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Respiratory metabolites in bronchoalveolar
lavage fluid (BALF) and exhaled breath
condensate (EBC) can differentiate horses
affected by severe equine asthma from
healthy horses
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Abstract

Background: The use of an untargeted metabolomic approach to investigate biofluids of respiratory origin is of
increasing interest in human and veterinary lung research. Considering the high incidence of equine asthma (>
14%) within horse population and the importance of this animal model for human disease, we aimed to investigate
the metabolomic profile of bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC) in healthy and
asthmatic horses.

Results: On the basis of clinical, endoscopic and BALF cytology findings, 6 horses with severe asthma (Group A)
and 6 healthy horses (Group C) were included in the study. 1H-NMR analysis was used to identified metabolites in
BALF and EBC samples. Metabolomic analysis allowed to identify and quantify 12 metabolites in BALF and seven
metabolites in EBC. Among respiratory metabolites, myo-inositol, formate, glycerol and isopropanol in BALF, and
methanol and ethanol in EBC, differed between groups (p < 0.05).

Conclusions: The application of metabolomic studies to investigate equine asthma using minimally invasive
diagnostic methods, such as EBC metabolomics, provided promising results. According to our research, the study of
selective profiles of BALF and EBC metabolites might be useful for identifying molecules like myo-inositol and
methanol as possible biomarkers for airways diseases in horses.
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Background
Respiratory metabolomics is gaining popularity in human
and pediatric medicine [1, 2]. Metabolic dysfunctions in
chronic lung diseases such as asthma, chronic obstructive
pulmonary disease, idiopathic pulmonary fibrosis and
cystic fibrosis have been ascertained [2–6], and clinicians

are now using metabolomics in the diagnostic and prog-
nostic approach other than in clinical research [2]. This
new approach also shows a great potential in veterinary
medicine [7–9], and untargeted metabolomics is often
applied to improve knowledge and speculate novel hy-
pothesis in human and veterinary lung research [10, 11].
About 14% of adult/old horses naturally develop an

asthma-like disease known as equine asthma [12]. Human
and equine asthma share several common features like re-
current airway obstruction, bronchial hyperresponsiveness
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and airways inflammation [13]. Despite the fact that the
respiratory cytological reaction is predominantly eosino-
philic in men and neutrophilic in horses, equine asthma is a
recognized model for human disease [14, 15]. As in humans,
the cause of equine asthma remains not completely under-
stood, being the result of a broad range of immunological,
inflammatory and biochemical perturbations [16–18]. In
people, metabolomics differentiates between asthmatic and
healthy subjects, and different metabolomic endotypes of
asthma have been recognized [18]. In horses showing re-
spiratory symptoms compatible with asthma, the diagnosis
is currently based on the presence of abnormal bronchoalve-
olar lavage fluid (BALF) cytology [19], but molecular
biomarkers of lung inflammation would offer new insight
for pathogenetic and diagnostic advances. The collection of
exhaled breath condensate (EBC) has recently emerged as a
non-invasive sampling method to obtain information about
the health status of the respiratory system in humans and
equines [11, 20, 21]. Previous studies investigated bio-
markers of oxidative stress [21], hydrogen peroxide content
and pH variations in EBC of horses [20], and only one study
performed the metabolomic analysis of equine EBC [11].
The metabolomic profile of exhaled breath condensate

(EBC) and tracheal wash (TW) in horses with asthma
has been previously investigated [11]. In the current
study we aimed to evaluate the respiratory metabolites
in BALF and EBC of healthy horses and horses affected
by severe equine asthma (sEA). Our goal was to obtain
data that would improve the current knowledge on the
potential of metabolomic analysis and biomarkers for
the diagnosis and treatment of equine airways diseases.

Results
Endoscopic evaluation of airways during BALF collection
revealed the presence of tracheal mucus (mean score >
2) [22] and thickening of tracheal septum in horses from
group A, whereas normal airways aspect was found in
control group. According to BALF cytology, mean neu-
trophils percentage was 47.1% (±22% standard deviation)
in horses with sEA and 9.4% (±0.8% standard deviation)
in control group, respectively [23].
Respiratory rate (RR) and pattern remained unchanged

at rest and during EBC collection in both groups. The
respiratory pattern clinically observed was a normal
breathing (eupnea) in healthy subjects, and a thoracoab-
dominal asynchrony in sEA horses (respiratory effort).
Despite a significant difference in RR between Group C
and Group A (p = 0.029), no significant change was ob-
served during EBC collection within each group (Fig. 1).
The median volumes of EBC collected over 15min ranged
from 1.1ml in Group C to 1.750ml in Group A. 1H-NMR
identified 12 metabolites in BALF (Table 1): formate, lac-
tate, myo-inositol, glycerol, glycine, taurine, creatine, suc-
cinate, pyruvate, acetate, ethanol and isopropanol (Fig. 2).

