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1 Introduction

Given a vector x of n components, the l0 pseudo-norm

‖x‖0 := number of nonzero components in x,

has often been used in optimization problems arising in various fields. However,
the introduction of ‖x‖0 makes these problems extremely complicated to solve,
so that various approximations and iterative schemes have been proposed in
the scientific literature to efficiently solve them.

The use of this pseudo-norm arises in many different fields, such as ma-
chine learning, signal processing, pattern recognition, portfolio optimization,
subset selection problem in regression, and elastic-net regularization. Cardi-
nality constrained optimization problems are difficult to solve and a common
approach is to apply global discrete optimization techniques.

Quite recently Sergeyev, in a book and in a series of papers, proposed a
novel approach to infinite and infinitesimal numbers. By introducing the new
numeral grossone (indicated by ¬), defined as the number of elements of the
set of the natural numbers, Sergeyev demonstrated how it is possible to oper-
ate with finite, infinite and infinitesimal quantities using the same arithmetics.
This new numerical system allows to treat infinite and infinitesimal numbers
as particular cases of a single structure, and offers a new view and an alter-
native approach for many fundamental aspects of mathematics such as limits,
derivatives, sums of series and so on.

The aim of this paper is to show how this new numeral system and in
particular ¬ can be used in different optimization problems, by replacing the
l0 pseudo-norm ‖x‖0 with

‖x‖
0,¬−1 :=

n∑
i=1

x2
i

x2
i + ¬−1 .

Indeed in literature there are many contributes for approximating the l0
pseudo-norm. For example in [23] two new smooth approximations of the l0
pseudo-norm are presented and other approximations are recalled in the fol-
lowing.

The paper is organized as follows. In Section 2 the new numeral system is
presented by describing its main properties: Infinity, Identity, and Divisibility.
Moreover, the new numeral positional system and the concept of gross-number
are discussed. In Section 3 the properties of ‖x‖0 are introduced and some ap-
proximations proposed in literature are presented. The definition of ‖x‖

0,¬−1

is then introduced and it is shown that ‖x‖0 and ‖x‖
0,¬−1 coincide for the

finite term and may differ only for infinitesimal terms. Two different applica-
tions of ‖x‖

0,¬−1 are presented in the Sections 4 and 5. The first, studied in

Section 4, concerns elastic net regularization and an algorithm for solving the
optimization problem

min
x

1

2
‖Ax− b‖22 + λ0 ‖x‖0,¬−1 +

λ1

2
‖x‖22 .
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In Section 5 the newly proposed definition of ‖x‖
0,¬−1 is used in classification

problems using sparse Support Vector Machines (SVMs). In particular, we
suggest an interpretation of an updating rule already proposed in literature
based on the KKT (Karush-Kuhn-Tucker) conditions and the expansion of
gross-numbers.

We briefly describe some notations used throughout the paper. With IN we
indicate the set of natural numbers. Given n,m ∈ IN, let IRn be the space of
the n-dimensional vectors with real components and let IRm×n be the space
of matrices with real elements, m rows and n columns. All vectors are column
vectors and are indicated with lower case Latin letter (e.g. x, y, z ∈ IRn).
Subscripts indicate components of a vector, while superscripts are used to
identify different vectors. Matrices are indicated with upper case Roman letter
(e.g. A, B ∈ IRm×n). If A ∈ IRm×n, ATi· is the i-th row of A. The symbol ‖x‖
indicates the norm of a vector x. Specific norms or parameters of the norm
are indicated with subscripts. The scalar product of two vectors x, y in IRn is
denoted by xT y, while in a generic Hilbert space we use the notation 〈x, y〉.
The symbol := denotes definition of the term. The gradient of a continuously
differentiable function f : IRn → IR at a point x ∈ IRn is indicated by ∇f(x).

