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Abstract: The insecticidal activity is the result of a series of complex interactions between toxic
substances as ligands and insect’s enzymes as targets. Actually, synthetic insecticides used in pest
control programs are harmful to the environment and may affect non-target organisms; thus, the use
of natural products as pest control agents can be very attractive. In the present work, the toxic effect of
aniseed (Pimpinella anisum L.) essential oil (EO) and its nanoemulsion (NE) against the red flour beetle
Tribolium castaneum, has been evaluated. To assess the EO mode of action, the impact of sub-lethal
concentrations of aniseed EO and NE was evaluated on enzymatic and macromolecular parameters of
the beetles, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein,
total lipids and glucose. Finally, a molecular docking study was conducted to predict the mode of
action of the major EO and NE components namely E-anethole, Limonene, alpha-himalachalene,
trans-Verbenol and Linalool at binding site of the enzymes AST and ALT. Herein, the binding location
of the main compounds in both proteins are discussed suggesting the possible interactions between
the considered enzymes and ligands. The obtained results open new horizons to understand the
evolution and response of insect-plant compounds interactions and their effect predicted at the
molecular levels and side effects of both animal and human.

Keywords: insect pest control; nano/bio-insecticides; Pimpinella anisum; red flour beetle; molecular
docking; biochemical assay

1. Introduction

Modern agricultural practice and food industry are strongly influenced by the need to control
pest and parasites. Especially in the production of fruits and vegetables, there is a need to use different
chemical products in order to ensure productivity and quality of crops. On the other hand, despite the
usefulness of pesticides, their use imposes a range of risks, including potential harmful side effects on
humans, residues in food crops, environmental pollution, development of resistance and outbreak
of insect pests [1–3]. Actually, in order to increase the food safety and reduce the environmental
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impact of agricultural practices, there is an urgent need to develop new pest control agents that present
improved characteristics in terms of selectivity, environmentally acceptability, biodegradability and
safety of use. Natural products in fact are at the forefront as safe sources for the development of pest
control agents [4,5]. Among them, the usage of essential oils (EOs), which are complex mixture of
small-sized, lipophilic and volatile compounds, appears to be very promising. EO of parsley family
(i.e., Apiaceae or Umbelliferae) have been studied for their insecticidal properties [6–9] showing
activity against a wide range of target insects, e.g., from stored grain to insect pests, owing to their
documented ovicidal, larvicidal, and adulticidal toxicity [10–13]. Nevertheless, EOs-based pesticides
can present some issues, as low water solubility, rapid environmental degradation, and lack of stability
during storage [14,15]. These shortcomings greatly impair the potential use of these products for pest
management purposes. On this basis, their chemical and physical properties can be modified and
improved by a nanotechnology approach through the development of suitable formulations [16–20].

Aniseed (Pimpinella anisum L., Apiaceae) can be considered a good material for the development of
plant-based formulations for insect pest management for several reasons. The species is a well-known
annual herb with one of the oldest histories of human use. It is cultivated in Egypt, which is the world’s
largest producers of its EO, followed by Greece, Italy, and the Middle East [21–24]. Aniseed is also
widely used as a food, being eaten directly or boiled for drinking or used as a seasoning on raw or
cooked foods [25]. Being edible, this product presents a good toxicological profile. The aniseed EO is
popular in the folk medicine for a wide range of therapeutic uses dealing with neurologic, digestive,
gynecologic and respiration disorders [26,27]. In addition, it exhibited efficacy against stored grain
insects [28,29]. The chemical composition of aniseed EO is variable in its qualitative and quantitative
composition, as commonly expected for other EOs [30,31]. Indeed, the main component is (E)-anethole
at various percentages [32–34], besides other compounds at a lower rate, such as methyl chavicol,
p-anisaldehyde, α-himachalene, and (E)-pseudoisoeugenyl 2-methylbutyrate [24,28,35].

Overall, the insecticidal activity of EOs and their components are frequently assessed against
insect pest species at the macromolecular level [9]. Nonetheless, the underlying mode of action of
these EOs and their main constituents is still poorly understood with scarce studies exploring some
biochemical targets and their mediated biochemical changes, such as the contents of total protein,
total lipids, glucose, activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT).
Here, the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), a key pest species of
stored products, was employed as a model organism [36].

