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Epsilon-Optimal Synthesis for Vehicles With
Vertically Bounded Field-Of-View

Paolo Salaris, Andrea Cristofaro, Lucia Pallottino, and Antonio Bicchi

Abstract—This paper presents a contribution to the problem of
obtaining an optimal synthesis for shortest paths for a unicycle
guided by an on-board limited Field-Of-View (FOV) sensor, which
must keep a given landmark in sight. Previous works on this
subject have provided an optimal synthesis for the case in which
the FOV is limited in the horizontal directions (H-FOV, i.e., left
and right boundaries). In this paper we study the complementary
case in which the FOV is limited only in the vertical direction
(V-FOV, i.e., upper and lower boundaries). With respect to the
H-FOV case, the vertical limitation is all but a simple extension.
Indeed, not only the geometry of extremal arcs is different, but also
a more complex structure of the synthesis is revealed by analysis.
We will indeed show that there exist initial configurations for
which the optimal path does not exist. In such cases, we provide
an ε-optimal path whose length approximates arbitrarily well any
other shorter path. Finally, we provide a partition of the motion
plane in regions such that the optimal or ε-optimal path from each
point in that region is univocally determined.

Index Terms—Autonomous robots, optimal control, path plan-
ning synthesis, visual servo control.

I. INTRODUCTION

THE final goal of the proposed research is to study the
problem of maintaining visibility of a set of landmarks

with a nonholonomic vehicle equipped with a limited Field-Of-
View (FOV) sensor. A preliminary analysis on local optimal
paths, in case of a set of landmarks and considering a FOV with
horizontal bounds, can be found in [1] where a randomized
planner is also proposed. To the authors’ best knowledge, no
results have already been obtained for a FOV with vertical
bounds. Hence, in this paper we consider the simplified case
of a single landmark determining global optimal paths for a
vertically limited FOV. In other words, the goal is to obtain
shortest paths from any point on the motion plane to a desired
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Fig. 1. Mobile robot and systems coordinates. The robot’s task is to reach
P while keeping the landmark within a limited Field-Of-View (dashed lines).
(a) Cartesian and polar coordinates and Horizontal-Field-Of-View (H-FOV)
constraints. (b) Vertical-Field-Of-View (V-FOV) constraints.

position while keeping, along the path, a given landmark within
the vertical bounds of the camera.

Regarding optimal (shortest) paths in absence of sensor
constraints, the seminal work on unicycle vehicles [2] provides
a characterization of shortest curves for a car with a bounded
turning radius. In [3], authors determine a complete finite par-
tition of the motion plane in regions characterizing the shortest
path from all points in the same region, i.e., a synthesis. A sim-
ilar problem with the car moving both forward and backward
has been solved in [4] and refined in [5]. The global synthesis
for the Reeds and Shepp vehicle has been obtained in [6] com-
bining necessary conditions given by Pontryagin’s Maximum
Principle (PMP) with Lie algebraic tools. More recently,
[7], [8] present time optimal trajectories for differential-drive
robots and for nonholonomic bidirectional robots, respectively.
Finally, in [9], the minimum wheel rotation problem for
differential-drive robots has been solved.

On the other hand, sensor constraints deeply influence the
accomplishment of assigned tasks and hence the control laws,
especially in those cases in which robots are subject to non-
holonomic constraints. Moreover, for self-localization purposes
or maintaining visibility of objects in the environment, some
landmarks must be kept in sight. In visual servoing tasks, this
problem becomes particularly noticeable and in the literature
several solutions have been proposed to overcome it, see e.g.,
[10]–[12]. However, the FOV problem has been successfully
solved for a unicycle-like vehicle in [13]–[15] nevertheless, the
resultant path is inefficient and absolutely not optimal. Several
preliminary results have been recently obtained in case of navi-
gation in environment with obstacles that may occlude the land-
mark visibility, see e.g., [16] and [17]. In [17] author propose
a motion planning strategy for a humanoid to safely navigate
among obstacles while maintaining at least one landmark in
sight. The strategy is based on the synthesis in [18] and provides
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Fig. 2. Sensor model: four-sided right rectangular pyramid.

a path that consists of shortest geometric primitives. In [16] nec-
essary and sufficient conditions for the existence of a collision
free path that ensure a given landmark visibility also in pre-
sence of obstacles are obtained through an iterative algorithm.