2 The algebra of ¬

The numeral system, originally proposed by Sergeyev in [25,31,26], is based
on the numeral ¬ (called grossone) defined as the number of elements of
the set IN. This new definition of infinite unit consents to work numerically
with infinities and infinitesimals. In particular, the numerical system built
upon ¬ makes possible to treat infinite and infinitesimal numbers in a unique
framework, and to work with all of them numerically.

For instance, using ¬-based numerals, it is possible to execute arithmetic
operations with floating-point numbers and to assign concrete infinite and
infinitesimal values to variables. Moreover, ¬ allows to compute more precisely
the number of elements of infinite sets extending the traditional set theory
operating with Cantor’s cardinals. For example, the set of even numbers and
the set of integers that the traditional cardinalities identify both as countable,

have in this new numeral system, respectively, ¬
2 and 2¬ + 1 elements.

The new computational methodology has been successfully applied in sev-
eral fields of pure and applied mathematics offering new and alternative ap-
proaches. Here we only mention (numerical) differentiation [28], ODE [34,2],
optimization [7,11–14,33], hyperbolic geometry [20], infinite series and the Rie-
mann zeta function [26,29], biological processes, cellular automata [10]. For a
survey of the various aspects and applications of ¬, we refer the interested
reader to [25,31,5,6,17,19,24,27,30,32] and to the references therein.

Following the procedure used in the past when the numeral 0 (zero) has
been introduced to extend the natural numbers to integers, Sergeyev has in-
troduced the new numeral ¬.
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In particular ¬ is introduced by adding the Infinite Unit Axiom postulate
(IUA) to the axioms of real numbers. The IUA postulate is composed of three
parts: Infinity, Identity and Divisibility:

1. Infinity: any finite natural number n is less than grossone, i.e., n < ¬,
∀n ∈ IN.

2. Identity: the following relations link ¬ to the identity elements 0 and 1:

0 ·¬ = ¬ · 0 = 0, ¬−¬ = 0,
¬

¬
= 1, ¬0 = 1, 1¬ = 1, 0¬ = 0. (1)

3. Divisibility: for any finite natural number n the sets INk,n, 1 ≤ k ≤ n,
called the nth parts of the set IN of natural numbers and defined as

INk,n = {k, k + n, k + 2n, k + 3n, . . .} , 1 ≤ k ≤ n,
n⋃
k=1

INk,n = IN, (2)

have the same number of elements indicated by the numeral ¬
n . Note that

¬
n is larger than any finite number.

Since this postulate is added to the standard axioms of real numbers, all
standard properties (i.e. commutative and associative properties, distributive
property of multiplication over addition, existence of inverse elements with
respect to addition and multiplication, ....) also apply to ¬ and to grossone-
based numerals. On the other hand, since in this framework it is possible
to execute arithmetical operations with a variety of different infinities and
infinitesimals, indeterminate forms as well as various kinds of divergences are
not present when working with any (finite, infinite and infinitesimal) numbers
of the new numerical system.

In this new numeral positional system a gross-number (or gross-scalar) C
can be represented similarly to traditional positional numeral system, but with
base number ¬, that is:

C = cpm¬pm + · · ·+ cp1¬p1 + cp0¬p0 + cp−1¬p−1 + · · ·+ cp−k
¬p−k , (3)

where m, k ∈ IN, for i = −k,−(k− 1), . . . ,−1, 0, 1, . . . ,m− 1,m, numerals cpi
are floating-point numbers and exponents pi are gross-numbers such that

pm > pm−1 · · · > p1 > p0 = 0 > p−1 > · · · > p−(k−1) > p−k. (4)

A gross-number is called finite if m = k = 0, it is called infinite if m > 0,
and it is called infinitesimal if m = 0, cp0 = 0 and k > 0. The exponents
pi, i = −k,−(k − 1), . . . ,−1, 0, 1, . . . ,m − 1,m, are called gross-powers and
can be finite, infinite, and infinitesimal. In (3) all numerals cpi 6= 0, i =
−k,−(k − 1), . . . ,−1, 0, 1, . . . ,m − 1,m, are called gross-digits and belong to
a traditional numeral system (for example floating-point numbers).

