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The early atherosclerotic lesions develop by the accumulation of arterial foam cells derived mainly 
from cholesterol‑loaded macrophages. Therefore, cholesterol and cholesteryl ester transfer protein 
(CETP) have been considered as causative in atherosclerosis. Moreover, recent studies indicate the 
role of trimethylamine N‑oxide (TMAO) in development of cardiovascular disease (CVD). The current 
study aimed to investigate the association between TMAO and CETP polymorphisms (rs12720922 
and rs247616), previously identified as a genetic determinant of circulating CETP, in a population of 
coronary artery disease (CAD) patients (n = 394) and control subjects (n = 153). We also considered 
age, sex, trimethylamine (TMA) levels and glomerular filtration rate (GFR) as other factors that can 
potentially play a role in this complex picture. We found no association of TMAO with genetically 
determined CETP in a population of CAD patients and control subjects. Moreover, we noticed no 
differences between CAD patients and control subjects in plasma TMAO levels. On the contrary, lower 
levels of TMA in CAD patients respect to controls were observed. Our results indicated a significant 
correlation between GFR and TMAO, but not TMA. The debate whether TMAO can be a harmful, 
diagnostic or protective marker in CVD needs to be continued.

Abbreviations
CAD  Coronary artery disease
CVD  Cardiovascular disease
TMA  Trimethylamine
TMAO  Trimethylamine N-oxide
CETP  Cholesteryl ester transfer protein
GFR  Glomerular filtration rate

Despite significant progress in prevention and treatment strategies of coronary artery disease (CAD), cardio-
vascular events still constitute the leading cause of mortality and morbidity in the modern  world1. CAD is char-
acterized by atherosclerosis progressively narrowing the epicardial coronary arteries and impairing myocardial 
blood flow. The early atherosclerotic lesions develop by the accumulation of arterial foam cells mainly derived 
from cholesterol-loaded  macrophages2. Therefore, cholesterol metabolism has been considered as causative in 
 atherosclerosis3.
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The pathogenesis and potential treatment of the atherosclerotic lesions have been studied using numerous 
animal models, such as a  mouse4. However, related to cholesterol metabolism, resistance to atherosclerosis is 
the major limitation of mouse  models5. The absence of cholesteryl ester transfer protein (CETP) in mice causes 
lower plasma cholesterol levels, with high-density lipoprotein (HDL) as the major circulating  lipoprotein6,7. 
Thus, genetic modifications, such as low-density lipoprotein (LDL) receptor deficient  (LDLR−/−) and apolipo-
protein E knockout  (ApoE−/−), have been applied to induce hypercholesterolemia in  mice8–12. Using a knockout 
mouse model, trimethylamine N-oxide (TMAO) has been indicated as the key pro-atherogenic  compound13. 
High blood TMAO levels activate macrophage influx of cholesterol which leads to foam cell formation and 
ultimately atherosclerotic  lesions14. TMAO is produced by the hepatic flavin monooxygenases (FMOs), mainly 
FMO3, converting trimethylamine (TMA) as a  substrate15,16. TMA is a waste product of gut microbes, which 
utilize choline or carnitine as a carbon fuel source. Hence, a link between gut microbes and atherosclerosis has 
been  proposed13,17,18. However, in  ApoE-/- mice transfected with human CETP, an increase in plasma TMAO was 
associated with a significantly reduced area of aortic  lesions19. Nevertheless, recent clinical studies have shown 
a positive correlation between elevated plasma TMAO and an increased risk for major adverse cardiovascular 
events defined as death, myocardial infarction, or  stroke20,21.

According to the current dogma, CETP decreases HDL-cholesterol and increases low-density lipoprotein 
LDL-cholesterol. Remarkably, genome-wide association studies followed by a Mendelian  randomization22 have 
shown that some independent genetic variants (in particular rs12720922 and rs247616), located in the CETP 
gene, largely determine CETP concentration. Per-allele increase in serum CETP was 0.32 µg/mL for rs247616-
C and 0.35 µg/mL for rs12720922-A22. Moreover, these CETP SNPs have been causally associated with lower 
concentrations of HDL components, while no associations with LDL components have been  measured23. This 
demonstrates that rs12720922 and rs247616 are makers able to predict HDL-cholesterol levels, and corrobo-
rates the hypothesis that CETP can mediate cardiovascular risk by affecting HDL-cholesterol levels. Thus, in 
accordance with previous evidence on mice model, it can be hypothesized that the different genetic background 
determining the CETP concentration might modulate the association between TMAO and CVD risk.