Metabolites found in EBC (Table 2) included methanol,
ethanol, formate, trimethylamine, acetone, acetate and
lactate (Fig. 3).
Overviews of the main features of both metabolites’

profiles can be obtained by robust principal component
analysis. In the case of BALF (Fig. 4), the first principal
component (PC 1), summarizes the main differences
between asthmatic and control horses, characterized by
lower and higher PC 1 scores, respectively. The corre-
sponding correlation plot shows that the molecules
mainly responsible for such grouping are taurine and, to
a lower extent, glycine. Focusing of EBC (Fig. 5), PC 1 is
the component mainly accounting for the differences
between the samples from asthmatic and control horses.
Asthmatic horses appear at higher PC 1 scores, mainly
because of the high concentration of trimethylamine and
acetone and of the low concentrations of formate, lactate
and acetate.

Discussions
The current study contributes to improve the knowledge
on the metabolomic profile of equine respiratory system
[11] by providing useful information about BALF and
EBC metabolomics in healthy horses and horses with
severe asthma.
Despite horses included in the control group were

found to have an average of neutrophils in BALF just
below the limits that allows to exclude the presence of
inflammation, the absence of clinical signs, anamnesis
and endoscopic findings related to respiratory diseases
made up for the slight individual variability in neutrophil

Fig. 1 Mean values and SEM of respiratory rate (RR) recorded every
5 minutes during EBC collection in control (Group C) and asthmatic
horses (Group A)
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percentage that could be accounted to environmental
factors [23].
Among metabolites found in BALF samples, four mole-

cules differed significantly between healthy horses and
horses affected by asthma. Group A had significant lower
levels of myo-inositol, a metabolite that promotes matur-
ation of pulmonary surfactant and supports respiratory
function [24]. Inositol modulates cytoskeleton dynamics
thus promoting a mechanical stabilization of cell shape
and allowing alveolar cells to counteract collapsing forces
[25]. In people, myo-inositol recruits organic compound
and water in the alveolar space for the formation of a
biofilm layer at the interface, thereby decreasing surface
tension [26]. Previous research in infants demonstrated
that a dramatic decrease in plasma levels of myo-inositol is
associated to a higher risk of respiratory distress syndrome
[27]. Its use at pharmacological doses provided promising

preliminary results in humans [24] and has been recently
proposed for a phase III clinical trial [28]. Myo-inositol is
also the most effective allosteric effector identified to date,
being able to increase the tissue delivering of oxygen
bound to hemoglobin [29]. Since its administration can
improve sport performance in laboratory mice, its ana-
logues have been suspected to be abused in horse racing
industry [30] but no study about its effect in equine species
has been performed. In our opinion, further research about
myo-inositol function and its efficacy as therapeutic tool in
horses with respiratory diseases should be performed.
Glycerol was found in BALF of patients affected by

acute respiratory distress syndrome (ARDS) in a recent
study [31] and has also been detected (but not quanti-
fied) by 1NMR in lung of healthy humans, pigs, mice
and rats [32]. The role of glycerol in respiratory diseases
is not clear, however it could be linked to the alteration

Fig. 2 Examples of the spectra obtained by 1H-NMR analysis from BALF of asthmatic horses a and controls c

Table 1 Metabolites’ concentrations (mmol/L), expressed as mean ± standard deviation, quantified by 1H-NMR in bronchoalveolar
fluid (BALF) samples of control group (Group C) and asthma group (Group A). 95% CI for each group is indicated in brackets. P
values are indicated for each metabolite, statistical significances (*) are in bold letters

Metabolites Group C (n = 6) Group A (n = 6) P values

Formate* 1.17E-02 ± 1.77E-03 (1.02E-02 – 1.31E-02) 1.21E-02 ± 5.01E-03 (8.05E-03 – 1.61E-02) 0.040