We note that in this new numeral system the record

C = cpm¬pm · · · cp1¬p1cp0¬p0cp−1
¬p−1 · · · cp−k

¬p−k , (5)
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represents the number C. Infinitesimal numbers are represented by numerals C
having only negative (finite or infinite) gross-powers. The infinitesimal number
¬−1 verifies ¬−1¬ = ¬¬−1 = 1. Note that all infinitesimals are not equal to
zero and in particular ¬−1 = 1

¬
> 0 because it is the result of a division

between two positive gross-numbers. In the following we consider only gross-
numbers having representation (3) with pi ∈ Z, i = −k, . . . ,m− 1,m.

We conclude this section by observing that the Infinity Computer is a new
kind of a supercomputer able to execute numerical computations with finite,
infinite, and infinitesimal numbers numerically (not symbolically) using ¬ and
the new numeral system. For more details see [25] and the references therein.

3 The l0 pseudo-norm and ¬

In many problems in optimization and numerical analysis, it is extremely im-
portant to obtain a vector with the smallest possible number of components
different from zero.

In [23] the problem of determining a vector belonging to a polyhedral set
and having the minimum number of nonzero components is studied, and two
smooth approximations of the l0 pseudo-norm are proposed. The general
optimization problem with cardinality constraints is considered in [4], where a
reformulation as a smooth optimization problem is proposed. In [22] and [15]
the cardinality-constrained optimization problem is reformulated using a DC
(difference of convex functions) approach. We refer the interested reader to
[15] for additional references to optimization problems where sparsity of the
solution is required.

Determining a vector having the minimum number of nonzero components
can be generally obtained by adding to the original problem a further term
penalizing the number of components different from zero or a term that can
approximately achieve the same goal.

Let x ∈ IRn. The l0 pseudo-norm is defined as

‖x‖0 := number of nonzero components in x =

n∑
i=1

1xi 6=0, (6)

where 1a is the characteristic (indicator) function that is equal to 1 if a 6= 0
and zero otherwise. To be precise ‖·‖0 is called l0 pseudo-norm since it is not
a norm. In fact for x ∈ IRn, x 6= 0 and 0 6= λ ∈ IR, we have:

‖λx‖0 = ‖x‖0 ,

and hence ‖λx‖0 = |λ| ‖x‖0 if and only if |λ| = 1.
In successive sections we present some specific use of the l0 pseudo-norm

for regularization and sparse solutions problems.
In [21] it is shown that computing sparse approximate solutions to linear

systems is NP-hard. Moreover, in [1] it is shown that, for system of linear rela-
tions, the problems of determining a solution violating the minimum number
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of relations (when the system itself is infeasible) and determining a solution
with as few nonzero variables as possible (if feasible) are both NP-hard, and
various strong bounds on the approximability of different variants of these
problems are discussed.

Therefore, various approximations of ‖x‖0 have been proposed in the lit-
erature. In the context of Feature Selection and Machine Learning, in [3] the
following approximation is proposed

‖x‖0 ≈
n∑
i=1

(
1− e−α|xi|

)
,

where α is a given positive number for which the authors suggest to set the
value 5.

In [18], in the context of elastic net regularization (discussed in detail in
Section 4), the authors proposed the following approximation:

‖x‖0 ≈ ‖x‖0,δ :=

n∑
i=1

x2
i

x2
i + δ

, (7)

where δ > 0 and smaller positive values of δ provide a better approximation
of ‖x‖0.

Following this suggestion and by using the new numeral system, we propose
to approximate the quantity ‖x‖0 with

‖x‖
0,¬−1 :=

n∑
i=1

x2
i

x2
i + ¬−1 . (8)

Let us study in detail the connections between ‖x‖0 and ‖x‖
0,¬−1 . Let

ψ(t) :=
t2

t2 + ¬−1 . Hence ‖x‖
0,¬−1 =

n∑
i=1

ψ(xi). For i = 1, . . . , n, we assume

xi = x
(0)
i +Ri¬

−1,

where Ri includes only finite and infinitesimal terms.