As an attempt to mitigate some of the shortcomings associated with the potential use of EOs as
pest management tools in the present work we aimed to establish the toxicity of aniseed EO and its
nanoemulsion (NE) against the red flour beetle T. castaneum, and to investigate possible macromolecular
abnormalities induced by the sublethal exposure to EO and NE, including changes in AST and ALT
activity, glucose content, total proteins and total lipids levels. Furthermore, we investigated which EO
constituent may be endowed with protease activity by using 3D molecular modeling with in silico
molecular docking tools to understand their binding patterns. Overall, results from this study can aid
us in understanding the mode of action of aniseed EO, when encapsulated in NE, allowing a better
understanding to its metabolism and distribution.

2. Results

2.1. GC-MS Analysis of P. anisum Essential Oil and Nanoemulsion

The results of the GC-MS analysis of P. anisum EO and NE showing the composition of both the
samples is reported in Table 1, with the identification and quantification of fourteen different volatile
constituents, accounting for more of the 99% of oil components. In the aniseed EO, the predominant
component as expected is (E)-anethole accounting 800 mg/g), followed by limonene, α-himachalene,
trans-verbenol, linalool, eugenol, acetyl isoeugenol and methyl chavicol. On the other hand, In the
aniseed NE, the dominant component with different concentrations was also (E)-anethole (102.1 mg/g),
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followed by alpha-himachalene, limonene and Linalool. Structures of the main constituents are
reported in Figure 1, quantitative results are reported in Table 1.
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Figure 1. Structures of the main compound of the analyzed essential oil.

Table 1. Chemical composition of the essential oil of Pimpinella anisum essential oil (EO) and anise
nanoemulsion (NE) analyzed by GC/MS.

Retention Time Compounds KI * Compound EO
(mg/g)

Compound NE
(mg/g)

8.2 Limonene 1.202 (1210) 55.7 ± 0.1 03.2 ± 0.1

8.4 1,8-Cineole 1.207
(1220) 03.6 ± 0.1 0.3 ± 0.1

20.3 Linalool 1.557
(1556) 16.4 ± 0.2 01.9 ± 0.2

20.5 Linalyl formate 1.563
(1579) 09.2 ± 0.1 01.1 ± 0.2

23.8 Methyl chavicol 1.674 (1683) 08.1 ± 0.2 01.1 ± 0.2
24.1 trans-Verbenol 1.685 (1683) 24.7 ± 0.2 01.6 ± 0.1
24.2 α-Himachalene 1.688 (1690) 25.2 ± 0.2 03.5 ± 0.1
25.5 Geranial 1.734 (1740) 08.7 ± 0.1 01.2 ± 0.2
28.4 (E)-Anethole 1.839 (1847) 801.0 ± 0.2 102.1 ± 0.1
33.1 p-anisaldehyde 2.023 (2020) 09.9 ± 0.1 01.3 ± 0.1

33.5 (E)-cinnamaldehyde 2.030
(2030) 08.6 ± 0.1 01.2 ± 0.2

36.5 epi-α–Cadinol 2.168 (2165) 08.1 ± 0.2 01.0 ± 0.2
36.6 Eugenol 2.170 (2186) 08.9 ± 0.1 01.2 ± 0.1
44.6 Acetyl-isoeugenol 2.475 (2400) 11.3 ± 0.2 01.1 ± 0.1

Total 999.4 121.8

* Kovats index were calculated on the basis of the retention time of the analytes compared with a reference mixtures
of alkane standard mixtures, tabulated values (NIST) are reported in parenthesis, data are expressed as average of
three different measurements and standard deviations.

As mentioned above, (E)-anethole is the major compound present in the EO. Its relative percentages
reported in the literature are in the range of 82–90% [24,28,37–40]. The wide variation in the amount of
(E)-anethole could be attributed to several factors, namely harvest times [26], extraction technique [41],
stages of plant maturity [42], fertilizer type [43], date, collection sites and sowing [23].

In this paper, we included the comparison of the GC-MS analysis of the EO and NA to assess
any possible change in the composition of the essential oil during the chemical treatments needed for
nanoemulsion synthesis. As shown in Table 1 the qualitative composition is superimposable to the
one of the starting essential oil, considering that the amount of oil included in NA is 14% the found
percentage of the whole compounds is in agreement with general conservation of the composition,
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the sum of the amount of the quantified compounds being 122 mg/g. Most of the compounds are in
the NA at 8–10 times less, compared to their amount in EO as expected due to introduced EO quantity.