Lactate 1.42E-02 ± 3.88E-03 (1.11E-02 – 1.73E-02) 1.29E-02 ± 2.12E-03 (1.12E-02 – 1.46E-02) 0.210

Myo-inositol* 2.82E-02 ± 1.70E-02 (1.46E-02 – 4.18E-02) 1.58E-02 ± 5.88E-03 (1.11E-02 – 2.05E-02) 0.036

Glycerol* 1.55E-03 ± 1.55E-03 (3.13E-04 – 2.80E-03) 1.03E-03 ± 3.12E-04 (7.78E-04 – 1.28E-03) 0.003

Glycine 5.48E-03 ± 1.43E-03 (4.33E-03 – 6.62E-03) 4.46E-03 ± 1.44E-03 (3.31E-03 – 5.61E-03) 0.994

Taurine 6.32E-03 ± 4.44E-03 (2.77E-03 – 9.88E-03) 1.03E-02 ± 9.45E-03 (1.78E-03–2.73E-02) 0.123

Creatine 1.60E-03 ± 8.37E-04 (2.27E-04–9.3E-03) 1.55E-03 ± 6.60E-04 (1.02E-03 – 2.08E-03) 0.615

Succinate 8.89E-04 ± 1.29E-04 (7.86E-04 – 9.92E-04) 8.49E-04 ± 2.26E-04 (1.03E-04–6.69E-03) 0.245

Pyruvate 9.46E-04 ± 2.96E-04 (7.09E-04 – 1.18E-03) 7.57E-04 ± 2.70E-04 (5.41E-04 – 9.74E-04) 0.845

Acetate 1.42E-02 ± 1.22E-03 (1.33E-02 – 1.52E-02) 1.41E-02 ± 2.18E-03 (1.23E-02 – 1.58E-02) 0.230

Ethanol 4.60E-03 ± 1.28E-03 (3.58E-03 – 5.62E-03) 4.61E-03 ± 7.68E-04 (3.99E-03 – 5.22E-03) 0.289

Isopropanol* 1.53E-03 ± 3.16E-04 (1.28E-03 – 1.79E-03) 3.66E-03 ± 5.22E-03 (5.18E-04 – 7.84E-03) < 0.001
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of lipid metabolism observed in BALF samples from
asthmatic and ARDS-affected patients [2, 33–35].
Higher formate concentrations have been found in

BALF of asthmatic horses compared to healthy subjects.
Formate is the only non-tetrahydrofolate-linked inter-
mediate in one-carbon metabolism [36] produced in
mammals from a variety of metabolic sources, in different
tissues and from different substrates. Formate plays a
critical role in the three canonical functions of one-carbon
metabolism: purine nucleotide synthesis, thymidylate
synthesis, and the provision of methyl groups for
synthetic, regulatory, and epigenetic methylation reactions
[36]. Formate also plays a significant role in embryonic
growth and high formate concentrations were found in
fetal lambs indicating a role in fetal development [36].
Deficiency in either folate or vitamin B12 significantly
increases formate levels [37] explaining why vegetarian
people have higher formate levels than non-vegetarians
[38]. A single previous study detected formate by NMR in
BALF of ARDS-affected patients, but no control group
was used in that report [31]. Since there was no reason to

suspect vitamin deficiency in the animals included in our
study, the role of formate and its variation in respiratory
system of healthy and asthma affected horses need further
investigation to be clarified. In our opinion this kind of
evaluation should also be referred to different species,
since there seem to be considerable species differences in
synthesis/disposal mechanism of formate [36].
A significant increase in isopropanol was observed in

horses with asthma compared to healthy subjects. A
metabolomic study performed by NMR found increased
isopropanol levels in the lungs of naphthalene-exposed
mice potentially due to the loss of cell membrane integ-
rity in the airway epithelial cells of mice [39].
Although not statistically different between groups, we

found metabolites in BALF samples including lactate,
pyruvate, taurine and glycine that have been reported to
have a role in the pathogenesis of allergies. Taurine and
glycine, the main molecules determining the spreading
of BALF data according to the rPCA model, have a
protective effect and regulate cytokine over-expression
in allergies [2]. Lactate and pyruvate are representative

