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Abstract: It is known and accepted that the gut microbiota composition of an organism has an impact
on its health. Many studies deal with this topic, the majority discussing gastrointestinal health.
Adenomatous colon polyps have a high prevalence as colon cancer precursors, but in many cases,
they are hard to diagnose in their early stages. Gut microbiota composition correlated with the
presence of adenomatous colon polyps may be a noninvasive and efficient tool for diagnosis with a
high impact on human wellbeing and favorable health care costs. This review is meant to analyze the
gut microbiota correlated with the presence of adenomatous colon polyps as the first step for early
diagnosis, prophylaxis, and treatment.
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1. Introduction

Trillions of microbes inhabit the human body, and most of them are present mainly in the
gastrointestinal tract. They are more numerous than all of our cells [1]. By different mechanisms
that are not fully understood, the microbiota balance influences our current and future wellbeing [2].
Because of their abundance in the gut, we can affirm that all gastrointestinal diseases are in direct
correlation with the gastrointestinal microbiota balance. Early identification of any unusual changes in
this balance can allow incipient diagnosis, which can ensure, in most cases, successful treatment and
favorable long-term prognosis. A non-invasive, cost-effective, and efficient diagnosis can be ensured,
but an intense study of the microbiota pattern in different intestinal diseases must be validated.

The purpose of this review is to highlight the root of the mechanisms by which nutrients, food
components, and medical interventions that spot the gut microbiota may play a role in the management
of adenomatous colon polyps (ACPs). This paper will principally focus on the data relating to the
effect of gut microbiota modulation and ACP prevention, amelioration, and treatment.
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2. Human Microbiota and Colon Diseases

The diversity and abundance of specific taxa (i.e., species, genus, family) in the gut microbiota
plays a key role in the modulation of human health. Typically, the human gut microbiome is dominated
by five main bacterial phyla: Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomicrobia.
The thousands of metabolites produced by gut microbiota impact the host’s health significantly.

Alterations in the gut microbiota and its metabolites due to a diet that is poor in fiber can lead to
dysfunction of the gut’s epithelial barrier, production of pro-inflammatory cytokines (i.e., Interleukin 6
(IL6), Tumour Necrosis Factor alpha (TNF-α), Interleukin beta (IL1β)), and increase of the gut’s
permeability [3,4]. A high-quality diet reflects gut microbiota diversity and richness [5]. Moreover,
a maternal diet and weaning influence microbiota maturation [6]; that is, the infant’s flavor perception
is modulated by the mother’s diet. From prenatal life and throughout development, children can learn
to enjoy the flavors of healthy foods (i.e., vegetables) [7].

A fiber-rich diet (daily range of 28–35 g for adults) maintains the integrity of the mucus layer and
barrier function of the gastrointestinal tract intact. In animal models, a chronic or intermittent fiber
deficiency leads to dysbiosis with erosion of the mucus layer and barrier dysfunctions that cannot be
prevented by adding purified prebiotic fibers (e.g., inulin, arabinoxylan, β-glucan) [8]. Dysbiosis due
to the lack of fibers in our diet can increase the mucin-degrading bacteria population (e.g., B. fragilis,
B. caccae, and A. muciniphila). Furthermore, dysbiosis can significantly decrease both the production of
short chain fatty acids (SCFAs) and their protective anti-inflammatory properties [3,9].

An unhealthy diet containing red meat, processed meat, fat, sugar, and alcohol is associated with
an increased risk of colorectal cancer (CRC), which is, in most of cases, derived from ACPs [10–15].
Animal-based diets significantly contribute to changes in microbiota composition, development of
inflammation, DNA damage, and impaired apoptosis when compared with plant-based diets [16,17].
Microbiota metabolites formed from the oxidation of species in high-protein diets (i.e., polyamine
and ammonia), high-fat diets (hydrogen sulphide from taurine, secondary bile acids), and alcohol
(i.e., acetaldehyde) contribute to the generation of reactive oxygen species and genotoxicity in the
host [3]. Bacteroides fragilis and Enterococcus faecalis release enterotoxins (i.e., fragylisin) and reactive
oxygen species contributing to DNA damage, inflammation, and injury to the epithelial barrier.