2.2. Charachterization of Nanoemulsion

In a previous study, Hashem et al. (2018) evaluated the characteristics of the nanoemulsion by
using the same experimental protocol. The P. anisum EO-based NE showed Z-average size of 198.9 nm
and conductivity of 0.029 mS/cm pointing out the presence of highly conductive ions. Furthermore,
the zeta potential was highly negative (−25.4 ± 4.47) which can lead to high degrees of stability [44].
Instead, the PDI value (0.303) indicated a good physical stability of the nanoemulsion, due to the
reduced Ostwald ripening [45], with low viscosity of 0.8872 cP, which might be due to the low oil
content which delays instability phenomena, resulting in oil droplets with a more homogeneous
particle size [46].

2.3. Toxicity Assays and Sub-Lethal Toxicity Assays

The results of toxic activity of both the P. anisum formulations (EO and NE) against T. castaneum
are shown in Table 2. Both forms showed significant activity against T. castaneum adults in a
concentration-dependent manner. At 4 mg/mL concentration, P. anisum essential oil (FDI = 76.18%)
exhibited the highest feeding deterrent activity and nutritional indices (RGR, RCR, and ECI) compared
with P. anisum NE (FDI = 1.59%) and control. In addition, the LC50 values on adult beetles were 2.1 v/v
(confidence interval 1.8–2.9 v/v) and 9.8 v/v (8.6–12.7 v/v) for EO and NE, respectively (Table 2).

Table 2. Variation of nutritional indices in Tribolium castaneum treated with different concentrations of
Pimpinella anisum essential oil and nanoemulsion during 4 days.

Treatment Concentration
(%, v/v)

RGR ± SD
(mg/mg/day)

RCR ± SD
(mg/mg/day)

ECI ± SD
(%)

FDI ± SD
(%)

P. anisum EO

1 −0.25 ± 0.06 b 1.05 ± 0.11b −17.24 ± 0.84 b 19.04 ± 0.45 c
2 −0.37 ± 0.28 b 0.79 ± 0.03 b −34.48 ± 0.21 c 38.09 ± 0.23 b
3 −0.42 ± 0.05 b 0.52 ± 0.54c −51.72 ± 0.23 d 57.13 ± 0.04 b
4 −0.64 ± 0.21 c 0.26 ± 0.21c −68.96 ± 0.56 e 76.18 ± 0.52 a

Control 0.13 ± 0.04 a 3.88 ± 0.06 a 34.87 ± 0.21 a 0.00 ± 0.00 d

LC50 (%, v/v) = 2.1 a (1.8 − 2.9) b; slope = 2.37

P. anisum NE

1 0.21 ± 0.18 a 3.31 ± 0.46 a −0.30 ± 1.85 b 0.39 ± 0.21 b
2 0.14 ± 0.05 b 2.48 ± 0.15 a −0.61 ± 1.01 b 0.79 ± 0.29 b
3 0.04 ± 0.06 c 1.65 ± 0.16 b −0.91 ± 0.32 c 1.19 ± 0.34 a
4 −0.02 ± 0.02 d 0.83 ± 1.23 c −1.22 ± 0.34 c 1.59 ± 0.56 a

Control 0.13 ± 0.04 b 3.88 ± 0.06 a 34.87 ± 0.21 a 0.00 ± 0.00 c

LC50 (%, v/v) = 9.8 a (8.6 − 12.7) b; slope = 2.43

Column means (for each treatment) followed by different letter(s) are significantly different (ANOVA, Tukey’s HSD
test, p < 0.05). EO = essential oil, NE = nanoemulsion, RGR = relative growth rate, RCR = relative consumption rate,
ECI = efficiency of conversion of ingested food, FDI = Feeding Deterrence Index, SD = Standard Deviation, a Units
LC50 (%, v/v) after 94 h.; b 95% lower and upper confidence limits are shown in parenthesis.

2.4. Biochemical Assays

Sub-lethal concentrations (LC50) of P. anisum EO (2.1 v/v) and NE (9.8 v/v) were applied to
T. castaneum adults to study the abnormalities occurring at enzymatic and biochemical parameters
(Table 3). Sub-lethal concentrations (LC50) of P. anisum EO significantly decreased AST (+30.56%) and
glucose (+80.54%). Otherwise, a negative change ranging from 14.75% to 30.56% was recorded in other
parameters including total lipid (−14.75%), total protein (−15.81%) and ALT (−17.87%).
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On the other hand, treatment with P. anisum NE significantly decreased the activity and amounts
of most enzymes and macronutrients in T. castaneum adults. This decrease was determined as +8.31%,
+59.32%, +85.79%, +52.08% and +9.33% in the activities and content of ALT, AST, glucose, total protein
and total lipids, respectively (Table 3).