Table 2 Metabolites’ concentrations (mmol/L), expressed as mean ± standard deviation, quantified by 1H-NMR in exhaled breath
condensate (EBC) samples of control group (Group C) and asthma group (Group A). 95% CI for each group is indicated in brackets. P
values are indicated for each metabolite, statistical significances (*) are in bold letters

Metabolites Group C (n = 6) Group A (n = 6) P values

Formate 2.38E-03 ± 4.63E-04 (2.01E-03 - 2.75E-03) 2.30E-03 ± 6.56E-04 (1.77E-03 - 2.82E-03) 0.463

Methanol* 1.13E-02 ± 3.07E-03 (8.87E-03 - 1.38E-02) 1.84E-02 ± 8.39E-03 (1.17E-02 - 2.51E-02) 0.046

Trimethylamine 1.46E-04 ± 7.13E-05 (8.90E-05 - 2.03E-04) 1.78E-04 ± 1.35E-04 (6.97E-05 - 2.85E-04) 0.189

Acetone 2.72E-03 ± 1.27E-03 (1.70E-03 - 3.74E-03) 2.99E-03 ± 9.31E-04 (2.25E-03 - 3.74E-03) 0.510

Acetate 3.38E-03 ± 7.02E-04 (2.82E-03 - 3.94E-03) 2.79E-03 ± 6.01E-04 (2.31E-03 - 3.27E-03) 0.742

Lactate 9.50E-03 ± 8.40E-03 (2.78E-03 - 1.62E-02) 5.34E-03 ± 2.48E-03 (3.35E-03 - 7.33E-03) 0.018

Ethanol* 1.31E-02 ± 9.32E-03 (5.69E-03 - 2.06E-02) 3.60E-02 ± 5.68E-02 (0–8.15E-02) 0.001

Fig. 3 Examples of the spectra obtained by 1H-NMR analysis from EBC of asthmatic horses a and controls c
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of energy metabolism that was found to be altered in
BALF from mice with experimentally induced allergic
airway inflammation [34]. Also the presence of creatine
might suggest the promotion of energy metabolism via
the urea cycle, and substantial increase of creatine in lungs
have been observed following sepsis and silica exposure
[34]. Although these metabolites have been found also in
equine BALF, further research is necessary to better eluci-
date their role in equine respiratory system.
The possibility to collect biological samples from re-

spiratory origin in standing non sedated horses without
coercion and in a totally noninvasive way represented
the major advantage of using EBC to investigate respira-
tory disease in horses. Notwithstanding this considerable
advantage, the lack of standardized collection methods
represents a major limitation in the use of this specimen
for diagnostic purpose in clinical practice. Furthermore,
the absence of commercially available devices for EBC

collection, the influence of environmental and animal
factors, and the paucity of studies about equine EBC
having high variability in sampling procedures (time,
temperature, type of condensation chamber) should be
taken into account when interpreting EBC results.
According to our findings, the use of metabolomic

analysis on EBC samples provided evidence of a different
metabolomic profile in horses with sEA compared to
healthy subjects. The higher methanol concentrations
found in Group A indicate an active inflammatory status
of airways of horses affected by asthma [11, 40] and
substantially confirmed our findings in a previous study
on EBC metabolomics [11].
The significant increase in ethanol concentration in

Group A might also be related to the presence of
pulmonary disease. This metabolite was found to be
higher in exhaled breath of patients suffering from pul-
monary cystic fibrosis compared to healthy subjects [41].

Fig. 4 Robust Principal component analysis of the BALF metabolome: a Scoreplot of an rPCA model calculated on the space constituted by the
concentration of each molecule quantified in BALF samples. Empty circles highlight the median values for asthma a and control c groups b Bar
plot describing the correlation between the concentration of each molecule and its importance along PC 1.

Fig. 5 Robust Principal component analysis of the EBC metabolome: a Scoreplot of an rPCA model calculated on the space constituted by the
concentration of each molecule quantified in EBC samples. Empty circles highlight the median values for asthma a and control c groups. b Bar
plot describing the correlation between the concentration of each molecule and its importance along PC 1
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Studies on EBC metabolomics reported increased
acetate and acetone levels in patients suffering from
pulmonary disease [42], in our study we observed
slightly higher, though not statistically significant, con-
centrations of acetone in Group A whereas no difference
was observed between healthy and asthmatic horses in
acetate levels.