Therefore, the aim of the current study was to investigate the association between TMAO and CETP poly-
morphisms (rs12720922 and rs247616), previously identified as genetic determinants of circulating CETP and 
HDL  levels22,23, in a population of CAD patients and control subjects with no self-reported medical history of 
cardiovascular disease (CVD).

Results
Descriptive statistics. Among all the 547 enrolled subjects, 358 were male (65.4%), and 189 were female 
(34.6%). The control group was composed of 153 individuals, while 394 patients suffered from CAD. Descriptive 
statistics for the analysed variables are displayed in Table 1.

TMAO and TMA in CAD patients and controls. No differences were noted in row values of plasma 
TMA between controls 0.62 ± 0.13 μM (mean ± SD) and CAD patients 0.60 ± 0.11 μM (Fig. 1A). However, Gen-
eralized Linear Model (GLM) analysis, including adjustments for glomerular filtration rate (GFR), age, body 
mass index (BMI) and sex, identified a significant difference between the two groups for TMA (expected mar-
ginal means ± SD: controls = 0.63 ± 0.01 μM; CAD patients = 0.60 ± 0.01 μM; p = 0.004). TMAO was not signifi-
cantly different between controls and CAD patients (Fig. 1B), regardless of the row values (p = 0.712) or in the 
analysis adjusted for the covariates (p = 0.251).

Table 1.  Characteristics of the study participants. Data are shown as mean ± standard deviation or number 
(%). BMI body mass index, GFR glomerular filtration rate, STEMI ST-elevation myocardial infarction, 
NSTEMI non-ST-elevation myocardial infarction, UA unstable angina.

Control
n = 153

CAD
n = 394 p

Age in years 64.3 ± 8.1 66.4 ± 11.7 0.016

Female 64 (41.8) 125 (31.7) 0.028

BMI in kg/m2 27.8 ± 4.1 28.8 ± 4.5 0.030

Glomerular filtration rate (GFR) 92.1 ± 31.0 86.6 ± 34.7 0.079

Stable angina 0 196 (49.7)

Acute coronary syndrome 0 198 (50.3)

STEMI 0 44 (11.2)

NSTEMI 0 111 (28.2)

UA 0 43 (10.9)

Hypertension 63 (41.2) 301 (76.4) 0.001

Diabetes mellitus 21 (13.7) 118 (29.9) 0.001

Current or past smokers 59 (38.6) 196 (49.7) 0.022
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Genotyping. Genotype and minor allele frequencies of the selected polymorphisms are reported in Table 2. 
All the polymorphisms were in Hardy–Weinberg Equilibrium (HWE) (p > 0.05) and minor allele frequencies 
(MAF) at both rs12720922 and rs247616 SNPs were consistent with Northern Europe reference population data 
(Table 2).

CETP SNPs are directly associated with HDL‑cholesterol levels. Since most of the CAD patients 
were treated with statins (commonly used as primary or secondary prevention measurement), we relied on a 
Mendelian randomization-based approach to study the impact of CETP and HDL-cholesterol on TMA and 
TMAO. Despite the potential interference of statins treatment, rs12720922 and rs247616 CETP SNPs were sig-
nificantly associated with HDL-cholesterol levels in the total population (Supplementary Fig. S1 online). Con-
versely, these polymorphisms were not associated with LDL-cholesterol or total cholesterol levels. This evidence 
suggests that rs12720922 and rs247616 SNPs can selectively predict HDL-cholesterol even in presence of statin 
treatment. However, since the risk of unpredictable effects due to the statin treatment cannot be excluded (Sup-
plementary Table S1 online), we confirmed the usage of the Mendelian randomization-based approach for the 
subsequent analysis and did not consider the raw data on lipid profile.