Table 3. Effect of 4 day-treatment with LC50 of Pimpinella anisum essential oil and nanoemulsion on
ALT and AST enzymes and major biochemical parameters in Tribolium castaneum beetles.

Parameter Control P. anisum
Essential Oil Variation (%) * P. anisum

Nanoemulsion Variation (%) *

ALT (U/mL) 64.8 76.38 −17.87 59.42 +8.31
AST (U/mL) 92.5 64.23 +30.56 37.85 +59.32

Glucose (mg/dL) 102 19.84 +80.54 14.49 +85.79
Total protein (mg/dL) 1.96 2.27 −15.81 0.93 +52.08

Total lipid (mg %) 562.5 645 −14.75 510 +9.33

* Variation (%) = [(Control – Treatment)/Control]× 100. ALT = alanine aminotransferase AST = aspartate aminotransferase.

2.5. In Silico Molecular Docking Prediction of the Binding Site of Main Compounds of the EO and NE on
Key Enzymes

To the best of our knowledge, this work represents the first study reporting the effect and
interaction between an EO-based NE and ALT and AST enzymes of T. castaneum. Molecular docking
was used to predict the binding site of the major compounds of P. anisum EO to AST and ALT
enzymes. In the modeler, a least energy model was selected [47]. To obtain the basic data of protein
structure in a convenient way, a progression of 3D protein structures was developed by means of
homology modeling [48,49]. Basic local Alignment search Tool (BLAST) through Swiss model server
was used to build templates, only the 5toq.1. A with AST (Seq. Identity 63.37%) and 3ihj.1. A with
ALT (Seq. Identity 59.61%) showed high level of sequence similarity and were selected as templates.
The final stable structure of the AST and ALT, and their active sites so obtained are shown in Figure 2.
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Figure 2. Structure two proteins modeling and their active sites by Chimera molecular graphic software;
(1) ALT (Alanine aminotransferase) model and (2) AST (Aspartate aminotransferase) model.

The best protein-based model stabilized, least energy and low RMSD (Root Mean Square Deviation)
was obtained with Nano Molecular Dynamics (NAMD) and the graph [50]. The best model was
selected on the basis of model evaluation tools, ProSA-web Z-scores and RAMPAGE Ramachandran
plots [51] (Figure 3).
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Figure 3. Ramachandran plot analysis: homology models of alanine aminotransferase (ALT, left) and
aspartate aminotransferase (AST, right).

Based on the GC-MS analysis, the main compounds (≥2%) of EO have been selected as ligands of
both proteins modelling). The main constituents were docked into AST and ALT (Figure 4).

The information of protein 3D structures is vital for rational drug design. Molecular docking has
been performed by Molecular Operating Environment (MOE) software to identify the binding location
of the main compounds with both proteins. The 3D structural simulation of the best energy ranked
result of the binding mode between enzymes and ligands is shown in Figures 4 and 5. Regarding to the
EO form, alpha-himalachalene and (E)-anethole compounds showed the most interactions at the lowest
energy and strength of the binding of ALT (−12.03 kcal/M) and AST (−11.51 kcal/M), respectively.
Regarding to the NE form, alpha-himalachalene and Linalool compounds were the least energy and
most closely binding for ALT (−12.03 kcal/M) and AST (−11.95 kcal/M) proteins, respectively.

All results of interaction were observed between four ligands and both proteins (Table 4).

Table 4. Molecular docking outcomes of the Pimpinella anisum essential oil compounds tested against
Tribolium castaneum, on the two receptor enzymes, alanine aminotransferase (ALT) and aspartate
aminotransferase (AST).

Enzyme Ligand Binding Energy (kcal/M) RMSD (A◦)

Alanine
aminotransferase (ALT)

(E)-anethole −11.93 3.67
Limonene −11.26 1.69

alpha-himachalene −12.03 2.94
trans-Verbenol −10.42 2.42

Aspartate
aminotransferase (AST)

(E)-anethole −11.51 2.43
Limonene −9.34 2.12

alpha-himachalene −9.38 3.01
trans-Verbenol −7.95 2.74
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anisum with homology modeled Aspartate aminotransferase (AST) of Tribolium castaneum created by
Molecular Operating Environment (MOE) program.