Changes in the abundance of specific bacteria have been used as a biomarker for the screening
of gastrointestinal diseases including ACP, CRC, inflammatory bowel disease (IBD), and irritable
bowel syndrome [18–20]. Gut microbiota dysbiosis has been observed in pouchitis, with an increase
in Ruminococcus gnavus, Bacteroides vulgatus, and Clostridium perfringens, together with a lack of
Lachnospiraceae genera (Blautia and Roseburia) [21]. Positive outcomes have been measured in adults
with mild/moderate ulcerative colitis after 8 weeks of fecal microbiota transplantation (anaerobically
prepared pooled stool) [22]. Enrichment of Fusobacterium nucleatum has been observed to induce
immunosuppressive activity mediated by the inhibition of T cells in colorectal carcinogenesis [23].
A prospective cohort study on 1102 patients affected by colorectal carcinoma associates the amount
of Fusobacterium nucleatum in colorectal cancer tissue with the tumor’s location [24]. Microbiota in
colitis-associated cancer differs from that observed in subjects affected by sporadic cancer without
IBD. Lower Firmicutes and Bacteroidetes with a significant increase in Proteobacteria was observed in
colitis-associated cancer, while a reduction in Bacteriodes and an increase in Fusobacteria was identified
in subjects affected by sporadic cancer [25]. Patients with Crohn’s disease and ulcerative colitis
show a decreased bifidobacterial population and reduction in butyrate-producing bacteria, such as
Faecalibacterium, Eubacterium, Roseburia, Lachnospiraceae, and Ruminococcaceae [26].

The microbial taxa Faecalibacterium, Bacteroides, and Romboutsia were depleted in adenomatous
polyps and cancerogenic mucosa [27,28]. Furthermore, a higher abundance of bacteria belonging to
the Campylobacter genus was identified in patients affected by CRC and adenomatous polyps when
compared with healthy subjects [27]. Several taxa increased (i.e., Bilophila, Desulfovibrio, multiple
Bacteroidetes species), while others decreased (i.e., Veillonella, Firmicutes, Clostridia, and Actinobacteria
family Bifidobacteriales) in patients with adenomas living in the United States when compared with
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controls. In addition, patients with dysbiosis demonstrated increased primary and secondary bile acid
production and changes in sugar, protein, and lipid metabolism [29]. A graphic representation of the
microbiota changes in subjects with ACP and CRC can be seen in Figure 1.
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Figure 1. Changes in the gut microbiota composition in healthy colon, adenoma colon, and carcinoma colon.

The increased interest in gut microbiota composition as the driver of gut phenotype is confirmed by
numerous studies as well as by the efficacy of fecal microbiota transplantation. Although the identification
of specific bacteria components is useful for diagnosis and possible therapeutic interventions, early
preventive strategies aimed to counteract the development of gut dysbiosis and to maintain mucosal
integrity should be considered by promoting, early in life, a daily fiber-rich and epigenetic diet
containing bioactive compounds (i.e., histone deacetylase (HDAC) inhibitors) that are able to properly
modulate colonocytes’ homeostasis [30].

3. Adenomatous Colon Polyps

In Dorland‘s Illustrated Medical Dictionary, a “morbid excrescence” is the definition given to
the polyp. Polyps are related to adenomatous polyps because of the progress of their pathology
and microscopic histology [31]. Adenomatous polyps are divided in three groups: tubular, villous,
and tubule–villous (a mixture of both growth patterns). These groups depend on the grade of dysplasia,
the existence of the adenocarcinoma in adenoma, and the type of histology.

Adenocarcinomas are developed from premalignant lesions, such as ACP, which grow from a
benign polyp (colonic adenoma). It is difficult to highlight the difference between an adenomatous and
a normal polyp (Figure 2). However, the adenomatous type causes important modifications in the
structure of the colon mucosa [32].

The average nuclear diameter of healthy mucosa is 5.6 µm. For adenoma, it is 7.44 µm [33].
During a screening colonoscopy, polyps are identified in 22.5–58.2% of patients. Some subjects

with adenomatous polyps present genetic disorders of colorectal cancer [34].
Patients identified as having adenomatous polyps can be subdivided in a few categories. Familial

adenomatous polyposis (FAP) (defined by numerous adenomatous colorectal polyps, from hundreds
to thousands) [35] and the less harmful subcategory of attenuated FAP (AFAP) (between 1 and
100 adenomatous polyps) [36] are the first two categories. Linch syndrome produced by the mutation of
MMR gene (mismatch repair) is the third group. The fourth category is familiar colorectal cancer syndrome
X (FCC X), which includes people with a strong family history of bowel cancer. MUTYH-associated
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polyposis (MAP), caused by the MYTH gene, is another group and is spread in an autosomal recessive
pattern [34].
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4. Risk Factors for Adenomatous Colon Polyps

Several risk factors are associated with adenomatous colon polyps. The most important ones
include gender, race, smoking, and obesity [37,38]. Polycyclic aromatic hydrocarbons (PAHs), which are
related with tobacco carcinogens, are responsible for the appearance of an increased risk of developing
ACP [39], especially when they are in a high concentration. Some studies demonstrate a link between
adenomatous colon polyps and chronic obstructive pulmonary disease, even if the reason for the
adenomatous polyps is smoking. According to Kearney, [37] 21 of 22 studies discovered that the risk of
developing adenomatous polyps is 2–3 times higher if you smoke cigarettes for a long period of time.