CETP SNPs are not directly associated with CAD. Chi-square analysis revealed that genotypes 
were not differently distributed among controls or CAD patients, thus neither CETP rs247616 (p = 0.426) nor 
rs12720922 (p = 0.488) appear to be directly associated with CVD considering a codominant model. Moreo-
ver, no associations were detected using additive models; similarly, no differences in the distribution of alleles 
between the two classes were detected for any of the analysed SNP (Table 3).

Effects of different CETP genotypes on TMAO, TMA and TMAO/TMA. CETP rs12720922 geno-
type was associated with TMAO levels (p = 0.008) and TMAO/TMA ratio (p = 0.018) (GLM analysis; sex, age 
and GFR as covariates; Fig. 2); conversely, it was not linked to TMA levels (p = 0.159). Accordingly, the reces-

Figure 1.  Plasma TMA (A) and TMAO (B) concentrations in controls (n = 153) and CAD (n= 394) patients. 
Scatter dot plot with lines as median values.

Table 2.  Genotypic data in the analysed population. MAF minor allele frequency.

CETP rs247616
n (%)

CETP rs12720922
n (%)

Genotype frequency

CC 238 (43.5) AA 17 (3.1)

CT 249 (45.5) AG 171 (31.3)

TT 60 (11.0) GG 359 (65.6)

HWE (P) 0.182 0.384

MAF current study population 0.337 0.187

MAF Estonian population (dbSNP) 0.317 0.189

MAF European population (gnomAD–Genomes) 0.319 0.179
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sive model resulted in the best fitting, displaying the lowest Akaike’s information criterion (AIC) and Bayes-
ian information criterion (BIC) values both for both rs12720922 (AIC = 3775.1; BIC = 3809.6) and rs247616 
(AIC = 3781.2; BIC = 3811.4). Indeed, with respect to rs12720922-AG/GG, rs12720922-AA displayed higher 
TMAO values (p = 0.004) and higher TMAO/TMA ratio (p = 0.020).

On the contrary, CETP rs247616 was not associated with TMAO, TMA, or TMAO/TMA levels (sex, age and 
GFR as covariates).

TMAO, TMA in CVD; CETP genetic background association. GLM analysis showed a different asso-
ciation between TMAO or TMAO/TMA levels and health status (controls vs CAD patients) depending on the 
rs247616 genotype. In particular, the rs247616-CC individuals belonging to the control group displayed lower 
TMAO levels than the carriers of the same genotype in the CAD group. On the other hand, T carriers, that had 
higher TMAO values in controls, exhibited reduced TMAO levels in the CAD group (P = 0.049) (Supplementary 
Fig. S2A online). This evidence preliminarily suggested that the increase of TMAO in CAD is typical of those 
individuals that carry the rs247616-CC risk genotype (associated to genetically determined higher CETP and 
lower HDL levels), but is not generalizable to the entire population. A similar effect was observed for TMAO/
TMA ratio, which was different in the control or CAD group depending on the rs247616 genotype (p = 0.046) 

Table 3.  Differences in genotypic and allelic distributions between controls and CAD patients.

CAD n (%) Control n (%) versus p

rs247616

CC 178 (45.2) 60 (39.2) CT + TT 0.208

CT 173 (43.9) 76 (49.7) CC 0.192

TT 43 (10.9) 17 (11.1) CC 0.623

CC + CT 351 (89.1) 136 (88.9) TT 0.947

C 529 (67.1) 196 (64.1) T 0.334

T 259 (32.9) 110 (35.9) C 0.334

rs12720922

AA 12 (3.0) 5 (3.3) AG + GG 0.893

AG 129 (32.8) 42 (27.4) AA 0.662

GG 253 (64.2) 106 (69.3) AA 0.992

AA + AG 141 (35.8) 47 (30.7) GG 0.263

A 153 (19.4) 52 (17.0) G 0.357

G 635 (80.6) 254 (83.0) A 0.357

Figure 2.  Effect of rs12720922 genotype on plasma TMAO concentrations (A) and TMAO/TMA ratio (B) in 
controls and CAD patients. Scatter dot plot with lines as median values. *p < 0.05, **p < 0.01.
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(Supplementary Fig. S2B online). No significant TMA variations between the control or CAD group were meas-
ured neither in dependence on the rs12720922 (p = 0.903) nor the rs247616 (p = 0.569) genotype.