A related study, similar to the one analyzed in this paper, has
been tackled in [18] where only right and left camera limits, i.e.,
the Horizontal-FOV (H-FOV) constraints, were taken into ac-
count. The camera has been modeled as a frontal and symmetric
(with respect to the robot forward direction) planar cone, as
represented in Fig. 1(a). The constraint on the symmetry (with
respect to the robot forward direction) of the planar cone has
been relaxed in [19] where the robot forward direction is not
necessarily supposed to be included inside the planar cone. Af-
ter showing that logarithmic spirals, straight lines and rotations
on the spot are extremal arcs of the optimal control problem, a
finite alphabet of these arcs has been obtained and the shortest
paths from any point on the motion plane to a desired final
configuration, i.e., a synthesis, has been provided. In [20], based
on the geometric properties of the synthesis proposed in [18],
optimal feedback control laws which are able to align the vehi-
cle to the shortest path from the current configuration are also
defined, for any point on the motion plane. Moreover, based on
the same synthesis, a switched, homography-based, visual ser-
voing scheme is proposed in [21] to steer the vehicle along the
optimal paths.

However, in real cameras there exist also the upper and lower
limits that previous works have not taken into account. Hence,
in this work we study the complementary case in which only
upper and lower camera limits are considered, i.e., the Vertical-
FOV (V-FOV) constraints, see Fig. 1(b). The goal of our
research is to obtain first the optimal paths taking into account
both kinematics and V-FOV constraints and then the optimal
synthesis of the motion plane. Finally, from the optimal synthe-
sis, optimal feedback control laws might be derived to steer the
vehicle toward the goal without violating the constraints. Once
the synthesis of this problem is obtained, the optimal synthesis
for a realistic sensor modeled as a four-sided right rectangular
pyramid (see Fig. 2), can be achieved by appropriately merging
synthesis provided in [18] with that provided in this paper.

In this work, we first show that involutes of circle, straight
lines and rotations on the spot are extremal arcs of the V-FOV
problem, and then we exploit geometric properties of these

arcs to achieve the synthesis. However, several aspects make
the problem addressed in this paper much more difficult with
respect to the one in [18] and prevent us to use the same
approach to tackle the problem. One is that there exists a
compact set around the feature for which paths reaching it now
become impracticable since they violate the V-FOV constraints.
Moreover, the whole procedure adopted in [18] for obtaining
the final synthesis is mainly based on the invariance property
of logarithmic spirals with respect to scaling (with center at
the origin). Unfortunately, involutes of circle do not have this
property and hence a different approach must be used. More-
over, a major challenge is that, for the V-FOV case, there exist
points in the motion plane from which the optimal path does
not exist. Indeed, the paths would consist of infinite sequences
of arcs whose total lengths are anyhow proved to be finite. On
the other hand, an ε-optimal path whose length approximates
arbitrarily well any other shorter path can be determined and
used to obtain an ε-optimal synthesis.

Preliminary results on this problem have been published in
[22] where, for space limitations, several proofs and technical
details have been omitted. In this paper we briefly report the
results in [22] necessary for the characterization of the optimal
synthesis together with the missing proofs. From the results
in [22] we will characterize the optimal and ε-optimal paths
with respect to the relative positions of initial and final points.
Finally, we will provide the main contribution of the paper
that is the subdivision of the motion plane in regions of points
that are characterized by the same optimal or ε-optimal path
typology, i.e., the ε-optimal synthesis.

It is worth noticing that the results obtained in this paper are
necessary to determine the optimal synthesis for a FOV with
both horizontal and vertical limits. This can be done by integrat-
ing, with a non-straightforward procedure, the obtained synthe-
sis with the one in [18]. Thus, the complete synthesis could be
extended to the multi-feature case with the results in [1].

As in previous works, in this paper a fixed on-board camera
is considered. There are multiple reasons for our focus on such
cameras, of both a technological and a theoretical nature.

From a technological point of view, although pan-tilt cameras
costs are not prohibitive, they remain much more complex and
prone to failures. Furthermore, angle measurement errors and
backlash in the mechanism may add significantly to localiza-
tion errors. From a functional viewpoint, having a panning
mechanism effectively widens the H-FOV by the angular range
spanned by the camera motor; similarly, the tilting mechanism
widens the V-FOV, which is the issue relevant to this paper. If
the pan and tilt angles are wide enough to cover the whole 4π
solid angle, then optimal control is trivialized to a non-limited
FOV problem. If otherwise the pan/tilt angles are limited (such
as e.g., in [1], [16], [17] and [21]), then our problem definition
remains valid, only with wider bounds.