Latinos and Chinese Americans have a lower risk of having these polyps than caucasians, contrasted
to African Americans, who have a 1.2–2 percent higher risk. For the minority groups, the contribution
in screening programs is significantly lower [40]. In 2006, about 140,000 people from America were
diagnosed with bowel cancer and 56,000 died from this disease, however, most of these studies were
limited to a few ethnic groups. Gender may also be a risk factor, as men have more reported cases of
adenomatous polyps than women [40].

Obesity is not only correlated with metabolic and cardiovascular diseases, but also with gastrointestinal
disorders as well as cancer and colon polyps [41]. According to Ahsan [42], an increased risk of ACP
due to increased BMI in women (odds ratio (OR) 1

4 2.1, 95% confidence interval (CI) 1
4 1.1 to 4.0) was

found [43].

5. Conventional Treatment for Adenomatous Colon Polyps

Chemoprevention is not suggested as a main treatment plan for numerous adenomatous polyps,
but can be used as complementary medication. The aim is to decrease the presence of new polyps
and perhaps to cause regression of the existent adenomatous polyps. The necessity of surgery can be
postponed with the usage of chemoprevention and can also delay the endoscopic procedure [34].

About 80–90% of adenomatous polyps are less than 1 cm in diameter, [15] which facilitates the
endoscopic removal of these polyps [44]. Polypectomy is the technique during which the polyps are
eliminated in totality [45].

Examination of the colon is essential for patients who suffer from numerous adenomatous polyps
if they have a contraindication for surgery or a wish to avoid this invasive procedure. Doctors should
advise the patients about the progress of bowel cancer under examination. If the polyps cannot be
treated by the endoscopical method, surgery should be suggested [34].

Colectomy with ileorectal anastomosis, total proctocolectomy with permanent ileostomy,
or proctocolectomy with ileal pouch–anal anastomosis are surgical options for patients with serious
dysplasia, adenomas larger than 5 mm, and tubulovillous adenomas [46].
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6. Colon Cancer and Adenomatous Colon Polyps

Colon and rectal cancer are often grouped together as colorectal cancer (CRC) because of the
many features that they have in common. Taken together, CRC is the third most prevalent type of
cancer worldwide [47]. Its incidence appears to be higher in men than in women and much higher in
developed countries. As the name suggests, CRC initially develops in the colon or rectum. Most of the
time, the incipient phase of this type of cancer is represented by a growth in the deepest layer of the
colon or rectum, which is the mucosal layer. These growths are called polyps. Once the polyps are
formed, they can become cancerous usually in a few years. Not all polyps become cancerous. The main
characteristic of a polyp that leads to its malignancy is its type. There are three main types of polyps:
adenomatous polyps or adenocarcinomas, which are usually pre-cancerous and represent 96% of CRCs,
as well as hyperplastic polyps and inflammatory polyps [20]. The latter are more common, but are
generally not pre-cancerous. Other factors related to cancer development are the size or the number of
polyps detected as well the presence of dysplasia in the polyp after surgical removal. Recently, several
studies have suggested a connection between the imbalance of intestinal flora and the emergence
of adenomatous colon polyps and CRC [20,48–51]. Microorganisms located in the intestines play
a crucial role in food digestion, vitamin biosynthesis, and protection against pathogens. Intestinal
bacterial imbalance (dysbiosis) was strongly associated with an increased risk of CRC. For instance,
Fusobacterium nucleatum was found in high proportions in patients diagnosed with CRC [52]. These are
responsible for activating a signaling pathway, especially by lowering immunity, which leads to the
growth and development of tumor cells. Escherichia coli, another commensal microbiome of the human
gut, was found to play a key role in triggering CRC [53,54]. It can induce inflammation and appears to
release certain chemicals, such as cytolethal-releasing toxin (CDT) and cytotoxic necrosis factor (CNF),
which can induce carcinogenesis. Enterotoxigenic Bacteroides fragilis [48,55] was also associated with
an increased risk of CRC. It increases the level of T helper 17 (Th17) and T (Treg) cells, which promote
tumor growth and development.

With these being said, CRC is commonly encountered as an aggressive form of cancer. Research
suggests that human microflora plays a key role in preventing or developing colorectal cancer. Sedentarism,
a diet poor in fiber, smoking, and alcohol are the extrinsic factors that can lead to colorectal cancer. A healthy
lifestyle can maintain the balance of our microbiome, and thus the prevention of colorectal cancer.

7. Pro and Prebiotic in Human Health

The use of probiotics and prebiotics for the benefits of clinical health is a fascinating area of
research that is still relevant.