3. Discussion

In this work, GC-MS analysis allowed to identify and quantify the main compounds of P. anisum
EO and to check their amount in the produced NE. The efficacy of P. anisum EO and NE as an ecofriendly
alternative to synthetic insecticides was then explored significant activity against T. castaneum adults
was observed in a concentration-dependent manner. Many EOs and their components are known to
exhibit antifeedant properties against a wide range of insect pests [4,5]. However, research papers on
the effects of aniseed EO against stored grain pests are limited though other Apiaceae species were
shown as source of insecticidal agents [9,52,53] and effective against T. castaneum [29,54]. The EO from
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Azilia eryngioides (Pau) Hedge and Lamond showed LC50 values on Sitophilus granarius and T. castaneum
of 20.05 µL/L and 46.48 µL/L, respectively, after a 24 h of treatment [55]. The EO of Coriandrum sativum
L. caused a significant decrease of the number of T. castaneum larvae reaching the pupal stage and that
from pupae to adult stage in a concentration-dependent manner [56].

According to data, there are limited studies of P. anisum EO-based formulations against stored
pests. Nevertheless, several researchers have evaluated other EOs under nanoemulsions. A previous
paper proved that Pterodon emarginatus Vogel nanoemulsion works as an anti-acetyl cholinesterase
drug against Aedes aegypti. Alike, nanoformulation containing 18% of Lippia sidoides Cham. EO or
thymol killed off 50% of Sitophilus zeamais (Motschulsky) adults at concentrations ranging from 1.1 to
3.7 µg/mg [57]. Another work found that Achillea Arabica Kotschy, A. cretica L. and A. millefolium L [19].
EO-based NEs showed fumigant and toxic effects against T. castaneum. Previous work found that
pulegone encapsulated into coarse NE caused a high mortality (>90%) rates for 5 weeks in S. oryzae
and T. castaneum [58]. Likewise, the eucalyptus EO-based NE containing karanja and jatropha aqueous
filtrate, at concentrations of 300 and 1500 ppm, gave 88–100% mortality rates against T. castaneum
adults within 24 h [59].

A limited number of researchers have, however, paid attention to the effects of P. anisum EO and
its encapsulated forms on certain enzymes in and outside of the citric acid cycle, glycolytic pathway,
and other related biochemical components. In these experiments, therefore, the biochemical effects of
P. anisum EO and NE on some enzyme of these systems in T. castaneum adults were studied.

Considering the main volatile constituents that were measured in the essential oil and
nanoemulsion they are well known for their insecticidal activities. As an example previous published
papers considered (E)-anethole [60]. Anethol resulted very effective as larvicidal and adulticidal agents
against C. quinquefasciatus [35]. Notably, (E)-anethole is able to neutralize the detoxicative system of
the insect by interacting with the cytochrome P450 enzyme [61]. Limonene previously studied in this
regard and this compound present limited insecticidal properties but low mammalian toxicity [62].

Cedrus atlantica essential oils bearing 14% of beta-hymachalene was, studied for its insecticidal
properties against Tribulus confusum [63]; The essential oil of Artemisia mongolica containing was
studied for repellent and insecticidal properties. Furthermore, in the same study, the major constituents
namely Eucalyptol (39.88%), (S)-cis verbenol (14.93%), 4-terpineol (7.20%), (−)-camphor (6.02%) and
α-terpineol (4.20%) were also evaluated for repellent and insecticidal properties showing significant
bioactivity [61]. Thus, the volatile constituents that are present in the EO and NE, overall (E)-anethole,
can play a crucial role for the bioactivity. For these reasons, we decided to investigate the possible
biochemical and molecular targets to understand the possible mode of action of these mixtures.