From a theoretical point of view, however, our analysis works
in the assumption that the camera plane is orthogonal to the
motion plane. The control extremals and the synthesis for dif-
ferent tilting angles needs a specific analysis. Moreover, if the
tilting angle is changed along the motion, a wholly new optimal
control problem with three instead of two inputs is generated.
The study of this problem is not considered in this paper.
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II. PROBLEM DEFINITION

Consider a vehicle moving on a plane where a right-handed
reference frame 〈W 〉 is defined with origin in Ow and axes
Xw, Zw. The configuration of the vehicle is described by
ξ(t) = (x(t), z(t), θ(t)), where (x(t), z(t)) is the position in
〈W 〉 of a reference point in the vehicle, and θ(t) is the vehicle
heading with respect to the Xw axis (see Fig. 1). We assume
that the dynamics of the vehicle are negligible, and that the
forward and angular velocities, ν(t) and ω(t) respectively,
are the control inputs of the kinematic model of the vehicle.
Choosing polar coordinates (see Fig. 1), the kinematic model
of the unicycle-like robot is⎡

⎣ ρ̇
ψ̇
β̇

⎤
⎦ =

⎡
⎣−cosβ 0

sinβ
ρ 0

sinβ
ρ −1

⎤
⎦[

ν
ω

]
. (1)

We consider vehicles with bounded velocities which can turn
on the spot. In other words, we assume

(ν, ω) ∈ U (2)

where U is a compact and convex subset of IR2, containing the
origin in its interior.

The vehicle is equipped with a rigidly fixed pinhole camera
with a reference frame 〈C〉 = {Oc, Xc, Yc, Zc} such that the
optical center Oc corresponds to the robot’s center [x(t), z(t)]T

and the optical axis Zc is aligned with the robot’s forward
direction. Cameras can be generically modeled as a four-sided
right rectangular pyramid, as shown in Fig. 2. Its characteristic
solid angle is given by Ω = 4arcsin(sin φ̂ sinφ) and ε = 2φ̂
and δ = 2φ are the apex angles, i.e., dihedral angles measured
to the opposite side faces of the pyramid. We will refer to those
angles as the vertical and horizontal angular aperture of the
sensor, respectively. Moreover, φ̂ is half of the V-FOV angular
aperture, whereas φ is half of the H-FOV angular aperture.

In [18], authors have provided a complete characterization of
shortest paths towards a goal point taking into account only a
limited horizontal aperture of the camera and hence modeling
the camera FOV as a planar cone moving with the robot. The
obtained optimal paths consist of at most 5 arcs of three types:
rotations on the spot (denoted by the symbol ∗), straight lines
(S) and left and right logarithmic spirals (TL and TR). Finally
an optimal synthesis has been obtained, i.e., a subdivision of
the motion plane in regions such that an optimal sequence
of symbols (corresponding to an optimal path) is univocally
associated to a region and completely describes the shortest
path from each point in that region to the desired goal.

In this paper, we consider only the upper and lower limits of
the camera, i.e., we assume φ = π/2. Moreover, we consider
the most interesting case in which φ̂ is less than π/2. The goal
is hence to obtain the optimal synthesis considering only the
V-FOV constraints.

Without loss of generality, the feature to be kept within the
vertically limited FOV lays on the axis through the origin Ow,
perpendicular to the motion plane (see Fig. 1). Referring to
Fig. 2, h+hc and h are the feature heights from Ow and from
the plane Xc×Zc respectively. We denote with (ρ, ψ)=(ρP , 0)
the position, on the Xw axis, of the robot target point P .

Remark 1: In order to maintain the feature within the vertical
FOV, the following must hold:

ρ cosβ ≥ h

tan φ̂
= Rb. (3)

Indeed, considering a pinhole camera model [23], the position
of the landmark in the image plane is given by

Ix = f
cx
cz

(4)

Iy = f
h
cz

(5)

where cx = ρ sinβ and cz = ρ cosβ are the coordinates of the
landmark in the camera frame 〈C〉 and f is the focal length, i.e.,
OcOI (see Fig. 2). Since the vehicle is moving on a plane, a
constant value of Iy corresponds to a constant cz = ρ cosβ,
see Fig. 1(a). The maximum allowable value for Iy depends on
the vertical angular aperture of the camera, hence Iy ≤ f tan φ̂.
Finally, substituting cz = ρ cosβ in (5) we obtain (3).