Some of the best properties of probiotics, such as antipathogenicity [56,57], anti-diabetic [58,59],
anti-obesity [60,61], anti-inflammatory [60], anti-cancer [62], anti-allergic [63], and angiogenic activities,
as well as their effect on fatigue, the brain, and the central nervous system, have been described [64].

Moreover, prebiotics can be helpful in reducing dermatitis [65], reducing low density lipoprotein
(LDL) in the blood [66], stimulating the immunological system [67], increasing iron absorption [68],
maintaining the correct value of intestinal pH [69,70], and alleviating the symptoms of peptic ulcers
and vaginal mycosis [2,71]. Other effects of prebiotics such as inulin and oligofructose on human
health have been described as being the prevention of carcinogenesis [72,73], the support of lactose
intolerance [74], and the treatment of tooth decay [75].

7.1. Pro- and Prebiotics in Human Microbiota Modulation

In the maintenance of human health, the gut microbiota is visualized as a symbiotic partner having
a very important role. The equilibrium of the gut microbiota is correlated with factors depending on the
characteristics of the host such as age, gender, and genetic circumstances. Environmental conditions
such as stress, drugs, gastrointestinal interventions, and infectious and toxic agents are also important.
Furthermore, the microbiota is dependent on daily dietary changes and the resistance of probiotics to
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environmental factors [76–78]. Gut microbiota composition and function is significantly influenced by
the diet [79,80]. An association between the ingestion of non-digestible fibers (e.g., prebiotics) and
a high number of beneficial bacteria in the gut such as Ruminococcaceae, Bifidobacterium, Lactobacillus,
Faecalibacterium, and Roseburia is well known [79,81,82]. From an evolutionary point of view, the human
species has gone through a rapid shift in habits and lifestyle. Factors such as excessive sanitation,
industrialized and rich diet, sedentary behavior, and antibiotics cause an unbalance in the gut
microbiota [83,84]. Many situations can lead to changes in the gut microbiota composition, which
causes a need to rebalance the gut microbiota. Probiotic ingestion and probiotic foods or supplements
are the most known and utilized methods, next to fecal microbial transplantation.

A study reports a fecal microbial transplantation between mother and daughter in order to treat
Clostridium difficile. This revealed an intriguing side effect; because the donor was obese and the receiver
was lean, besides the resolution of the infection, the receiver gained 16 kg (34 lbs) over the course of
16 months [85]. This is the first report of obesity as a human-to-human transmissible trait, although
additional studies are required to establish the causal relevance of this report at the population level.

The human microbiota has a wide and significant influence in the metabolic processes and
functions of the human body. It can have both a beneficial or detrimental impact on health, depending
on its composition.

The presence of probiotics and prebiotics in the human diet can directly affect the body’s capacity
to prevent, ameliorate, and reduce the prevalence of ACP. Gut microbiota metabolites play a critical
function in the degeneration of adenomas to CRC, although little data about the function of most of
the gut bacteria and their metabolites are available. Some of the gut’s bacteria are able to produce
SCFAs such as butyrate, which can serve as energetic sources for colonic epithelial cells. A study
correlated a butyrate-producing bacteria in the feces of patients with ACP, suggesting that microbial
metabolites may contribute to ACP conversion to CRC [86]. A few members of the Clostridium genus
(butyrate-producing bacteria) are capable of metabolizing primary bile acids into secondary bile
acids [87,88]. These bile acids proved to have a contribution in ACP conversion to CRC by affecting
the host’s metabolism and immunity [89–91].

Insufficient human studies have evaluated the metabolome and microbiota in relation to
adenomas. Findings from a recent study suggest that there is a correlation between bacterial
dysbiosis, the metabolome, and colorectal adenomas [92]. More studies are required to fully explore
the correlation between microbiota, metabolome, and ACP.

The exact mechanisms of action of probiotics in the human body are currently known only partially.
Probiotics have been suggested to act by inhibiting the excessive aggregation of pathogenic bacteria
and preventing pathogenic host invasion, improving intestinal barrier function and interactions with
receptors, and producing secretory substances such as SCFA and neurotransmitters [93].

7.2. Probiotic and Prebiotics in Intestinal Diseases

Dysbiosis is the state of change in microbial flora in the gut, directly causing several particular
inflammatory diseases. Bowel diseases can be caused by several factors, including genetic factors,
ecological factors, oxidative stress, antibiotic consumption, and weakened immune system [94,95].

Table 1 shows the cases in which probiotic interventions are used. We can observe that choosing
the optimum probiotic strain can be a real challenge.

Table 2 shows the cases in which prebiotic interventions are used. We can observe that choosing
the optimum prebiotic can develop the growth of probiotic strains and induce benefits.
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Table 1. Probiotics effect in intestinal disorders.