AST and ALT enzymes are used as indicators of the proper functioning of the fat body in insects
and their equivalent in mammals, i.e., the liver [64]. The AST and ALT activities increase with the
aging/maturation process in the hemolymph of healthy insects [65]. Exposure to insecticides causes a
decrease in the activities of the enzymatic physiological like AST and ALT may impair ATP synthesis,
β-oxidation, Krebs cycle, oxidative phosphorylation and other metabolic cycles [66], and may also
indicate a decrease in the levels of important dietary proteins to form the amino acids needed to develop
tissues, secretions and energy demand [67]. Furthermore, these vital activities in insect tissues may
differ from those found in mammals, but in both cases, they can be used to assess the immune status.
In addition, the presence of both enzymes (AST and ALT) in insects and mammals (with different
sequences between them) and their medical and scientific importance gives us an opportunity to study
the side effects of insecticides and their components (whether of the chemical origin or of botanical
origin) and know their maximum and minimum damage by molecular docking and The 3D structural
simulation. The 3D structural simulation may help us to clarify the mechanism and strength of the
binding between proteins and ligands [68].

The results suggest that the analyzed enzymes were found to be sensitive to all treatments with
anise EO and its NE. Likewise, previous investigations proved that jasmine and basil EOs significantly
increased the activity of AST, while clove EO caused a significant increase of the activity of ALT [69].
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In fact, the variable effect of plant EOs on AST and ALT activities might be exerted on the synthesis
or functional levels of these enzymes directly or indirectly by altering the cytology of the cells [70].
Furthermore, another work reported that glucose and glycogen provided primary sources for energy
under insecticidal stress conditions followed by lipid and cholesterol contents [71]. The glycolytic
pathway was probably activated for this purpose. An increase in soluble protein contents was reported
in adult beetles of T. granarium after 24 and 48 h exposure to phosphine after that they started to
decrease [72]. Previous work reported an increase in protein contents in Rhyzopertha dominica (F.) after
exposure to malathion, a synthetic organophosphorus insecticide [73].

The present investigation demonstrates that the aniseed NE effect is significant compared to the
one of EO. This gives the nanoformulation a unique and distinct characteristic, which is the high
ability to influence at the molecular levels (cells, proteins, genes, enzymes, etc.), as well as the ability to
directly reach the target.

The docking results showed agreement with the ones from enzyme and biochemical assays. This is
evident in the compatibility of the biochemical assay with molecular docking analysis (the lowest
binding energy with ligands), which showed that the effect on the AST (+60.32) is more affected at
exposure to nanoemulsion compared to the ALT (+11.12). In addition, the results confirmed that NE
was effective as much as EO against ALT and AST proteins. This leads us to build bio-nanopesticides
formulations based on aniseed EO. Notably, these results further substantiate the use of in silico
tools for prediction and identifying novel insect repellent compounds. Finally, the current study is
considered complementary to the previous study [29] at the applied level, not just the research level,
because this study shows the effect of essential oil and its nanoemulsion on insect proteins and enzymes,
which are necessary to know the extent of the insect’s ability to show the resistance to these oils in the
long term. In addition, the study provides us with knowledge which of the internal components of EO
and NE have the ability to bind to insect enzymes, or in other words, which of the internal compounds
has the most share in influencing the insect, and then designing biopesticides based on these most
influential components.

4. Materials and Methods

4.1. Insect Rearing

The red flour beetle, Tribolium castaneum, was reared on broken wheat grains (whole wheat grains
were ground completely in a mortar box then sieved to obtain sizes less than 11 mm) mixed with dried
yeast (5%) under laboratory conditions (25 ± 1 ◦C; 60 ± 3% R.H.), and 10:14 h (L:D) at Stored Products
and Grain Pests Department, Plant Protection Research Institute (PPRI), Agriculture Research Center
(ARC), Sakha, Kafr El-Sheikh, Egypt. Beetle adults used in the experiments were 7–14 days old. All the
following experiments were conducted under similar laboratory conditions.

4.2. Essential Oil

Based on our previous researches [29], the aniseed (P. anisum) EO was provided by Hashem
Brothers Company for Essential Oils and Aromatic Products, Kafr-Elsohby, Kalyoubeya, Egypt.

4.3. Nanoemulsion Preparation and Characterization

The NE of aniseed EO was prepared following the method of Hamouda et al. [74] with slight
modifications [29,75]. Briefly, coarse emulsion was prepared by mixing aniseed EO (14% v/v), ethanol
(3% v/v), and biosurfactant non-ionic Tween 80 (3% v/v), representing 20% (v/v) of the total emulsion [29].
Then, the coarse emulsion was mixed and kept for 1 h at 86 ◦C. It was subsequently mixed with water
(80%), kept for 3 min at room temperature (25 ± 3 ◦C) and finally centrifuged at 10,000× g. The aniseed
NE was stored in dark bottles at ambient temperature until further analysis.



