [1]. Typically, IBDs are characterized by diarrhea
or constipation, nausea, weight loss, and rectal bleeding [1].
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The visceral pain experienced by 50–70% of IBD patients is one of the most significant problems
for subjects suffering from these chronic illnesses [2]. Pain and abdominal discomfort represent a
significant burden in these patients that diminishes their quality of life [3]. Indeed, although majority of
patients suffering from acute flares of IBD experience pain, which is typically improved by a decrease
in disease activity, a significant percentage of IBD patients continue to perceive pain despite resolving
their inflammation and achieving clinical remission [2]. Based on these premises, the identification
of new therapeutic targets for developing novel pharmacological tools able to manage both the
immuno–inflammatory components of IBD and to curb visceral sensitivity represents a significant
medical need.

A large body of evidence has highlighted the involvement of adenosine in the maintenance
of intestinal homeostasis, which orchestrates the interplay between the intestinal epithelial cells,
the neuromuscular compartment, and the enteric immune system [4–8]. In particular, adenosine,
via the engagement of four G protein-coupled receptors (named A1, A2A, A2B, and A3 receptors (A1AR,
A2AAR, A2BAR, and A3AR, respectively)), plays a key role in driving an immune response [5]. Among
them, A3AR has strongly captured the interest of the scientific community, since increasing evidence
reveals the complex role of this receptor subtype in the pathophysiology of inflammation, as A3AR
participates in the modulation of a broad array of immune cell functions, such as cytokine production,
degranulation, chemotaxis, and proliferation [7,9,10].

Over the years, these receptors have also revealed an involvement in the pathophysiology
of IBDs [11]. Indeed, preclinical and clinical studies demonstrated a marked alteration of
A3AR expression in these conditions, accompanied by increased production of pro-inflammatory
cytokines [11,12]. The pharmacological engagement of A3AR determines the inhibition of several
cytokine/chemokine/inflammatory genes, thus promoting a marked down-regulation of several
pro-inflammatory mediators (i.e., IL-1, IL-6, IL-12, Macrophage Inflammatory Protein 1α (MIP-1α),
and MIP-2), as well as the production of oxidative stress, thereby improving experimental
colitis. Furthermore, recent work by Ren et al. [12] demonstrated that 2-chloro-N6-(3-iodobenzyl)-
adenosine-5′-N-methyluronamide (Cl-IB-MECA, Figure 1), a selective A3AR agonist, can inhibit the
NF-κB pathway in the colonic epithelia of dextran sulfate sodium (DSS) colitis mice [12].

Several authors have highlighted the potential anti-nociceptive effects of A3AR activation [13,14].
For instance, Hou et al. [13] described the involvement of A3ARs in the beneficial effects exerted by
electroacupuncture on the hypersensitivity induced by colitis in mice [13]. Similarly, Coppi et al. [14]
demonstrated an A3AR activation-mediated pain-relieving mechanism involving the N-type Ca2+

channel block and action potential inhibition in the dorsal root ganglion neurons isolated from
controls, as well as from animals treated with DNBS. This effect is consistent with the acute visceral
pain relief showed by A3AR agonists in rats [15]. However, the potential therapeutic effect of the
A3AR agonist on visceral pain development and persistence is an aspect that needs to be further
investigated. In parallel, the stimulation of A3AR ameliorated the colonic motor disturbances associated
with intestinal inflammation [16], thereby corroborating the relevance of this receptor subtype as an
intriguing target for the management of IBDs.

Based on these premises, our study was designed to evaluate the effect of AR170 (Figure 1) [17–19],
a potent and selective A3AR agonist, in counteracting the inflammatory process and curbing visceral
hypersensitivity in a murine model of DNBS-induced intestinal inflammation.
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Figure 1. Chemical structures of the A3AR reference agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-
N-methyluronamide (Cl-IB-MECA, left) and the potent and selective A3AR agonist AR170 (right)
employed in this study.

2. Materials and Methods

2.1. Animals

Albino male Sprague–Dawley rats, 250–300 g in body weight, were employed throughout the
study. The animals were fed standard laboratory chow and tap water ad libitum and were not subjected
to experimental procedures for at least one week after their delivery to the laboratory. Animal care
and handling were performed in accordance with the provisions of the European Community Council
Directive 2010/63/UE, which were recognized and adopted by the Italian Government. All experimental
procedures were approved by the Ethical Committee for Animal Experimentation of the University of
Pisa and by the Italian Ministry of Health (authorization n◦ 674/2016-PR). In the present study, animal
data are presented according to ARRIVE guidelines.