Conclusions
The discovery of biomarkers for the diagnosis and treat-
ment of respiratory diseases and the need for additional
asthma metabolomic studies to explore these issues
using minimally invasive diagnostic methods, such as
EBC metabolomics, are key topics in respiratory research
both in human and veterinary medicine [19, 42, 43].
Although the limited number of subjects enrolled in the
study represented a main limitation and did not consent
to investigate the potential influence of gender on BALF
and EBC metabolome, our data suggest that selective
profiles of BALF and EBC metabolites might be useful
for identifying molecules like myo-inositol and methanol
as possible biomarkers for equine airways diseases.
According to the present and previous studies [11],
metabolomic analysis has a great potential to better
explain the pathophysiology of equine asthma, but
further studies are necessary to investigate the role of
these metabolites allowing researchers to adopt novel
diagnostics and therapeutic strategies to treat the disease.

Methods
Animals
On the basis of clinical presentation, endoscopic findings
(mucus score > 2) [44] and BALF cytology (neutrophils >
25%) [45], 6 horses affected by sEA (2 geldings, 4 mares,
15 ± 4 years, 423 ± 66 Kg), selected among patients re-
ferred to the Veterinary Teaching Hospital of Camerino
University (Italy), were included in asthma group (Group
A). Typical respiratory symptoms [45, 46] were present at
clinical examination (e.g. exercise intolerance, crackles
and wheezes, increased respiratory effort) and all horses
have been shown respiratory signs for at least 1month
before the beginning of the study. No drugs had been
administered in the previous 2months.
Six healthy horses (3 geldings, 2 mares, 1 male, 17 ± 5

years, 445 ± 46 Kg) with no history of respiratory symptoms
in the last 3 years were included in control group (Group C).
All horses were housed indoors in individual shavings

bedded boxes at the Veterinary Teaching Hospital of
Camerino for at least 1 week before the beginning of the
study.
Animals were fed 8 ± 1 kg hay/day and water was

provided ad libitum.
The study was conducted during September–October

2018. A written consent was obtained from all horse

owners before the study began. After the end of the
experimental period all the horses returned to their
stables. All experimental procedures were approved by
the Animal Care Committee of Camerino University
(Registration number: E81AC.8.B, March 1st, 2018) and
were in accordance with the standards recommended by
the EU Directive 2010/63/EU for experiments on animals.

BALF and EBC samples collection
BALF samples were collected as described previously
[23]. Briefly, after horse sedation with detomidine
(10 μg/Kg BW) and butorphanol (10 μg/Kg BW), a 220
cm long endoscope, with outer diameter of 1.2 cm
(Mercury Endoscopia Italiana) was passed through the
ventral meatus of the nasal cavity, larynx and carina, and
edged in a left segmental bronchus (Additional file 1).
Always the same two operators, one at the control and
one at the insertion section, handled the scope. Pre-
warmed sterile saline solution (250 ml) was instilled
through the work channel of the scope and immediately
retrieved (at least 50% of the instilled volume). One
BALF aliquot (200 μl) was used for cytologic evaluation
as previously described [47]. According to cytological
appearance of BALF cytospin specimens, a grading of
airways inflammation based on neutrophils percentage
was performed. A second BALF aliquot (2 ml) was
cooled at 5 °C and stored at − 80 °C, within 30 min from
collection, and analyzed by 1H-NMR within 2 weeks.
After each BALF sampling, the endoscope was cleaned
with 3% hydrogen peroxide solution, followed by 10%
iodopovidone solution, afterwards it was rinsed with
saline solution and, lastly, with sterile distilled water.
EBC samples were collected using a condensation

system consisting of an aerosol face mask connected via
tubing to a condensation chamber as previously de-
scribed [11]. Briefly, the modified aerosol face mask (SM
Trade&Technology SRL) had three unidirectional valves,
one valve allowing the air to enter during inspiration
and other two valves connected via thermally insulated
tubing to a condensation device that allowed expired air
to unidirectionally pass through the system. The flexible
plastic tubes (length: 280 cm; radius: 2.1 cm) were
coated with thermal insulating tubes to maintain the
temperature of expired air, thus preventing air con-
densation inside the tubing system. The condensation
chamber consisted of a 500 mL glass becker inserted
into an ice block, positioned inside of a thermally in-
sulated box, having a one-way valve on the top to
prevent EBC contamination by retrograde flow of environ-
mental air (Fig. 6). During EBC collection the temperature
inside the condensation chamber was monitored by
means of a suitable thermometer (− 20 °C). Before starting
EBC sampling, all animals were accustomed to the face
mask that was well accepted by the horses.
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Every EBC collection was performed indoors (12 ±
2 °C), before feeding, between 9.00–09.30 am, after an
accurate cleaning of face and nostrils, without any
sedation and before BALF collection (Additional file 2).
EBC samples were collected over a 15 min period,