Intestinal Disorder Probiotic Strain Administration Method and
Duration Results Reference

Constipation
B. longum. B. infantis s, i B. Scurt, L.
acidophilus. L. casei. L. bulgaricus, s, i

L. plantarum s, i Streptococcus thermophilus
Sachets; x 2/day for 2 weeks Improve clinical symptoms constipation [96]

L. acidophilus (La-5) and B. lactic Bb-12 Yogurt; 300 g/day for 4 weeks Improved the symptoms of constipation
during pregnancy [97]

B. lactis NCC2818 Sachets; 1/day for 4 weeks Not effective in the management of mild chronic
constipation [98]

S. thermophilus MG510 and L. plantarum
LRCC5193 Chocolate; 26 g/day for 8 weeks Significantly ameliorated stool consistency in patients

with chronic constipation [99]

Irritable bowel
syndrome (IBS)

B. longum, B. bifidum, B. lactis,
L. acidophilus, L. rhamnosus, and

S. thermophilus

Capsule (500 mg) of LacClean
Gold-S (a multi-species

probiotics); x 2/day for 4 weeks
IBS symptoms were substantially relieved (↑ 68%) [100]

Bio-Kult® (14 different bacterial strains) Capsule; x 2/day for 4 weeks

The change in severity and frequency of abdominal pain
on the IBS-severity scoring system (IBS-SSS)

The change in other gastrointestinal symptom severity
scores on the IBS-SSS, Quality of Life (QoL)

[101]

L. paracasei, L. salivarius s, i L. plantarum Capsule; 1/day for 4 weeks Effective in the global relief of IBS symptoms, and in
relieving abdominal pain [102]

L. acidophilus DDS-1 sau B. lactis UABla-12 Capsule; 1/day for >6 weeks Abdominal pain significantly improved [103]

Ulcerative colitis (UC) L. salivarius, L. acidophilus, and B. bifidus
BGN4

1200 mg probiotic blend; x 2/day
for 2 years

Combined therapy showed better improvement vs.
controls. Beneficial effects of probiotics were evident

even after two years post-treatment
[104]

L. plantarum PL 02, L. rhamnosus KL 53A,
and B. longum PL 03

Sachets; 3.0 g/day for patients
with acute phase UC and

2 g/day for patients in remission
for 8 weeks

Effective in inducing and maintaining remission along
with reduced Mayo Clinic disease index and improved

gut microbiota
[105]

Symprove™ (L. rhamnosus NCIMB 30174,
L. plantarum NCIMB 30173, L. acidophilus
NCIMB 30175 and Enterococcus faecium

NCIMB 30176)

Liquid; 1 mL/kg each morning
on a fasted stomach for 4 weeks

Significantly reduced levels of fecal calprotectin along
with decreased intestinal inflammation in patients [106]

VSL#3,
L. reuteri DSM 17938 and

S. thermophilus, L. acidophilus, B. breve and
B. animalis ssp. lactis

Variable/day for 12 months
Marked reduction in total adverse events along with
decreased need for systemic steroids, hospitalization,

and surgery
[107]
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Table 1. Cont.

Intestinal Disorder Probiotic Strain Administration Method and
Duration Results Reference

Crohn’s Disease VSL # 3 (4 x e Lactobacillus, 3 x
Bifidobacterium, and 1 x S. thermophilus) Sachets; x 2/day for 90 days No statistical difference between VSL#3 and

placebo treatment [108]

Colon cancer (CRC) L. acidophilus LA-5, L. plantarum, B. lactis
BB-12, S. boulardii Capsule; x 2/day for 16 days Decreased the risk of postoperative complications [109]

L. plantarum CGMMCC nr 1258,
L. acidophilus LA-11, B. longum BL-88

Capsule; 1/day for 6 days
preoperatively and 10 days

post-operatively

Improvement in the integrity of gut mucosal barrier and
decrease in infections complications [110]

L. casei, L. acidophilus, L. lactis, B. bifidum,
B. longum, B. infantis Sachets; x 2/day for 4 weeks Improved the quality of life and inflammatory status of

the CRC patients [111]

B. lactis, L. acidophilus Tablets; x 2/day

Improved the diversity and abundance of
butyrate-producing bacteria (Clostridiales and

Faecalibacterium species) in fecal and mucosal microbiota
of CRC patients

Significant reduction of Fusobacterium and
Peptostreptococcus species in fecal microbiota of

CRC patients

[112]

H. pylori infection L. Reuteri Chewable tablets/day for
4 weeks

Effectively suppresses H. pylori infection and decreases
the occurrence of dyspeptic symptoms

Does not seem to affect antibiotic therapy outcome
[113]

Lactobacillus 2 weeks High rate of eradication [114]
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Table 2. Prebiotics in intestinal disorder.