Molecules 2020, 25, 4841 11 of 17

The aniseed NE was characterized by assessing the droplet size distribution (analysis by volume),
which was determined by the dynamic laser light-scattering method (DLS). The zeta potential and
polydispersity index PDI were investigated by photon correlation spectroscopy using a ZetaPlus tool
(Malvern Zetasize Nano-zs90, Malvern Instruments Ltd., Enigma Business Park, Grovewood Road,
Malvern, Worcestershire WR14 1XZ, UK) [29].

4.4. Gascromatography Coupled with Mass Spectrometry

The GC-MS analysis of P. anisum essential oil and nanoemulsion was carried out using gas
chromatography-mass spectrometry instrument Agilent 7820A GC 5977B inert MSD single quadrupole
(Agilent Technologies, Santa Clara, CA, USA). A HP-INNOVAX column (30 m × 0.250 mm × 0.25 µm)
was used. The temperature program was: isothermal at 55 ◦C and held for 5.5 min. 55–240 ◦C at
4 ◦C min−1, 4 min hold at 240 ◦C and 240–250 ◦C at 10 ◦C min−1 and 5 min hold at 250 ◦C. The injector
temperature was 220 ◦C. The flow rate carrier gas (helium) was 1.2 mL min−1. A spitless injection
was used. A total of 3 µL of solution was injected. Samples were prepared taking a volume of 100 µL
of essential oil in 1000 µL of ethyl acetate and 50 µL in 1000 µL of tetrahydrofuran:water (8:2) for
nanoemulsion, internal standard (nonanol) was added (5 microliters) and solutions were vigorously
mixed. Mass spectra were obtained by electron ionization (EI) at 70 eV, using a spectral range of m/z
45–500. The components were identified by comparison of their retention times and mass spectra with
those of WILEY 09 and NIST 12 mass spectral databases, as well as by experimental calculation of
the linear retention index, experimentally determined using a mixture of alkanes chromatographed
under the above analytical conditions. For quantitative results calibration curves were obtained mixing
100 microliters of nonanol solution (internal standard concentration of 100 µg/mL) with 100 microliters
of solutions of reference compounds at four levels of concentrations 200, 100, 50 and 20µg/mL. Reference
compounds were (E)-anethole, limonene, linalool, eugenol, cineole, verbenol, p-anysaldheyde and
trans-cinnamaldehyde. The solutions containing the different ratios of compound/nonanol were
analyzed and calibration curves were builted plotting quantity of analyzed compound/quantity of
nonanol versus area of analyzed compound/area nonanol. Each reference compound was used to
quantify the corresponding compound in the mixture, for the other compounds calibration curves of
the most similar standard were used. Obtained values are reported as the average of three different
measurements and standard deviation.

4.5. Toxicactivity Assay

Determination of toxic activity of the tested EO and NE against T. castaneum was performed
following the method of Shukla et al. with slight modifications [76]. One mL of the tested EO (diluted
in acetone) and the aniseed NE (diluted in deionized water) was mixed in glass flask using a rotary
shaker for 15 min with 20 ± 0.0001 g of broken wheat grains (>11 mm) providing the concentrations
of 1, 2, 3, and 4 v/v for the EO and NE, respectively. The treated broken wheat grains were left at r.t.
for 15 min allowing the evaporation of the solvent. A control with untreated broken wheat grains
(i.e., without oil or nanoemulsion) was maintained under the same conditions.

Twenty adult insects were starved for 24 h, weighed and subsequently placed into each flask.
Three replicates of 20 insects were used for each treatment (i.e., EO, NE, and control treatment).
After 4 days of the infestation, broken wheat grains weight, weight of live insects and insect mortality
were estimated. The nutritional indices were calculated using previous paper [77], as follows: Relative
Growth Rate (RGR) = (A − B)/B × No. days, where A = weight of live insects on the fourth day
(mg)/number of live insects and B = initial weight of insects (mg)/initial number of insects; Relative
Consumption Rate (RCR) = D/B×No. days, where D = biomass ingested (mg)/number of live insects on
the fourth day; Efficiency of Conversion of Ingested food (ECI) (%) = (RGR)/(RCR)× 100, the percentage
Feeding Deterrence Index (FDI) was calculated: FDI (%) = (C − T)/C × 100, where C = consumption of
control broken wheat grains and T = consumption of treated broken wheat grains.
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4.6. Evaluation of the Potential Mode of Action of Aniseed EO and NE

The lethal concentrations required to kill 50% of the test population (LC50) after 4 days for the
anise EO and NE were estimated through the concentration-mortality bioassays described above
were subsequently used in in vitro biochemical and in silico molecular docking bioassays in order to
understand their possible mode of action on adults of the red flour beetle.