Haplotype association with CVD, TMAO and TMA. Analysis of haplotypes revealed that it was not 
possible to demonstrate a cumulative effect of the SNPs from data collected in this study. Indeed, distribution of 
haplotypes in CAD patients was not different in comparison to controls (p = 0.19) (Table 4).

Moreover, there was not a significant association between haplotypes and TMAO (global haplotype associa-
tion, p = 0.45) nor TMA levels (global haplotype association, p = 0.16) (Table 5).

Other markers. TMAO significantly correlated with GFR (Spearman coefficient = − 0.289; p = 0.001) and 
age (Spearman coefficient = 0.196; p = 0.000). TMA was associated with GFR (Spearman coefficient = − 0.104; 
p = 0.015) as well as BMI (Spearman coefficient = − 0.146; p = 0.001).

Discussion
In this study, we found no association between TMAO levels and genetically determined CETP in a population 
of CAD patients and control subjects. Moreover, we noticed no differences between CAD patients and control 
subjects in plasma TMAO levels.

In particular, we investigated two SNPs, rs247616 and rs12720922, as largely determining CETP 
 concentration22. An increase in genetically determined serum CETP concentration has been previously asso-
ciated with decreased total cholesterol concentration and HDL-cholesterol  concentration22, with CETP as an 
important determinant of HDL-cholesterol, but not affecting LDL-cholesterol concentration and  composition23. 
This evidence was essential in the design of this study since direct measurement of HDL- and LDL-cholesterol 
were not reliable markers in the recruited population, because most of the CAD patients were treated with statins 
(commonly used as primary or secondary prevention measurement). Results on CETP rs247616 genotyping 
were similar to those previously shown in the Polish  population24. Despite the comparability in CETP rs247616 
genotype and the higher number of subjects recruited, we were not able to observe significant differences on 
the rs247616 genotypes distribution between CAD patients and control groups. Similarly, no significant differ-
ences were observed for the rs12720922 genotype, revealing that the risk-alleles were not differently distributed 
between controls or CAD patients. Thus, we failed to find an association between the HDL-cholesterol increas-
ing genotypes of CETP to CVD. It must be noted that genetic mechanisms raising plasma HDL-cholesterol do 
not decrease the risk of myocardial  infarction25, and only SNPs affecting LDL-cholesterol levels or both, LDL-
cholesterol and HDL-cholesterol levels, influence CVD  risk26.

Moreover, data collected in the current study did not support the hypothesis that TMAO is directly associ-
ated with CVD. We observed similar plasma TMAO levels in patients with confirmed angiographically CAD 
and control subjects with no medical history of CVD, and plasma TMAO concentration were coherent with 

Table 4.  Haplotype frequencies estimation (n = 547) in the total population, in controls and CAD groups.

rs247616 rs12720922 Total Controls CAD Cumulative frequency

C G 0.4829 0.4706 0.4883 0.4829

T G 0.3297 0.3595 0.3175 0.8126

C A 0.1798 0.1699 0.183 0.9924

T A 0.0076 0 0.0112 1

Table 5.  Haplotype association with TMAO and TMA in the total population.

rs247616 rs12720922 Frequency Difference (95% CI) p

(A) Haplotype association with TMAO (n = 547, adjusted by 
sex + age + BMI + GFR)

1 C G 0.4831 0.00 –

2 T G 0.3295 0.13 (− 0.51–0.76) 0.69

3 C A 0.1796 0.31 (− 0.46–1.08) 0.43

rare * * 0.0078 − 1.37 (− 4.91–2.17) 0.45

Global haplotype association p-value 0.45

(B) Haplotype association with TMA (n = 547, adjusted by sex + age + BMI + GFR)