2.2. Induction of Colitis and Drug Treatments

Colitis was induced in accordance with the method previously described by Antonioli et al. [20].
Briefly, during a short period of anesthesia with isoflurane (Abbott, Rome, Italy), 30 mg of DNBS in
0.25 mL of 50% ethanol was administered intrarectally via a polyethylene PE-60 catheter inserted 8 cm
proximal to the anus. Control rats received 0.25 mL of 50% ethanol. Animals underwent subsequent
experimental procedures 6 days after DNBS administration to allow the full development of evident
colonic inflammation. Test drugs were administered intraperitoneally for 6 days, starting 1 day before
the induction of colitis. Animals were assigned to the following treatment groups: AR170 (3 mg/kg/day)
or DEX (1 mg/kg/day). A group of animals was administered contextually with the A3AR antagonist
MRS1523 (8 mg/kg i.p.) and AR170.

The acute effect of AR170 on visceral pain was assessed 14 days after DNBS injection, when pain
persisted despite remission from colitis [21]. AR170 (0.5–4.5 mg/kg i.p.) was intraperitoneally administered
15 min before starting the test. The A3AR antagonist MRS1523 (8 mg/kg i.p.) was injected 15 min before
AR170. To evaluate its effects on the development and persistence of the visceral hyperalgesia induced
by DNBS, AR170 (1.5 mg/kg/day) was intraperitoneally administered for 14 days, starting from the day
of DNBS injection, and tests were performed on days 8 and 15, 24 h after the last treatment.

DNBS-untreated animals (control group) and DNBS-treated rats (DNBS group) received only the
drug vehicle. Body weight was monitored daily starting from the onset of drug treatments. All the
evaluated parameters were not significantly affected in the DNBS-untreated animals administered
with AR170 alone in comparison to the control group.

2.3. Assessment of Colitis

At the end of treatments, colonic tissues were excised, rinsed with saline, and scored for macroscopic
and histological damage, in accordance with the criteria previously reported by Antonioli et al. [22].
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The macroscopic criteria were scored on a 0–6 scale using the scoring system reported in Table 1.
The presence of adhesions between colonic tissue and other organs (0 none, 1 minor, and 2 major
adhesions) and the consistency of colonic fecal material (0 formed, 1 loose, and 2 liquid stools) were
also scored [22]. All parameters of macroscopic damage were recorded and scored for each rat by
two observers blinded to the treatment. At the time of experiment, the weight of the spleen was
also measured.

Table 1. Criteria for scoring macroscopic colonic ulceration and inflammation.

Score Appearance

Macroscopical

0 Normal
1 Localized hyperemia, no ulcers
2 Ulceration without hyperemia or bowel wall thickening
3 Ulceration with inflammation at one site
4 2 or more sites of ulceration and inflammation
5 Major sites of damage extending >1 cm along length of colon

6 When an area of damage extended >2 cm along length of colon. Score was increased by 1 for
each millimeter of bowel wall thickness

2.4. Determination of Tissue Myeloperoxidase

MPO levels in colonic tissues were determined as previously reported by Antonioli et al. [20] and
applied as a quantitative index to estimate the degree of mucosal infiltration by polymorphonuclear
cells [20]. Briefly, the colonic tissue samples (300 mg) were homogenized 3 times (30 s each) at 4 ◦C
with a polytron homogenizer (Cole Parmer Homogenizer, Vernon Hills, IL, USA) in 1 mL of ice-cold
50 mmol/L phosphate buffer (pH 6.0) containing 0.5% of hexadecyltrimethylammonium bromide to
prevent the pseudoperoxidase activity of hemoglobin, as well as to solubilize membrane-bound MPO.
The homogenate was sonicated for 10 s, frozen–thawed 3 times, and spun by centrifugation for 20 min
at 18,000× g. The supernatant was then recovered and used for determination of MPO by means of
a kit for an enzyme-linked immunosorbent assay (Bioxytech, Oxis International Inc., Portland, OR,
USA). All samples were assayed within 2 days from collection. The results were expressed as the ng of
MPO per 100 mg of tissue.