When x
(0)
i = 0

ψ(xi) =
R2
i¬
−2

R2
i¬
−2 + ¬−1 = ¬−1 R2

i¬
−1

R2
i¬
−2 + ¬−1 =

= ¬−1 R2
i

R2
i¬
−1 + 1

= 0¬0 +R′i¬
−1,

where R′i includes only finite and infinitesimal terms. Instead, when x
(0)
i 6= 0

ψ(xi) =

(
x

(0)
i +Ri¬

−1
)2

(
x

(0)
i +Ri¬

−1
)2

+ ¬−1
= 1− ¬−1(

x
(0)
i +Ri¬

−1
)2

+ ¬−1
= 1+S′i¬

−1,
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where again S′i includes only finite and infinitesimal terms.
Therefore

‖x‖
0,¬−1 = ‖x‖0 + T¬−1, (9)

for some gross-number T which includes only finite and infinitesimal terms.
Hence, the finite parts of ‖x‖0 and ‖x‖

0,¬−1 coincide.

4 Elastic net regularization and ¬

Given a matrix A ∈ IRm×n and a vector b ∈ IRm, in many important appli-
cations it is essential to determine a solution x ∈ IRn of the system of linear
equations Ax = b with the smallest number of nonzero components:

min
x

‖x‖0 ,
subject to Ax = b.

The associated generalized elastic net regularization problem [18] is

min
x

1

2
‖Ax− b‖22 + λ0 ‖x‖0 +

λ2

2
‖x‖22 , (10)

where λ0 > 0 and λ2 > 0 are regularization parameters. In [18] the authors
suggest to substitute ‖x‖0 with ‖x‖0,δ, as defined in (7), for fixed positive δ,
and a convergent algorithm for the solution of the corresponding optimiza-
tion problem is proposed. Clearly the obtained solution only approximates the
optimal solution of (10).

We propose to use in (10) the approximation (8) of ‖x‖0. Replicating some
of the proofs in [18] a convergent algorithm can be constructed. Moreover,
due to the position (9), apart from terms of order ¬−1 or below, the obtained
solution solves also problem (10).

In detail, consider the problem

min
x
f(x),

where

f(x) :=
1

2
‖Ax− b‖22 + λ0 ‖x‖0,¬−1 +

λ2

2
‖x‖22

=
1

2
(Ax− b)T (Ax− b) + λ0

n∑
i=1

x2
i

x2
i + ¬−1 +

λ2

2
xTx. (11)

Let D(x) ∈ IRn×n be given by

Dii(x) =
2¬−1(

(xi)
2

+ ¬−1
)2 , Dij(x) = 0, i 6= j. (12)



8 Renato De Leone et al.

Then

∇f(x) =

(
ATA+ λ2I + λ0D(x)

)
x−AT b.

Following [18, Algorithm 1] the iterative scheme we propose is the following.

Algorithm 4.1:

1 Choose Choose x0 ∈ IRn;
2 For k = 0, 1, . . .
3 Compute xk+1 by solving(

ATA+ λ2I + λ0D(xk)

)
xk+1 = AT b. (13)

4 End

The following Lemma is the basis for establishing the convergence result.

Lemma 1 Let f be given by (11). Let xk+1 be obtained from xk by solving
the system of equations (13). Then

f
(
xk
)
− f

(
xk+1

)
≥ 1

2

∥∥Axk −Axk+1
∥∥2

2
+
λ2

2

∥∥xk − xk+1
∥∥2

2
, (14)

and hence ∥∥Axk −Axk+1
∥∥2

2
≤ 2

(
f
(
xk
)
− f

(
xk+1

))
, (15)∥∥xk − xk+1

∥∥2

2
≤ 2

λ2

(
f
(
xk
)
− f

(
xk+1

))
. (16)

Proof See Appendix A.