1 C G 0.4829 0.00 –

2 T G 0.3297 0.02 (0–0.03) 0.039

3 C A 0.1798 0.02 (0–0.03) 0.059

rare * * 0.0076 0.06 (− 0.03–0.16) 0.200

Global haplotype association p-value 0.16
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values previously measured in the general  population27. Moreover, no significant pure associations between the 
CETP genotypes and TMAO metabolism has been found. Nevertheless, some aspects of the CETP genotype 
can be mentioned. Firstly, higher TMAO levels have been measured in the rs12720922-AA carriers, which are 
the subjects with genetically elevated circulating CETP and lower HDL-cholesterol levels. On the contrary, 
rs12720922-G carriers displayed similar levels of TMAO in both groups. However, it must be noticed that the 
group of s12720922-AA carriers in CAD patients is limited to a very small number of subjects (n = 12), which is 
3.0% of examined CAD population. Secondly, preliminary evidence suggested that the association between high 
TMAO and CAD is peculiar of the rs247616-CC risk genotype (which is associated to higher CETP and lower 
HDL levels), but is not generalizable to the entire population. Thus, the involvement of CETP in CAD seems to 
be more complex than initially  hypothesized24, and the association between TMAO and CAD might be not as 
strong as previously  suggested28,29. In fact, despite previously reported the pro-atherogenic effect of  TMAO13, 
recent studies did not observe a positive correlation between plasma TMAO concentrations and atherosclerosis 
 development30,31.

Previous evidence suggested an important implication of HDL metabolism in modulating the association 
between TMAO and atherosclerosis. Firstly, since the production of TMAO is dependent on liver  FMO315, 
genetic variants of FMO3 have been implicated in a number of  diseases32 and TMA/FMO3/TMAO has been 
identified as a key  pathway16,33. In particular, expression of FMO3 modifications in  LDLR−/− mice alters circulat-
ing and hepatic lipid  levels16. Moreover, knockdown of FMO3 reorganizes whole body cholesterol balance by 
regulation of reverse cholesterol  transport33. Moreover, in humans, FMO3 is significantly associated with age, 
gender, and  genotype34. Indeed, several cofounding factors that mediates the association between TMAO and 
atherosclerosis has been identified. We have not determined FMO3 genotype, but differences in TMA/TMAO 
ratio due to differences in the amount and activity of FMO3 might be present in our  population16, 35. For this 
reason, both age and gender were a priori selected as covariates in statistical analyses. Another aspect to con-
sider is that CVD and kidney disease (KD) are closely  interrelated36 and diminished renal function is strongly 
associated with morbidity and mortality in heart failure  patients37. In  ApoE−/− mice model of atherosclerosis, 
the hypercholesterolemia led to early renal dysfunction that can progress into chronic  KD38. In chronic KD, 
TMAO elimination from the body fails, causing the elevation of its plasma  concentration39. Therefore, higher 
plasma TMAO in humans was suggested as a marker of kidney  damage40. Since plasma TMAO has been inversely 
correlated with  GFR41, some studies suggest that GFR can be a cofounder in this  association42–44. Moreover, in 
the end-stage KD patients, not only TMAO but also plasma TMA is  elevated39. Thus, we also added GFR as a 
covariate in the analysis investigating the relationship between TMA/TMAO levels and CVD, so we can exclude 
that GFR could be responsible for the observed results.

Finally, it is worthy of note that chronic, low-dose oral TMAO treatment showed a reduction in diastolic 
pressure and cardiac fibrosis in spontaneously hypertensive  rats45. Since TMAO stabilize proteins against various 
environmental stress factors, including high hydrostatic  pressure46, TMAO has been suggested as a result rather 
than a cause of  CVD29. Thus, not TMAO, but TMA has been suggested as implicated in  CVD47. In our results, 
marginally lower levels of TMA in CAD patients respect to controls were observed. Therefore, the microbial 
origin of TMA is of great interest. Indeed, a major role is played by the microbiome in regulating health and well-
being48, and dysbiosis of the gut microbiota has been measured in stroke and transient ischemic attack patients 
whose blood TMAO levels were  decreased49.

In conclusion, the studied polymorphisms had no direct roles in the development of CVD in the studied 
Polish population. Moreover, we observed no differences between CAD patients and control subjects in plasma 
TMAO levels, TMAO which can be affected by intra-individual  variation50. The debate whether TMAO can be 
a harmful, diagnostic or protective marker in  CVD28,29,32 has to be continued.