2.5. Cytokine Assays

Tissue TNF and IL-1β levels were measured with enzyme-linked immunosorbent assay kits
(BioSource International, Camarillo, CA, USA) [23,24]. For this purpose, tissue samples, stored
previously at 80 ◦C, were weighed, thawed, and homogenized in 0.3 mL of phosphate-buffered saline
(PBS), pH 7.2/100 mg of tissue, at 4 ◦C and centrifuged at 13,400× g for 20 min. Aliquots (100 µL) of
the supernatants were then used for the assay. Tissue TNF and IL-1β levels were expressed as the
picogram per milligram of tissue or nanogram per milligram of tissue, respectively.

2.6. Assessment of Visceral Sensitivity

The extent of the abdominal contractions (VMR) due to colorectal distension was measured by
performing electromyography (EMG) on the abdominal muscles and used as a quantitative measure of
visceral sensitivity in the rats. Two EMG electrodes were sutured into the external oblique abdominal
muscles of the animals under anesthesia and exteriorized dorsally [25]. VMR assessment was carried
out under light anesthesia (2% isoflurane). A lubricated latex balloon (length: 4.5 cm) was attached on
an embolectomy catheter and connected to a water-filled syringe used to perform colorectal distension
(CRD). The syringe was used to fill the balloon placed into the colon with increasing volumes of water
(0.5, 1, 2, and 3 mL, referred to as the distension volume). After colorectal stimulation, the EMG signal
was recorded, amplified and filtered (Animal Bio Amp, ADInstruments, Colorado Springs, CO, USA),
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digitized (PowerLab 4/35, ADInstruments), analyzed, and quantified using LabChart 8 (ADInstruments).
To quantify the VMR magnitude under each distension volume, the area under the curve (AUC)
immediately before distension (30 s) was subtracted from the AUC during balloon distension (30 s),
and the responses were expressed as a percentage increase from the baseline. The time elapsed between
two consecutive distensions was 5 min. The entire measurement process lasted about 25 min.

2.7. Drugs and Reagents

Dimethyl sulfoxide, DNBS, DEX, MRS1523, and methylcellulose were purchased from
Sigma-Aldrich (St. Louis, MO, USA). The synthesis of AR170 was performed as previously reported [17].

2.8. Statistical Analysis

The results are presented as the mean ± S.E.M. unless otherwise stated. The significance of
differences was evaluated in the raw data by a one-way analysis of variance followed by a post hoc
analysis via a Student–Newman–Keuls test or Bonferroni’s test. p-values < 0.05 were considered
significantly different. All statistical procedures were performed using commercial software (GraphPad
Prism, version 7.0 from GraphPad Software Inc., San Diego, CA, USA). Visceral sensitivity data were
analyzed using the “Origin 9” software (OriginLab, Northampton, MA, USA).

3. Results

3.1. Body Weight and Spleen Weight

Six days after DNBS administration, the rats displayed a significant decrease in their body
weight in comparison with the control animals (Figure 2A). Treatment with AR170 significantly
counteracted the body weight decrease observed in the rats with colitis, whereas the animals subjected
to dexamethasone administration did not experience this phenomenon (Figure 2A). The induction of
colitis was also characterized by a significant increase in spleen weight. This increase was counteracted
by AR170 and via dexamethasone administration (Figure 2B).
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Figure 2. The effect of AR170 (3 mg/kg/day), alone or in combination with MRS1523 (8 mg/kg/day)
or dexamethasone (DEX; 1 mg/kg/day), on body weight (A) and spleen weight; (B) at day 6 after the
induction of colitis with 2,4-dinitrobenzene sulfonic acid (DNBS). Each column represents the mean
±SEM (n = 8–10). * p < 0.05, significant difference vs. the control group; a p < 0.05, significant difference
vs. the DNBS group; $ p <0.05, significant difference vs. the DNBS+AR170 group.
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3.2. Colonic Length and Macroscopic Damage Score

Six days after DNBS administration, the inflamed rats were characterized by a shortening of
colonic length (−43.7%) compared to the control animals. Treatment of the inflamed rats with the
A3AR agonist AR170 or DEX significantly attenuated the decrease in colonic length (Figure 3A).