The lemma above shows that the sequence {f(xk)} is a non-increasing
sequence. We are now ready to state the following convergence theorem.

Theorem 1 Let L0 := {x : f(x) ≤ f(x0)} be a compact set, and let {xk} be
the sequence produced by the iterative scheme (13). Then

1. the sequence {xk} is all contained in L0;
2. the sequence

{
xk
}

has at least one accumulation point;
3. each accumulation point of {xk} belongs to L0;
4. each accumulation point x∗ satisfies the condition(

ATA+ λ2I + λ0D(x∗)

)
x∗ = AT b,

and hence is a stationary point of f .



Grossone in Elastic Net Regularization and Sparse SVMs 9

Proof First, from condition (14) in Lemma 1 we have f
(
xk+1

)
≤ f

(
xk
)

and
hence the entire sequence {xk} is contained in L0. Moreover, the sequence{
f
(
xk
)}

is a bounded non–increasing sequence and hence it is a convergent
seguence. The existence of accumulation points for the subsequence follows
from the compactness of L0. Let now x∗ be an accumulation point of {xk}
and

{
xkl
}

be a subsequence indexed by l converging to x∗. From (16), it
follows that ∥∥xkl − xkl+1

∥∥2

2
≤ 2

λ2

(
f
(
xkl
)
− f

(
xkl+1

))
.

The right term converges to 0, and also the subsequence
{
xkl+1

}
converges to

the accumulation point x∗. Moreover(
ATA+ λ2I + λ0D(xkl)

)
xkl+1 = AT b,

and hence (
ATA+ λ2I + λ0D(x∗)

)
x∗ = AT b.

Therefore, x∗ is a stationary point of f .

5 Sparse Support Vector Machine

In this section we show how ¬ and the results of Section 3 can be used in the
context of Sparse Support Vector Machines (SSVMs).

Assume that empirical data (training set) (xi, yi), i = 1, . . . , l, are given,
where xi ∈ IRn, and yi ∈ {−1, 1}, i = 1, . . . , l. Note that when the index i
is used as a superscript the corresponding object is an input, while when it
is used as a subscript the corresponding object is an output. The aim is to
determine an hyperplane (and hence a vector w ∈ IRn and a scalar θ) such
that:

wTxi + θ > 0 when yi = 1 and wTxi + θ < 0 when yi = −1.

The classification function is

h(x) = sign
(
wTx+ θ

)
.

Classification in the feature space (instead of the original space) requires
to introduce a map

φ : IRn 7→ E ,

where E is an Hilbert Space with scalar product 〈·, ·〉. In classical SVM (see
[8,9,35] and references therein) the construction of the optimal hyperplane
requires to solve the following (primal) optimization problem
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min
w,θ,ξ

1
2 〈w,w〉+ CeT ξ,

subject to yi
(〈
w, φ(xi)

〉
+ θ
)
≥ 1− ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l,

(17)

where e is a vector with all elements equal to 1 and C is a positive scalar.

The corresponding dual problem is

min
α

1
2α

TQα− eTα,
subject to yTα = 0,

0 ≤ α ≤ Ce,
(18)

where

Qij = yiyjKij , and Kij = K(xi, xj) :=
〈
φ(xi), φ(xj)

〉
.

The function

K : IRn × IRn → IR,

is called the kernel function. It is well known that for the construction of the
dual problem and the classification function the complete knowledge of the
function φ(·) is not necessary: only the quantities Kij =

〈
φ(xi), φ(xj)

〉
are

needed. In fact, from KKT conditions

w =

l∑
i=1

αiyiφ(xi) (19)

and the classification function is

h(x) = sign
(
〈w, φ(x)〉+ θ

)
= sign

(
l∑
i=1

αiyi
〈
φ(xi), φ(x)

〉
+ θ

)
.