Definition 1: Let Z0 = {(ρ, ψ)|ρ < Rb} be the disk cen-
tered in the origin with radius Rb and Z1 = {(ρ, ψ)|ρ ≥ Rb}.

Remark 2: Z0 is the set of points in IR2 that violates the
V-FOV constraint (3) for any value of the bearing angle β.
Notice that points with ρ = Rb verify the constraint only if
β = 0. Z1 is the set of points in IR2 such that inequality (3)
holds.

To determine the motion plane synthesis, we are now inter-
ested in studying the shortest path covered by the center of the
vehicle from any point Q ∈ Z1 to P , such that the feature is
kept in the sensor V-FOV. Hence, the problem is to minimize
the cost functional

L =

τ∫
0

|ν|dt (6)

under the feasibility constraints (2), (3) and the kinematic
model (1). Since the cost functional (6) does not weight β the
maneuvers consisting of rotations on the spot have zero length.
In the following, these zero cost maneuvers, denoted by ∗, will
be used only to properly connect other maneuvers, i.e., denoting
a non-smooth transition.

This problem has been preliminary addressed in [22] where
the first step of the characterization of the shortest paths have
been considered. However, for space limitations several proofs
and results have been omitted. For the sake of clarity and reader
convenience, notations, definitions and main results (without
proofs) of [22] that are necessary to fully understand the
analysis toward the optimal synthesis of the V-FOV, provided
in this paper, will be reported.

III. EXTREMALS AND OPTIMAL CONCATENATIONS

In this section we briefly characterize the extremals of the
optimal control problem, their main geometrical peculiarities
and their concatenations that can not be part of optimal paths.
Moreover, conditions under which such optimal paths do not
exist will also be determined. For those purposes, we start
analyzing the V-FOV constraints and the properties of the geo-
metrical curves followed by the vehicle while moving activating
the constraints.
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Fig. 3. Extremal arcs for the V-FOV: the involutes of a circle of radius Rb.
I0 is the involute with ψb = 0. Path C1 = IL+ ∗ IR− and path C2 = IR− ∗
IL+ both between Q1 and Q2.

The V-FOV constraint is activated for those configurations
that verify

ρ cosβ = Rb. (7)

Given the kinematic model of the vehicle, the relationship
between the control inputs v and ω required to follow a path
along which (7) holds is given by

ρ̇ cosβ − ρ sinββ̇ = 0 ⇒ ρ sinβω = ν.

Notice that ρ sinβ represents the radius of curvature at a point
of the path followed by the vehicle while (7) is satisfied. The
trajectory followed with such inputs satisfies ψ̇=−tan2ββ̇ that
by integration gives the following relation between ψ and β,

ψ = ψb − tanβ + β. (8)

Paths characterized by (7) and (8) are curves known as involutes
of a circle1 expressed by polar coordinates. ψb is the angular
coordinate of a point on the involute such that β = 0, and hence
ρ = Rb (see Fig. 3).

To proceed in the analysis, we first need to characterize the
geometrical involutes properties and to compute their lengths.
First notice that involutes are invariant with respect to rotations
(around Ow) and axial symmetries (with the axis through Ow).
Hence, for simplicity, we will consider points on the invo-
lute given by (7) and (8) with ψb = 0 and β ∈ (−π/2, 0] de-
noted by I0.

Remark 3: The relation between ψ and β for points on I0 is
given by the invertible function

Ψ(β) = tanβ − β, β ∈
[
0,

π

2

)
. (9)

Its inverse will be denoted by Ψ−1(ψ). Notice that, the function
Ψ is increasing and convex for β ∈ [0, π/2) while the inverse
function Ψ−1(ψ) is increasing and concave.

1The involute of a circle is the path traced out by a point on a straight line
r that rolls around a circle without slipping (see Fig. 3). Notice that, while the
vehicle follows an involute of a circle the axis Xc is tangent to the circle with
radius Rb and plays the role of r.

Given a point Q = (ρQ, ψQ) ∈ I0, the length of the involute
arc from Q to Qb = (Rb, 0) is

0(βQ) =
Rb

2 cos2(βQ)
− Rb

2
. (10)

Given two points Q1 and Q2 on I0 with ρQ1
≥ ρQ2

the
length of the involute arc between the points is

(Q2, Q1) = 0 (βQ2
)− 0 (βQ1

) (11)

where βi and ψi are given by (7) and (9) respectively.