The administration of DNBS was associated with colonic thickening and ulcerations, with
marked areas of transmural inflammation. Moreover, adhesions and bowel dilations were detected,
with macroscopic damage accounting for 8.6 ± 0.8. In this setting, the macroscopic damage was
reduced significantly by AR170 and DEX (Figure 3B). MRS1523 counteracted the effects of AR170
(Figure 3A,B), but not dexamethasone efficacy (not shown).
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Figure 3. Effects of AR170 (3 mg/kg/day), alone or in combination with MRS1523 (8 mg/kg/day) or DEX
(1 mg/kg/day), on colon length (A) and the macroscopic damage score (B) at day 6 after the induction
of colitis with DNBS. Each column represents the mean ±S.E.M. (n = 8–10). * p < 0.05, significant
difference vs. control group; a p < 0.05, significant difference vs. DNBS group; $ p < 0.05, significant
difference vs. DNBS + AR170 group.

3.3. MPO Levels in Colonic Tissues

Rats with DNBS-induced colitis showed a marked increase in colonic MPO levels
(35 ± 8.6 ng/mg tissue) compared to the control animals (2.8 ± 0.5 ng/mg tissue). Treatment with
all test drugs significantly prevented the increase in colonic MPO levels associated with DNBS
administration (Figure 4A). MRS1523 significantly counteracted AR170 (Figure 4A) but not the
dexamethasone effects (not shown).

3.4. TNF and IL-1β Levels in Colonic Tissues

Colonic inflammation induced by DNBS was associated with a significant increase in tissue
TNF levels (11.5 ± 0.52 pg/mg tissue) compared to the values obtained in the control animals
(3.8 ± 0.9 pg/mg tissue). Treatment with AR170 or DEX significantly decreased the concentration of
this cytokine in colonic tissues (Figure 4B).

Rats with colitis displayed a significant increase in colonic IL-1β levels (196.1 ± 36.3 ng/mg tissue)
compared to the control animals (45.9 ± 21 ng/mg tissue). Treatment with AR170 and DEX was
associated with a significant decrease in IL-1β levels (Figure 4C). The effects of AR170 on tissue TNF
and IL-1β were counteracted by MRS1523 (Figure 4C). In contrast, the A3AR antagonist did not alter
the dexamethasone effect (not shown).
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significant difference vs. DNBS group; $ p < 0.05, significant difference vs. the DNBS + AR170 group.

3.5. Effect of the Acute and Repeated Treatment with AR170 on the Visceral Pain Induced by DNBS

The measurement of the VMR to colorectal distension was used to assess the visceral sensitivity
alterations in rats. Colorectal distension was carried out by inflating the balloon positioned in the
colon with increasing volumes (0.5–3 mL). After DNBS injection, the VMRs induced by 1, 2, and 3 mL
were significantly higher than those of the controls (Figures 5 and 6). This visceral hypersensitivity
was established in concomitance with intestinal inflammation (day 8, Figure 6A) and persisted in
the remission phase of colitis (day 14, Figures 5 and 6B), as previously reported in the literature [21].
On day 14, the acute administration of AR170 (0.5, 1.5, and 4.5 mg/kg) dose-dependently relieved the
visceral hypersensitivity induced by DNBS. The highest dose (4.5 mg/kg) completely reversed the
sensitive alterations back to the values of the controls. AR170 1.5 mg/kg significantly reduced the
VMR of the animals to CRD (2–3 mL), while the lowest dose (0.5 mg/kg) was only partially effective,
significantly lowering the VMR only in response to a 3 mL stimulus. Pre-treatment with the selective
A3AR antagonist MRS1523 (8 mg/kg) [26] completely abolished the acute pain-relieving effects of
AR170 (4.5 mg/kg).