For a sparse representation of SVM, the vector w is substituted by its expan-
sion in terms of the vector α. Moreover, let Ki. be the column vector that
corresponds to the ith row of matrix (Kij), note that

Ki.
Tα+ θ =

l∑
j=1

Kijαj + θ

=
l∑

j=1

〈
φ(xi), φ(xj)

〉
αj + θ

=

〈
φ(xi),

l∑
j=1

φ(xj)αj

〉
+ θ.
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In [16] the authors consider the following optimization problem instead of
(17), obtained by replacing 1

2 〈w,w〉 with ‖α‖0 and by using the expansion
(19) of w in terms of α:

min
α,θ,ξ

‖α‖0 + CeT ξ,

subject to yi

[
Ki.

Tα+ θ
]
≥ 1− ξi, i = 1, . . . , l,

ξ ≥ 0.

(20)

In problem (20) the term ‖α‖0 is then replaced by 1
2α

TΛα, where Λ is the
diagonal matrix with Λii = λi, i = 1, . . . , l.

The following iterative scheme was proposed in [16] to solve the above
problem. In particular, given a very small positive value ε, in the Algorithm

5.1 the new value λk+1
r for λr is set to 1/

(
αkr
)2

if
∣∣αkr ∣∣ is “significantly” different

from zero, otherwise, λk+1
r = 1/ε2.

Algorithm 5.1:

1 Set λ0
r = 1, r = 1, . . . , l;

2 For k = 0, 1, . . .
3 Solve

min
α,θ,ξ

1

2

l∑
r=1

λkrα
2
r + CeT ξ,

subject to yi

[
Ki.

Tα+ θ
]
≥ 1− ξi, i = 1, . . . , l,

ξ ≥ 0.

(21)

and let αk be the optimal solution;

4 Update λk+1 according to the formula

λk+1
r =


1

(αkr )
2 if

∣∣αkr ∣∣ ≥ ε,
1

ε2
otherwise ,

r = 1, . . . , l,

5 End

The KKT conditions for Problem (21) are

Λkα−
l∑

j=1

βjyjKj. = 0, (22a)

βT y = 0, (22b)

Ce− β ≥ 0, (22c)



12 Renato De Leone et al.

β ≥ 0, (22d)

βT (Ce− β) = 0, (22e)

where β is the vector of multipliers associated to the constraints yi

[
Ki.

Tα +

θ
]
≥ 1− ξi, i = 1, . . . , l.

From (22a) it follows that

λkrαr =

l∑
j=1

βjyjKjr = K̄T
r.β, r = 1, . . . , l,

where K̄rj = yjKjr, with r, j = 1, . . . , l.
Once again, instead of ‖α‖0, we use ‖α‖

0,¬−1 and we propose to solve the

following ¬–Sparse SVM problem in place of (20):

min
α,θ,ξ

¬
2 ‖α‖0,¬−1 + CeT ξ,

subject to yi

[
Ki.

Tα+ θ] ≥ 1− ξi, i = 1, . . . , l,

ξ ≥ 0.

(23)

Let by (8)

h(α) :=
¬

2
‖α‖

0,¬−1

=
¬

2

l∑
j=1

α2
j

α2
j + ¬−1 =

¬

2

l∑
j=1

α2
j + ¬−1 −¬−1

α2
j + ¬−1

=
l

2
¬−

l∑
j=1

¬

2

¬−1

α2
j + ¬−1

=
l

2
¬− 1

2

l∑
j=1

1

α2
j + ¬−1 .

Then [
∇h(α)

]
r

=
αr(

α2
r + ¬−1)2 .