Intestinal Disorder Prebiotic/Synbiotic Administration Method and Duration Results Reference

Constipation Orafti® GR Inulin (inulin from chicory)
or Maltodextrin DE 19 (maltodextrin)

Sachets (4 g inulin or
maltodextrin/sachet); x 3/day

for 4 weeks

A significant increase of stool frequency was documented, which was
accompanied by a softening of stool consistency, which had a positive

impact on the quality of life, primarily increasing the satisfaction
[115]

Irritable bowel
syndrome (IBS) Short-chain fructo-oligosaccharide Powder; 5 g/day for 4 weeks Rectal discomfort threshold and IBS and quality of life scores were

significantly improved [116]

Pectin powder Powder; 26 g/day for 6 weeks

Pectin acts as a prebiotic in specifically stimulating gut bifidobacteria in
IBS-diarrhea patients and is effective in alleviating clinical symptoms,

balancing colonic microflora, and relieving systemic inflammation. In view
of its ability to re-establish a healthy gut ecosystem, pectin has the

potential of being a therapeutic agent in IBS-diarrhea

[117]

L. acidophilus La-5® and Bifidobacterium
BB-12® and Beneo dietary fibres

Fermented milk (180 g) x 2/day for
4 weeks

On average, an 18% improvement in total IBS-QoL score was reported and
significant improvements in bloating severity, satisfaction with bowel

movements, and the severity of IBS symptoms’ interference with patients’
everyday life were observed. However, there were no statistically

significant differences between the synbiotic group and the placebo group

[118]

Ulcerative colitis
(UC)

Enterococcus faecium, L. plantarum, S.
thermophilus, B. lactis, L.acidophilus, B.

longum, and fructooligosaccharide
Chewable tablets; x 2/day for 8 weeks

Overall, 55.6% of patients attained remission, while improved clinical
activity index and reduction in C-reactive protein and sedimentation

values were observed
[119]

Streptococcus faecalis T-110 JPC,
Clostridium butyricum TO-A, Bacillus

mesentricus TO-A JPC, L. sporogenes plus
prebiotic

Capsule; x 2/day for 3 months Remission [120]

Colon cancer

Pediococcus pentosaceus, Leuconostoc
mesenteroides, L. paracasei, L. plantarum
(10 × 1011 CFU) and inulin, resistant
starch, pectin, and b-glucan (2.5 g)

Synbiotic sachets; (12 g)/day Increased gastrointestinal Quality of Life index
Improved the functional bowel disorder score [121]

L acidophilus, L rhamnosus, L paracasei,
B lactis, and fructo-oligosaccharides Sachets; x 2/day for 19 days Decreases postoperative infections [122]

Prebiotic supplement:
fructooligosaccharide (25%),
xylooligosaccharide (25%),

polydextrose (25%), and resistant
dextrin (25%)

30 g/day for 7 days

Improved serum immunologic indicators in patients with CRC 7 d
before operation

Changed the abundance of four commensal microbiota (Bacteroides,
Bifidobacterium, Escherichia-Shigella, and Enterococcus),

and Escherichia-Shigella, Bacteroides, and Enterococcus are the genera
known to include pathogenic strains

[123]

H. pylori B. lactis B94 (5 × 109) CFU/dose), inulin
(900 mg/dose)

Sachets; x 3/day for 14 days

From a total of 69 H. pylori-infected children, eradication was achieved in
20 out of 34 participants in the standard therapy group and 27/35

participants in the synbiotic group. There were no significant differences in
eradication rates between the standard therapy and the synbiotic groups

[124]
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8. Gut Microbiota and Their Metabolites in Adenomatous Colon Polyps

The fourth most common cancer among the population is colorectal cancer (CRC), also considered
as raking third in terms of mortality [125,126]. Early screening and prevention must be implemented
among those at risk owing to the high incidence of CRC and advanced adenomas.

One of the fundamental hypotheses that is widely accepted is that the adenoma-carcinoma
sequence represents the steps towards the development of CRC [127,128].

Adenomatous polyps are the most common premalignant lesions in CRC [129]. It is widely
believed that 40% of people over the age of 60 will develop adenomatous polyps. Furthermore,
the adenomatous polyps have a 0.25% chance of transforming into cancer per year. This transformation
is mainly caused by the accumulation of mutations, both somatic and germ-like. The onset trigger of
this sequence of “adenoma-carcinoma” is believed to be the inactivation of the adenomatous polyposis
(APC) gene [130].