Relying on the acute pain-relieving efficacy shown by AR170 1.5 mg/kg in the previous tests,
we chose this dose for the following experiment, in which the therapeutic effect of the repeated
administration of AR170 on the visceral pain induced by DNBS was examined. Repeated treatment
with AR170 (1.5 mg/kg) was able to counteract the development of visceral hypersensitivity induced by
colitis in rats. On day 8, during the acute inflammatory phase, DNBS animals treated with the A3AR
agonist showed a significant decrease of their abdominal response to both 1 and 3 mL (Figure 6A).
This effect was maintained in the remission phase of colitis (day 15, Figure 6B) when the VMR to both
1 and 2 mL significantly decreased in the DNBS animals receiving AR170. Even the response to 3 mL
appeared to be reduced on day 15, despite not reaching statistical significance (Figure 6B).
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Figure 5. Visceromotor response (VMR) to the colorectal distension of DNBS treated animals after
the acute administration of AR170 (0.5–4.5 mg/kg i.p.) both in the absence and the presence of the
selective A3AR antagonist MRS1523 (8 mg/kg i.p., injected 15 min before AR170). Tests were performed
14 days after DNBS injection and 15 min after the acute administration of AR170. Control animals
received the vehicle. Each value represents the mean ± S.E.M. (n = 4). * p < 0.05 and ** p < 0.01 vs.
the control + vehicle treated animals. ˆ p < 0.05 and ˆˆ p < 0.01 vs. DNBS + vehicle treated animals.
§§ p < 0.01 vs. DNBS + AR170 4.5 mg kg−1 treated animals.
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Figure 6. Visceromotor response (VMR) to the colorectal distension of DNBS-treated animals after the
repeated administration of AR170 (1.5 mg/kg/day). The test was performed on day 8 (A) and 15 (B) after
DNBS injection, 24 h after the last treatment. Control animals received the vehicle. Each value represents
the mean ± S.E.M. (n = 4). * p < 0.05 and ** p < 0.01 vs. the control + vehicle treated animals. ˆ p < 0.05
and ˆˆ p < 0.01 vs. DNBS + vehicle treated animals.

4. Discussion

The pivotal role played by adenosine in regulating the inflammatory responses and counteracting
tissue injury through the engagement of specific receptors is widely recognized [7,27,28].
The pharmacological modulation of the adenosine receptor subtype A2A and A3 ARs have demonstrated
their beneficial effects in several models of experimental colitis, thereby driving the scientific community
to develop novel and selective ligands for these receptor subtypes as promising tools to manage
IBDs [16,29–33]. Unfortunately, the great expectations for applying A2AAR agonists in clinical practice



Cells 2020, 9, 1509 9 of 13

are challenged by the severe side effects of such ligands at the cardiovascular level [34]. Hence,
increasing attention is being placed on the pharmacology of A3AR.

This receptor subtype is upregulated in activated immune cells, including neutrophils, monocytes,
macrophages, dendritic cells, lymphocytes, splenocytes, bone marrow cells, and mast cells [10].
Once pharmacologically activated, A3AR exerts a marked immunosuppressive effect associated with a
safe and well tolerated profile, as reported in preclinical studies and in Phase I and II human clinical
studies [10].

For these reasons, today, A3AR is considered a novel and very promising therapeutic target, from
which new agonists characterized by improved dynamic and kinetic properties are being designed.
In this regard, AR170 is of great interest due to its high A3AR affinity (Ki A3AR = 0.44 nM in the
radioligand binding assay) and remarkable selectivity versus other AR subtypes (i.e., about 97,000-fold
selectivity versus A2AAR) [17,18], making it among the most potent and selective A3AR agonists reported
to date.

Presently, the pharmacological management of IBD patients is far from satisfactory. Usually, the
targeted treatments for the inflammatory aspect of these diseases are unsatisfactory, and the modulation
of visceral hypersensitivity is ineffective.

Visceral pain is a critical component of IBD, which often persists even after complete resolution of
the inflammation, significantly impacting the well-being of the patients [35–37]. Based on these findings,
we developed the present study to investigate the putative anti-inflammatory and pain-relieving
effects of AR170 in a rat model of colitis. To pursue the above aims, the effects of AR170 were
assayed in a rat model of colitis elicited by DNBS. DEX was used as a glucocorticoid drug with known
anti-inflammatory activity to assess the relative anti-inflammatory potency of the A3AR ligand.

DNBS-induced colitis is a murine model reminiscent of human Crohn’s disease, which is
characterized by body weight loss, diarrhea, ulceration and bleeding, the depletion of goblet cells,
and the formation of granulomas within the gut wall [20]. In parallel, it has been reported that
DNBS-induced colitis represents a useful model for studying visceral hypersensitivity in response to
colorectal distension [21]. The suitability of this preclinical model to assay both the anti-inflammatory
and pain-relieving properties of novel drugs increases the translational potential of this research.