The KKT conditions for the above problem (23) are

∇h(α)−
l∑

j=1

βjyjKj. = 0, (24a)

βT y = 0, (24b)

Ce− β ≥ 0, (24c)

β ≥ 0, (24d)
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βT (Ce− β) = 0. (24e)

Note that conditions (24a) can be rewritten as

1(
α2
r + ¬−1)2αr = K̄T

r.β, r = 1, . . . , l. (25)

From the above formula it is “natural” to set the new value for λr

λk+1
r =

1(
α2
r + ¬−1)2 , r = 1, . . . , l.

Now, for r = 1, . . . , l, let

αr = α(0)
r + α(1)

r ¬−1 + . . . = α(0)
r +A¬−1,

with A ∈ IR finite or infinitesimal. When α
(0)
r = 0

α2
r + ¬−1 = ¬−1 +A2¬−2,

and
1(

α2
r + ¬−1

)2 =
1(

¬−1 +A2¬−2
)2 =

1

¬−2 +A′
1

¬−3 , (26)

with A′ finite or infinitesimal. In place, when α
(0)
r 6= 0

α2
r + ¬−1 =

(
α(0)
r

)2

+A′′¬−1,

and
1(

α2
r + ¬−1

)2 =
1(

α
(0)
r

)4

+A′′′¬−1
, (27)

with A′′, A′′′ finite or infinitesimal.

Formulas (26) and (27) mimic almost perfectly the updating formulas for
λk+1 proposed in [16] in order to solve (20) by using problem (21). The main
difference is that, for the nonzero case there is a power 4 instead of 2. However,
using ¬ and considering problem (23) we can shed some light on the updating
formulas for β, otherwise quite arbitrary. The term 1

¬−2 perfectly corresponds

to the updating formula λk+1
r = 1

ε2 . In the other case the updating formula
λk+1
r = 1

ᾱ2
r

is replaced by the term 1(
α

(0)
r

)4 .

The use of ¬ allows to easily obtain both formulas from the KKT condition
(24a) and observations on the expansion of the gross-number α.
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6 Conclusions

In this paper we have presented some possible uses in optimization problems of
the novel approach to infinite and infinitesimal numbers proposed by Sergeyev
[25,31,26]. In particular, optimization problems including smoothed l0 penalty
and classification problems involving sparse Support Vector Machines are stud-
ied. In order to avoid the difficulties due to the use of the l0 pseudo-norm of
a vector, we propose to approximate the l0 pseudo-norm by using a smooth
function defined in terms of ¬. The results obtained using this new approxima-
tion in the two optimization problems perfectly match with those presented in
the literature. Actually the new ¬-based methodology may represent a fruitful
and promising tool to be exploited within other classification and regression
problems offering new views and different perspectives.

A Proof of Lemma 1

We prove Lemma 1 of Section 4 by adapting to this context the proof proposed by the
authors in [18, Lemma 2].

Proof of Lemma 1. Let f be defined in (11). We have:

f
(
xk
)
− f

(
xk+1

)
=

1

2

∥∥∥Axk − b∥∥∥2
2

+ λ0

∥∥∥xk∥∥∥
0,¬−1

+
λ2

2

∥∥∥xk∥∥∥2
2

−
1

2

∥∥∥Axk+1 − b
∥∥∥2
2
− λ0

∥∥∥xk+1
∥∥∥
0,¬−1

−
λ2

2

∥∥∥xk+1
∥∥∥2
2

(28)

=
1

2

∥∥∥Axk − b∥∥∥2
2
−

1

2

∥∥∥Axk+1 − b
∥∥∥2
2

+ λ2

(
1

2

∥∥∥xk∥∥∥2
2
−

1

2

∥∥∥xk+1
∥∥∥2
2

)
+ λ0

(∥∥∥xk∥∥∥
0,¬−1

−
∥∥∥xk+1

∥∥∥
0,¬−1

)
.