immediately cooled at 5 °C and stored at − 80 °C,
within 30min from collection, and analyzed by 1H-NMR
within 2 weeks.
Respiratory rate and respiratory pattern were moni-

tored continuously throughout the EBC collection. After
each EBC collection, the mask was cleaned with water

and single use absorbent paper towels at first, thereafter
mask, tubes and becker were rinsed with deionized
water, wiped with single use paper towel and then left
air drying.

Metabolome analysis by 1H-NMR
Each BALF and EBC sample was prepared for NMR ana-
lysis by thawing, followed by centrifugation at 18640 g and
4 °C for 15min [11]. A 0.7mL aliquot of supernatant was
added to 0.1mL of a D2O solution of 3-(trimethylsilyl)-
propionic-2,2,3,3-d4 acid sodium salt (TSP) 10mM, buff-
ered at pH 7.00 ± 0.02 by means of 1M phosphate buffer.
The D2O solution contained also NaN3 2mM, to avoid
microorganisms’ proliferation. Afterwards, each sample
was centrifuged again at the above conditions.

1H-NMR spectra were recorded at 298 K with an
AVANCE III spectrometer (Bruker, Milan, Italy), at a
frequency of 600.13MHz. A CPMG-filter, set as
suggested by Bazzano et al. [11] allowed reducing the
signals from large molecules, while the residual water
signal was suppressed by presaturation. Each spectrum
was acquired by summing up 256 transients registering
32 K data points over a 7184 Hz spectral window, with
acquisition time of 2.28 s and relaxation delay of 5 s. The
1H-NMR spectra were adjusted for phase and baseline
distortions as described by Foschi et al. [48].
The signals were assigned by comparing their chemical

shift and multiplicity with Chenomx software library
(Chenomx Inc., Canada, ver 8.3). Quantification of each
molecule was achieved by rectangular integration, by
focusing on one signal per molecule free from superim-
positions. The added TSP, at a known concentration,
was employed as internal standard in the first sample
analyzed. Differences in water content among samples
were then taken into consideration by probabilistic
quotient normalization (PQN) [49]. In detail, each
spectrum has been normalized towards the reference
one through PQN in two steps. First, for each molecule
the change of concentration with respect to the reference
has been calculated, in order to obtain a distribution of
changes. Second, the median value of this distribution has
been considered as the unspecific change caused by water,
and therefore removed.

Statistical analysis
Statistical analysis was performed by using PRISM 8
(GraphPad Software Inc.) and R statistical software
(www.r-project.org).
Two-way repeated measures ANOVA was performed

to highlight difference in respiratory rate between Group
A and C during EBC collection.
After Box Cox data normalization [50], two-sided F-

test was applied to assess statistical differences in
metabolites’ concentrations between asthma and control

Fig. 6 EBC collection performed using a condensation system
consisting of a modified aerosol face mask connected via tubing to
a condensation chamber

Bazzano et al. BMC Veterinary Research          (2020) 16:233 Page 7 of 9

http://www.r-project.org


groups and 95% confidence interval (CI) was calculated
[51]. Statistical significance was established at p < 0.05.
The trends underlying the metabolome of BALF and

EBC were summarized by means of robust principal com-
ponent analysis (rPCA) [52]. This algorithm rotates the
original space represented by molecules’ concentrations,
to show the samples from the point of view representing
the greatest portion of the samples’ variance. The score-
plot, the representation of the samples from the new point
of view, helps to inspect the trends underlying the sam-
ples, while the loadingplot shows the Pearson’s correlation
between the concentration of each molecule and its im-
portance along the principal components, thus evidencing
the molecules mainly driving the trends. For the purpose,
a significance at p < 0.05 was accepted.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12917-020-02446-9.

Additional file 1. BALF collection.mov: This video shows the collection
of BALF in a horse included in the study.

Additional file 2. EBC collection.mov: This video shows the collection of
EBC in a horse included in the study.
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