Materials and methods
Participants. CAD patients were consecutively recruited in one hospital with angiographically confirmed 
CAD or with angina referred to elective or urgent coronary angiography as inclusion criteria. The diagnosis 
of ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction 
(NSTEMI) was established according to the Third Universal Definition of Myocardial Infarction, and unsta-
ble angina (UA) was diagnosed according to the 2015 ESC guidelines for the management of NSTE-ACS351,52. 
Control subjects were recruited in the same region amongst the subjects without a self-reported medical history 
of CVD. The study was approved by the Regional Bioethical Committee (RBC) in Gdansk (KB-27/16 and KB 
32–17). All methods were carried out in accordance with relevant guidelines and regulations approved by RBC. 
Informed consent was obtained from all subjects.

Samples collection. Venous blood samples were collected in EDTA-containing tubes. The plasma samples 
were prepared by centrifugation at 1300×g for 10 min at 18–25 °C, and were kept frozen at − 80 °C for later TMA 
and TMAO analysis.

TMA and TMAO analyses. Plasma TMA and TMAO were determined by the Ultra-Performance Liquid 
Chromatography (UHPLC) tandem mass spectrometry method, based on the methods described  previously53,54. 
UHPLC separation was performer on an XBridge HILIC 3.5 μm (3.0 mm × 50 mm) column on a NEXERA 
Shimadzu UHPLC system coupled with QT4500 SCIEX. Trimethyl-d9-amine HCl  (d9-TMA) was used as an 
internal standard. The 3 μM of  d9-TMA working solution of internal standard (ISWS) was prepared in metha-
nol/acetonitrile (15:85) and 0.1% formic acid (v/v). Calibration samples, QC and plasma samples were pre-
pared by addition 100 μl of cold ISWS to 50 μl of each sample type. All samples were vortexed and kept on ice 
for 15 min for protein precipitation. Centrifuged samples (14,000 rpm, 4  °C, for 20 min.) were divided into 
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two parts: without dilution which were used for analysis of TMA concentration and diluted (5:95 of ISWS) for 
analysis of TMAO. The mobile phase was 70% of acetonitrile with 0.1% formic acid (v/v) and 30% of 15 mmol/L 
ammonium formate with 0.1% formic acid (v/v) at a flow rate of 0.4/min. The mass spectrometer was operated 
in multiple-reaction monitoring (MRM)-positive electrospray ionization (ESI+). MRM parameters are included 
in Supplementary Table S2. Mass spectrometer optimized settings were as follows: IonSpray Voltage = 5.5 kV, 
source temperature = 300 °C, collision gas = 8, curyine gas = 30.0. Calibration curve range was from 0.3 to 30 μM 
and from 0.1 to 30 μM TMAO and TMA respectively. The limits of quantification (LOQ) were 0.3 μM and 
0.1 μM for TMAO and TMA respectively.

DNA extraction and genotyping. Genomic DNA was extracted from blood using the kit for genomic 
DNA purification (A&A Biotechnology, Gdynia, Poland) and it was quantified by NanoDrop 2000 (Thermo Sci-
entific, MA, USA) CETP rs12720922 and rs247616 were assessed in real-time PCR by TaqMan assays (Thermo 
Fisher Scientific, MA, USA), according to the manufacturer instructions.

Statistical analysis. The sample size was calculated through a power analysis performed by G*Power. The 
effect size of TMAO variation in CAD patients respect to controls was calculated from the study of Tang and 
 colleagues18, which has been identified as a high-quality study in the meta-analysis from Qi and  colleagues55. 
The calculated effect size is 1.158; thus, to have a power of 0.95, the minimum sample size is 34 subjects (see 
Supplementary Fig. S3 online).

Power analysis has been performed using G*Power  software56. The Shapiro–Wilk test was used for the analysis 
of the normality of data distribution. Spearman correlation, Chi-square test, Kruskal–Wallis test and General-
ized Linear Model (GLM) were used to test correlations and significant differences among analysed variables. 
Hardy–Weinberg equilibrium was calculated for all the Single Nucleotide Polymorphisms (SNPs) analysed. 
The best fitting model of the association was determined using the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) provided by SNPStats. The model with the lowest AIC and BIC values 
was considered the best fitting model. Haplotype frequencies estimation and global haplotype association were 
calculated using  SNPstats57. If not differently specified, statistical analyses were performed using the SPSS pack-
age for Windows, v.20.0 (SPSS Inc, Chicago, IL).

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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