A. V-FOV Extremals

For any point on circumference CRb
with radius Rb and

centered in Ow there are two involutes of circle rotating clock-
wise and counterclockwise. We refer to these two involutes as
Left and Right, and by symbols IL and IR, respectively (see
Fig. 3). The adjectives “Left” and “Right” indicate the half-
plane where the involute starts for an on-board observer aiming
at the landmark.

Following the same Hamiltonian-based approach used in
[18], the extremal arcs (i.e., curves that satisfy necessary condi-
tions for optimality, see [24]) are the involutes IR and IL, the
turn on the spot ∗ and the straight lines S. Moreover, as extremal
arcs can be executed by the vehicle in either forward or back-
ward direction, superscripts + and − will be used in the follow-
ing in order to make this explicit. As a consequence, extremal
paths consist of sequences, or words, comprised of symbols
in the finite alphabet A = {∗, S+, S−, IR+, IR−, IL+, IL−}.
The set of possible words generated by the symbols in A is
a language L.

B. Optimal Concatenation of Extremals

Let PQ be the set of all feasible extremal paths from Q to
P . We now exploit the particular symmetries of the considered
problem to determine extremals concatenations that do not
belong to the optimal path in PQ. For example, the analysis
of optimal paths in PQ can be done considering only the upper
half plane with respect to the Xw axis. The optimal synthesis
for the lower half plane can be obtained by replacing +(−) with
−(+) and R(L) with L(R).

Definition 2: A path in PQ (i.e., from Q to P ), consisting of
a sequence w ∈ L of symbols in A, is a palindrome symmetric
path if w is palindrome and the path is symmetric with respect
to the bisectrix of angle ̂QOWP .

We recall that a word is palindrome if it reads equally for-
ward or backward. As an example, the path S+IL+ ∗ IR−S−

is a palindrome symmetric path, associated to the palindrome
word SIIS, if the straight arcs and the involute arcs are of equal
length pairwise.

Proposition 1: For any path in PQ with ρQ = ρP there
always exists a palindrome symmetric path in PQ whose length
is shorter or equal.

The proof of this proposition can be found in [22].
Before determining the extremals concatenations that char-

acterize the optimal paths, we start considering the regions of
points from which P can be reached with extremals S+ or S−.
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Fig. 4. Region LimQ with its border ∂LimQ = LimR
Q ∪ LimL

Q and cone
ΛQ delimited by half-lines sRQ and sLQ.

We will show such regions are closed with borders described
by half-lines and curves known as Pascal’s Limaçons, [25].

Definition 3: For a point Q ∈ IR2, LimR
Q (LimL

Q) denotes
the arc of the Pascal’s Limaçon from Q to O such that, ∀V ∈
LimR

Q (LimL
Q), ̂QV Ow=π−β̄, with β̄=arctan((ρQ/Rb)×

sinβ), in the half-plane on the right (left) of QOw (cf. Fig. 4).
Also, let LimQ be the region with borders LimR

Q and LimL
Q

from Q to O.
Definition 4: For a point Q ∈ IR2, sRQ (sLQ) denotes the half-

line from Q forming an angle ψQ + β̃ (ψQ − β̃), where β̃ =
arccos(Rb/ρQ), with the Xw axis (cf. Fig. 4). Also, let ΛQ be
the cone delimited by sRQ and sLQ.

Proposition 2: For any starting point Q, all points of LimQ

(ΛQ) are reachable by a forward (backward) straight path
without violating the V-FOV constraints.

The proof of Proposition 2 (that has been omitted in [22] for
space limitations), is based on how the projection on the image
plane of the landmark moves within the sensor limits (see [26])
when vehicle performs extremal maneuvers and is reported in
Appendix A.

At this point the regions associated to the single straight line
maneuvers have been obtained. Following a similar approach
to the one used in [18], the goal is to obtain a sufficient
family of optimal paths from which the complete synthesis can
be obtained. Unfortunately, in this case optimal paths do not
always exist as stated in the following theorem.

Theorem 1: For any Q on the upper half plane, one of the
following conditions is verified.