The APC gene is found at 5q21-q22, which is a region containing 15 exons that code a protein with
a molecular weight of 310 kDA [131]. The most frequent genetic variation in colorectal cancer was
determined to be a mutation in the APC gene, with more than 3000 pathological mutations discovered
so far. Most of the mutations are identified within a cluster region (MCR (mobilized colistin resistance),
codons 1286–1513), often giving rise to a truncated APC protein. The implication of genetic and
environmental factors as well as their interactions in the tumorigenesis of CRC have been increasingly
recognized throughout the years [130–132].

Among environmental factors, gut microbiota and their metabolites are also present in the
pathology of CRC. Nowadays, it is well known that multiple factors can alter the normal composition
of the gut microbiota. It has been demonstrated that microbiotic alterations are involved in adenomas
as well as in CRC owing to the metabolites resulting from fermentation of various dietary sources,
which are toxic and genotoxic [130,133,134].

The microbiome of gut microbiota is different in all individuals. Gender, genetic predisposition,
diet, physical activity, disease, drugs, and environmental toxicants all contribute to program human
gut microbiota composition and its consequent impact on health [135–137]. Gut microbiota maturation
starts from early life and evolves rapidly during the first 3 years of life [30,138]. Maternal transmission
can influence microbiota richness and diversity. Infants born by birth canal compared with those
born by caesarean section delivery show a greater microbial diversity [139]. Nursing as well as skin
and oral contact with the mother influence maternal transmission. However, prenatal and postnatal
antibiotic treatment can reduce microbiota diversity. Furthermore, intrapartum antibiotic exposure
leads to different gut colonization when compared with postnatal treatment, and the observed impact
remains stable up to 6 months of age even when lactobacilli supplementation was implemented [140].
Breastfeeding modulates gut microbiota composition in the first 4 years of life and has long-term effects
on health. Longitudinal studies demonstrated that infants who received breastfeeding for 3 months
have lower levels of inflammatory biomarkers (i.e., APC, IL-6) in adult age (28–32 years old) [141,142].

The human gut microorganism populations are found to be extremely complex, together making
up trillions of bacteria. Change in the gut microbiota has been associated with numerous diseases,
including metabolic, gastrointestinal, and neuropsychological disorders. It has been studied that
the change in some gut bacteria can be determined by mutations of the host’s genes, with these
changes further promoting the development of pathologies. Bacterial changes are involved in the onset
apparition of precancerous lesions of the adenomatous polyp type, as well as in the accumulation of a
sequence of genes during the so-called “adenoma-carcinoma sequence”. The bacterial drivers may
be slowly replaced by passenger bacteria, which have a competitive advantage in the tumor niche
during the development of the tumor. Therefore, early prevention of CRC as well as insight into the
tumorigenesis can be observed by identifying the gut microbiota associated with the gene mutation in
CRC initiation [130,133,134,143].

The relationship between the change of gut microbiota and the inactivation of APC mutations
has been studied, showing that their association could potentially explain the role of gut microbiome
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in the transformation of APC mutant adenomatous polyps to CRC. It has been demonstrated
through these studies that lower levels of Faecalibacterium prausnitzii, Bifidobacterium pseudocatenulatum,
and Ruminococcus sp 5 were found in patients with APC mutations. Higher levels of Fusobacterium
mortiferum were also illustrated, with this deviation also being correlated with a higher occurrence of
colorectal cancer [130].

There is also cumulative evidence that suggests a link between gut, colorectal adenoma, CRC,
and some specific species such as Fusobacterium nucleatum [144,145].

Different studies have documented that an alteration of SCFAs in gut composition has also been
associated with colorectal cancer, among other pathologies [146,147]. Changes in gut microbiota
frequently cause a reduction in the concentration of SCFAs. These fatty acids are saturated molecules
composed of one to six carbon atoms, of which acetic, propionic, and butyric acids are in the largest
quantity. However, iso-butyric, valeric, and iso-valeric acids are also present in lower amounts. These
fatty acids can provide energy through oxidative metabolism after entering the colonic epithelium,
or they can aid in the regulation of the metabolism of fatty acids, glucose, and cholesterol upon entering
the bloodstream [146–148].

The microbial ecosystem in the gastrointestinal tract impacts the energy metabolism mechanism
because the microbiota can modulate the absorption and oxidation of macro- and micro-nutrients.
Moreover, their metabolites modulate immune and metabolic responses. In the large intestine, bacteria
digest dietary fiber, thus producing short chain fatty acids (SCFAs) (i.e., formic acid, acetic acid,
propionic acid, butyric acid, and valeric acid) that are used by colonocytes or transported to various
organs by blood circulation [149,150]. SCFAs in blood have a lower micromolar concentration range
than in the colon, where it reaches 50–100 mM [151]. Butyrate, propionate, and acetate represent 15%,
25%, and 60%, respectively, of SCFAs made in the human gut [152,153].