4.7. In Vitro Biochemical Assays

Sixty adult insects previously exposed to the desired treatments, as described above, were weighed
and subsequently homogenize in 2 mL of 0.89% saline solution with the help of motor-driven Teflon
glass homogenizer (NIPPI Inc., Tokyo, Japan). The homogenate was centrifuged at 3000× g for 30 min
in refrigerated centrifuge (Aldo Avenue, Santa Clara, CA 95054 USA) at 4 ◦C, and the supernatant was
separated and used for the in vitro biochemical bioassays using a spectrophotometer [72].

Glucose, total protein and total lipid contents on the beetle extracts were determined by the
O-toluidine method described by Hafiz et al. [78]. Aspartate aminotransferase (AST), and alanine
aminotransferase (ALT) protein activities were determined as previously described [79].

4.8. In Silico Molecular Docking Assay

For 3D model building, alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) sequences were obtained from National Center for Biotechnology Information (NCBI)
server. The sequences of both proteins were submitted by Swiss-Model tools to protein structure
homology-modelling more suitable structural template to reliable theoretical for 3D models.
Then, these models were analyzed and validated by the Ramachandran’s plot (PROCHECK analysis).
Structure models of ALT (Alanine aminotransferase) and AST (Aspartate aminotransferase) proteins
and their active sites (pockets) were carried out by Chimera molecular graphic software.

Ligand selection: The main compounds (≥2%) of EO and NE were selected as ligands of both
protein modelling. Then, these compounds were obtained from PubChem and Chemspider databases
and were prepared by Molecular Operating Environment (MOE) program in MOL format of this ligand
and create library of them.

Molecular docking was used to predict the binding site for proteins. The structural simulation
helps to clarify the binding mechanism between any proteins and all ligands [68]. Docking steps
was performed by using the Molecular Operating Environment (MOE) software package (Chemical
Computing Group Inc., Montreal, Canada) as previously described [80]. The proteins and ligand
molecules were opened by MOE software. These structures were modified by the addition of
hydrogen atoms and energies were minimized using following parameters Force field. The best model
obtained from modeler was used for docking analysis. The structure of protein was subjected to 3D
protonation and energy minimization using following parameters Force field: MMFF94X + Solvation,
Chiral constrain: Current geometry, Gradient: 0.05. This minimized structure was then used as
receptors in docking analysis. The active site of protein was found by site finder module of MOE.
Docking was run with default parameters of MOE. Once the process was completed, a docked structure
indicating the corresponding e-values was generated.

4.9. Statistical Analysis

Mortality data were corrected for natural mortality using the Abbott’s formula [81], and the natural
mortality did not overcome 20% (ranged between 5−20%). The concentration–mortality bioassays
to ascertain the toxicity of EO and NE to the red flour beetle was subjected to Probit analysis [82].
The toxic activity results were subjected to analysis of variance (ANOVA) followed by Tukey’s HSD test
(p < 0.05). Sigma Plot 12.0 software (Systat Software, Inc. 225 W Washington St., Suite 425, Chicago, IL,
USA) was used for all the analyses.
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5. Conclusions

Our study provided an insight of structure and interactions of ALT and AST protein with essential
oils as Nano/Bio-insecticides. The present investigation demonstrates that the aniseed EO-based NE
effect is stronger than that of EO. This may suggest that the NE form may give more solubility to
mixture in the assay’s conditions and lead to an incremented final effect, or that the NE helps the active
constituents to be delivered to the enzyme sites. The observed effects indicate the need for deeper
investigations on the possible application of EO-based NEs as pest control agents. Notably, the major
constituents of the EO were further filtered using in silico analysis and the binding interactions with
the target enzymes were understood by molecular docking studies. Different binding modes between
both enzymes and key components may be due to increased insecticidal activity of these compounds
and they interacted with more key amino acid residues. Information obtained by the biochemical and
theoretical studies was collected to assess the possible role of the active constituents of the EO towards
the target enzymes. This information might be interesting in order to develop active ingredients against
pests and add new fundamentals about insect defense mechanism based on the other compounds
produced by the plants.
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