1) There exists a shortest path toward P of type S+IL+ ∗
IR−S− or IR− ∗ IL+ (or degenerate cases, with sub-
paths of zero length, e.g., S+ ∗ S−).

2) The infimum of the cost functional L is not reached and
hence the shortest path does not exist.

In order to prove Theorem 1 we proceed showing that partic-
ular extremals concatenations can not belong to any optimal

Fig. 5. Path of type S−
Q2

∗ S+
Q1

from Q2 = (ρ, ψ2) to Q1 = (ρ, ψ1) with

ψ2 > ψ1 can be shortened by a path of type IR−
Q2

∗ IL+
Q1

(see Proposition 3).

Fig. 6. Extremals and sequences of extremals from points IR2.

path. In [22] some results have been obtained in this direc-
tion and are summarized in the following Remark for reader
convenience.

Remark 4: For symmetry properties, it is sufficient to con-
sider a starting point Q = (ρQ, ψQ) with ψQ ≥ 0. From such Q
the optimal path toward P lays on the upper half-plane and arcs
of type IR+ and IL− are not part of the optimal path. Moreover,
in the optimal paths the arc S− can not be followed by arcs of
type IR− and IL+ while arc S+ can not follow arcs of type IL+

and IR−.
Those results can be further refined with the following

proposition that excludes concatenations of type S− ∗ S+ from
optimal paths.

Proposition 3: Any path of type S− ∗ S+ between Q1 =
(ρ, ψ1) and Q2 = (ρ, ψ2) with ψ2 > ψ1 can be shortened by
a path of type IR− ∗ IL+.

Proof: Referring to Fig. 5, let N1 be the switching point
between arcs S− and S+. From Proposition 2 we have that
N1 ∈ ΛQ2

∩ ΛQ1
. However, among all paths of type S− ∗ S+,

the shortest one has N1 ∈ ∂ΛQ2
∩ ∂ΛQ1

. In this case, from
Definition 4, IR−

Q2
is tangent to S− in Q2 and IL+

Q1
is tangent to

S+ in Q1. Moreover, the path IR− ∗ IL+ lays between S− ∗
S+ and Q1Q2. For the convexity of both paths, the length of
S− ∗ S+ is longer than the length of IR− ∗ IL+ and hence the
thesis. �

Extremals can be represented by nodes of a graph while
possible concatenation by arrows where an arc with (∗) denotes
a non-smooth concatenation. The graph reported in Fig. 6
represent a graphical summary of the results obtained so far.
The obtained graph is not acyclic and hence optimal path con-
sisting of infinite number of extremals are, at this point, neither
excluded nor proved. Hence, to conclude the analysis of optimal
extremal concatenations we need to study concatenations of
type IL+ ∗ IR− and IR− ∗ IL+.
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IV. INFINITE SEQUENCES OF INVOLUTE ARCS

In this section, we will show that the particular character-
istics of the involute arcs may give rise to an infimum (and
finite) arc length consisting of infinite involutes of infinitesimal
length. To study the occurrence of such peculiarity, we consider
Q1 = (ρQ1

, ψQ1
) and Q2 = (ρQ2

, ψQ2
) with ρQ1

= ρQ2
and

ψQ1
> ψQ2

. The points Q1 and Q2 can be connected by
two paths, each one palindrome and hence symmetric with
respect to the bisectrix of angle ̂Q1OwQ2, consisting of two
pairs of involute curves C1 = IL+ ∗ IR− and C2 = IR− ∗ IL+.
Let H1 = (ρH1

, ψH1
) and H2 = (ρH2

, ψH2
) be the points of

intersection of the involute curves on C1 and C2 respectively,
i.e., ρH1

< ρQi
< ρH2

and ψH1
= ψH2

. We denote by L(C1)
and L(C2) the lengths of the curves C1 and C2, respectively.

The goal of this section is to prove that the shortest path
consisting only of involutes, between two points Q1 and Q2

on a circumference, is of type C2 (evolving outside the circum-
ference) if ρQ1

and the angle ̂Q1OwQ2 are sufficiently small.
On the other hand, it is of type C1 (hence a pair of involute
evolving inside the circumference) if ρQ1

is sufficiently large

while the angle ̂Q1OwQ2 is sufficiently small. Otherwise, the
shortest path consisting only of involutes does not exist. More
formally, we will prove

Theorem 2: Given the points Q1 = (ρQ1
, ψQ1

) and Q2 =
(ρQ2

, ψQ2
) with ρQ1

= ρQ2
and ψQ1

> ψQ2
. Recalling that

ρ2 =
√
2Rb, it holds that:

1) for ρQ1
∈ [Rb, ρ2):

a) if ψQ1
− ψQ2

≤ 2(Ψ(π/4)− ψQ1
) the optimal tra-

jectory from Q1 to Q2 is C2 = IR− ∗ IL+.
b) ψQ1

− ψQ2
> 2(Ψ(π/4)− ψQ1

) the shortest path
does not exist.