In the present study, AR170 administration was associated with significant improvements in all
tissue inflammatory parameters, including colon length macroscopic scores, tissue cytokines (TNF and
IL-1β), and tissue polymorphonuclear neutrophils and macrophage infiltration (MPO). Consistent
with the data presented here, A3AR agonists were previously evaluated and shown to be effective in
experimental models of inflammatory intestinal disorders [12,29,31]. In particular, it was reported in
murine DSS colitis that the activation of A3AR, expressed in colonic epithelia, exerts anti-inflammatory
activity through the inhibition of the pro-inflammatory cytokine TNF and IL-1β via the inhibition
of the NF-κB signaling pathways [12]. Recently, these preclinical data have been substantiated by
Ren et al. [11]. In this study, the pharmacological stimulation of A3AR, via Cl-IB-MECA, decreased TNF
and IL-1β production and attenuated NF-κB p65 activation in colonic tissues in patients with ulcerative
colitis, thus corroborating the use of A3AR agonists as an efficacious treatment for IBD patients [11].

Although abdominal pain is an important patient-reported outcome for the evaluation of
therapeutic efficacy [38,39], most treatments for Crohn’s disease are primarily focused on inflammation
control and only marginally address the problem of chronic abdominal pain [40]. Moreover, opioid
treatment, the current frontline therapy for abdominal pain, has serious complications and produces
a condition called narcotic bowel syndrome, which leads to an exacerbation of pain rather than
relief [41,42].

Over the years, increasing interest has been focused on characterizing the molecular mechanisms
involved in visceral hypersensitivity to identify novel targets for managing abdominal pain [43–47].
The adenosine system was also previously demonstrated to have an important role in pain
signaling [48,49]. As a result, A3AR modulation emerged as an effective strategy for the treatment of
chronic pain with different etiologies, as attested by several preclinical studies [15,50–53].
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In addition to its anti-inflammatory properties, the present work demonstrated the protective
effects of AR170 on the development of visceral pain induced by DNBS in animals, as observed during
both the acute phase of colitis and remission. The protective efficacy of AR170 on the development of
visceral pain after DNBS injection was comparable to that shown by DEX in a previous study conducted
by our research group using the same preclinical model of colitis [21]. However, while the pain-relieving
effect of DEX is likely attributable to its anti-inflammatory activity and the resulting prevention of
intestinal damage, AR170 seems to directly modulate visceral pain signaling. Notably, the mediation
of pain by AR170 was detected after the repeated administration of a lower dose (1.5 mg/kg) compared
to that used for obtaining protection from intestinal damage (4.5 mg/kg), suggesting the involvement
of A3AR in the regulation of visceral sensitivity. A3AR activation mediated by AR170 may limit
excitatory neurotransmission, which is altered in visceral pain [54–56]. Numerous results in the
literature demonstrate neuroprotective effects related to A3AR activation and the resulting decrease
in neuronal excitability [15,57–60]. This mechanism could be adjuvant to the anti-inflammatory
properties, actively contributing to the therapeutic effects of AR170 on visceral pain. Notably, previous
evidence [15] demonstrating the modulatory role of adenosine A3 receptors in the regulation of colonic
neuromuscular functions in the presence of bowel inflammation led researchers to hypothesize the
potential application of the A3AR agonist as a suitable tool for the management of IBD patients
characterized by enhanced bowel motor activity and diarrhea.

AR170 has also proven effective in the acute relief of visceral pain, showing additional advantages
over the use of steroidal and non-steroidal anti-inflammatory drugs [61]. These data agree with
the anti-hyperalgesic effects previously reported for other A3AR agonists [14,15], supporting the
hypothetical direct modulation of visceral pain transmission, which may represent a further benefit of
AR170 in the therapy of bowel diseases.

5. Conclusions

Overall, the present results suggest that the pharmacological modulation of A3AR represents a
novel and appealing therapeutical strategy for the management of inflammatory bowel disorders,
as this method is contextually able to dampen the inflammatory process and mitigate the visceral
hypersensitivity associated with colitis.
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