Butyrate and propionate work as histone deacetylase inhibitors and exert a positive modulation
through the activation of G-protein coupled receptors (GPRs) in colonocytes and immune cells.

Butyrate binds to GPR109A at the lumen-facing apical membrane of intestinal colonocytes
and promotes anti-inflammatory responses. It can interact in a similar fashion with GPR43 and
GPR41 of immune cells and with GPR41 of adipocytes [154]. Butyrate controls inflammatory responses
by downregulation of the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of
activated B cells) and inhibition of pro-inflammatory cytokine release (i.e., IL6 and IL12). It also
liberates anti-inflammatory cytokines (i.e., IL10). Colonocytes can use butyrate and acetate to
produce β-hydroxybutyrate, a ketone body able to activate GPR109A 3–4 times more than butyrate.
β-hydroxybutyrate can be carried by cells to the portal blood circulation [155]. Butyrate contributes to
maintaining gut permeability; sodium butyrate supplementation upregulates genes encoding intestinal
tight junction proteins in mice [156]. An important attribute of butyrate is its antineoplastic effects on
human colon carcinoma cells. Cell differentiation in human colorectal cancer cell lines is induced by
butyrate. It reduces the growth rate of these cell lines in vitro. Compared with healthy individuals,
ACP subjects register a reduced butyrate production [157]. A possible explanation can be attributed to
the fact that subjects with ACP absorb less starch than normal subjects. Starch fermentation produces
higher proportions of butyrate than the fermentation of glucose or pectin [158]. McMillan’s study
suggests that butyrate exhibits protection against ACP not only through its ability of inducing apoptosis
in malign colon cells, but also its capacity of inhibiting the effects of secondary bile acids. Bile acids are
not mutagens, but they promote tumor formation by activating protein kinase C [159]. These results
are to be taken into consideration in dietary intervention protocols to reduce risk of ACP and CRC.

Acetate can also interact with GPR43 at the apical membrane of gut epithelial cells and increase the
Ca2+ level. By K+-dependent membrane hyperpolarization, it is able to activate NLRP3 inflammasome
(NOD-like receptor family, pyrin domain-containing, subtypes 3). The NLRP3 triggers activation
of caspase-1, which promotes IL18 release, thus maintaining gut epithelial integrity in the absence
of inflammation [160–163]. In his study, Weaver found significantly higher proportions of acetate
and lower proportions of butyrate in the microbiota of the ACP group [164]. These findings can be
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related to different colonic microbial communities and fermentations that differ from those of healthy
individuals. Thus, interesting findings suggest an overall higher production of SCFA’s in patients with
ACP or CRC than in control groups [157,164].

Moreover, SCFAs are also important in the formation of antimicrobial peptides and in the
modulation of the functions and number of regulatory T cells (Tregs), thus contributing to the inflection
of host immune responses. The reduction of SCFAs’ concentration is related to unhealthy gut microbiota,
thus being a cause for intestinal diseases because SCFAs are involved in their prevention by preserving
the epithelial barrier functionality and by involvement in inflammatory reactions (as they regulate the
transcription of proteins such as claudin-1, a tight junction molecule). SCFAs also regulate the proliferation
and differentiation of colonocytes. As they increase the expression of mucin 2 and modulate immune and
oxidative stress responses, these SCFAs also protect the epithelium of the large intestine [148,165,166].
The difference in proportions of SCFA between ACP or CRC patients, when compared with healthy
ones, suggests differences in fermentation patterns of the colonic microbiota [164].

The researcher’s focus should not be limited only to the human gut microbiota composition in the
presence of ACP, but further investigations should be done with respect to the gut microbiota metabolites.
In fact, the microbiota influences the host through their metabolites. Kim and his collaborators found
that, in patients with ACP, a high concentration of bioactive lipids, including polyunsaturated fatty acids,
sphingolipids, and secondary bile acids, existed [92]. All these compounds are produced by the bacteria
species that are dominant (in number) in patients with adenomas and CRC. This suggests that gut
bacteria might contribute in the early stages of colorectal carcinogenesis and may lead to development
of CRC prevention therapies, targeting early treatment.

It is thus highly suggested that the bacteria in the gut contributes in the early stages of colorectal
carcinogenesis and may lead to development of CRC prevention therapies, targeting early treatment.

9. Summary and Conclusions

Adenomas are precursors of CRC. The imprint of the gut microbiota composition and their
metabolites can provide important information about the stage of the ACP. Implicitly, new, innovative,
and non-invasive treatment and amelioration protocols derive from these approaches. Currently,
regarding the research on adenomatous polyps, there have been insufficient studies with respect to the
gut microbiota and metabolites in patients with this pathology. Therefore, it is still not very clear how
and which microbes and metabolites trigger or support the formation of ACP and further sustain the
development of carcinomas.
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