We analyse separately the different terms of (28). We can write:

1

2

∥∥∥Axk − b∥∥∥2
2
−

1

2

∥∥∥Axk+1 − b
∥∥∥2
2

=
1

2

(
Axk

)T (
Axk

)
−

1

2

(
Axk+1

)T (
Axk+1

)
+ bT

(
Axk+1 −Axk

)
=

1

2

∥∥∥Axk −Axk+1
∥∥∥2
2

+
(
Axk −Axk+1

)T (
Axk+1

)
+ bT

(
Axk+1 −Axk

)
=

1

2

∥∥∥Axk −Axk+1
∥∥∥2
2

+
(
Axk+1 − b

)T (
Axk −Axk+1

)
(29)

=
1

2

∥∥∥Axk −Axk+1
∥∥∥2
2

+
(
xk − xk+1

)T (
ATAxk+1 −AT b

)
=

1

2

∥∥∥Axk −Axk+1
∥∥∥2
2
− λ2

(
xk+1

)T (
xk − xk+1

)
− λ0

n∑
i=1

(
xki − x

k+1
i

)
xk+1
i 2¬−1((

xki
)2

+ ¬−1
)2 ,

where in the last step the definitions of the proposed iterative scheme (13) and the matrix
D in (12) have been used.
Moreover,

1

2

∥∥∥xk∥∥∥2
2
−

1

2

∥∥∥xk+1
∥∥∥2
2

= (30)



Grossone in Elastic Net Regularization and Sparse SVMs 15

=
1

2
(xk)T xk +

1

2
(xk+1)T xk+1 − (xk)T xk+1 − (xk+1)T xk+1 + (xk)T xk+1

=
1

2

∥∥∥xk − xk+1
∥∥∥2
2

+ (xk+1)T
(
xk − xk+1

)
.

Substituting (29) and (30) into (28) we have:

f
(
xk
)
− f

(
xk+1

)
=

1

2

∥∥∥Axk −Axk+1
∥∥∥2
2

+
λ2

2

∥∥∥xk − xk+1
∥∥∥2
2

− λ0

n∑
i=1

(
xki − x

k+1
i

)
xk+1
i 2¬−1((

xki
)2

+ ¬−1
)2 (31)

+ λ0

(∥∥∥xk∥∥∥
0,¬−1

−
∥∥∥xk+1

∥∥∥
0,¬−1

)
.

From the definition (8)

∥∥∥xk∥∥∥
0,¬−1

−
∥∥∥xk+1

∥∥∥
0,¬−1

=

n∑
i=1

 (
xki
)2(

xki
)2

+ ¬−1
−

(
xk+1
i

)2
(
xk+1
i

)2
+ ¬−1

 . (32)

It is easy to prove [18, Lemma 1] that given δ > 0, for any a, b ∈ IR the following inequality
holds:

a2

a2 + δ
−

b2

b2 + δ
−

2δb(a− b)
(a2 + δ)2

≥
δ(a− b)2

(a2 + δ)2
. (33)

As a result, we can write

n∑
i=1

 (
xki
)2(

xki
)2

+ ¬−1
−

(
xk+1
i

)2
(
xk+1
i

)2
+ ¬−1

−
2¬−1

(
xki − x

k+1
i

)
xk+1
i((

xki
)2

+ ¬−1
)2



≥
n∑

i=1

¬−1
(
xki − x

k+1
i

)2
((
xki
)2

+ ¬−1
)2 . (34)

By using (32)-(34) into (31) we can conclude:

f
(
xk
)
− f

(
xk+1

)
≥

1

2

∥∥∥Axk −Axk+1
∥∥∥2
2

+
λ2

2

∥∥∥xk − xk+1
∥∥∥2
2

+λ0

n∑
i=1

¬−1
(
xki − x

k+1
i

)2
((
xki
)2

+ ¬−1
)2 (35)

≥
1

2

∥∥∥Axk −Axk+1
∥∥∥2
2

+
λ2

2

∥∥∥xk − xk+1
∥∥∥2
2

since

n∑
i=1

¬−1
(
xki − x

k+1
i

)2
((
xki
)2

+ ¬−1
)2 ≥ 0 for any xki and xk+1

i .
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