2) For ρQ1
≥ ρ2

a) if ψQ1
− ψQ2

> 2(ψQ1
−Ψ(π/4)) the shortest path

does not exist.
b) if ψQ1

− ψQ2
≤ 2(ψQ1

−Ψ(π/4)) the optimal tra-
jectory from Q1 to Q2 is C1 = IL+ ∗ IR−.

The proof of this theorem follows straightforwardly from the
results stated in the following two propositions. In the first one,
only pairs of involutes (C1 and C2) are taken into account while
in the second an arbitrary number of involutes are considered.
Hence, we start comparing the lengths L(C1) and L(C2) to
characterize the conditions on ρQ1

and ρH1
under which one

is smaller than the other.
Proposition 4: There exist ρ̄ and ρ̃ with ρ̄>ρ2>ρ̃ such that:

1) ρQ1
≤ ρ2 ⇒ L(C2) ≤ L(C1)∀ρH1

.
2) ρQ1

∈ (ρ2, ρ̃), ρH1
< ρ̃ ⇒ L(C2) < L(C1).

3) ρQ1
∈ (ρ2, ρ̄), ρH1

> ρ̃ ⇒ L(C1) < L(C2).
4) ρQ1

≥ ρ̄ ⇒ L(C1) ≤ L(C2)∀ρH1
.

The proof of this proposition, omitted in [22] for brevity, can
be found in Appendix B. The value ρH1

of the switching point
H1 with respect to ρ̃ can be rewritten in terms of the angle
ψQ1

− ψQ2
spanned by C1 and C2 as in the following propo-

sition where we consider also the possibility of connecting Q1

and Q2 with path consisting of an arbitrary number of involutes.
The following Proposition is a collection of results in [22] and

provides conditions under which the optimal path does not exist.

Proposition 5: Consider the points Q1 = (ρQ1
, ψQ1

) and
Q2 = (ρQ1

, ψQ2
) with ψQ1

> ψQ2
.

1) if ρQ1
< ρ2, and Ψ(π/4)− ψQ1

≥ (ψQ1
− ψQ2

)/2 the
optimal trajectory consisting of involutes from Q1 to Q2

is C2 = IR− ∗ IL+.
2) if ρQ1

= ρ2 and ∀ψQ2
, the optimal (shortest) path be-

tween Q1 and Q2 consisting of involutes does not exist,
i.e., the infimum of the cost functional (6) is not reached.

3) If ρQ1
> ρ2, and ψQ1

−Ψ(π/4) ≥ (ψQ1
− ψQ2

)/2 the
optimal trajectory consisting of involutes from Q1 to Q2

is C1 = IL+ ∗ IR−.
The proposition states that whenever C1 or C2 intersects the
circumference of radius ρ2 they can both be shortened. For
example, if C1 crosses the circumference of radius ρ2 in G1 and
G2 the sub-path between such points can be shortened with a
path of type C2 (see Proposition 4 second item). Moreover, from
Proposition 4 third item, this shorter path of type C2 can in turn
be shortened by a path consisting of two or more sub-paths of
type C2. By iterating this procedure it is possible to conclude
the non-existence of a shortest path between Q1 and Q2 with
ρQ1

= ρQ2
= ρ2.

For those cases in which the path does not exist, we are now
interested in the infimum of the lengths of the paths consisting
of infinite pairs of involutes of type C2. The following Theorem,
whose proof can be found in [22], states that such infimum
length is finite.

Theorem 3: Consider ρ = ρ2, the point Q1 = (ρ, ψQ1
) ∈ I0

and a point Q2 = (ρ, ψQ2
) with ψQ1

> ψQ2
and ψQ1

− ψQ2
≤

π. The infimum of the lengths of the paths consisting of infinite
sub-paths of type C2 from Q1 to Q2 is finite and

Linf (Q1, Q2) =
√
2 (ρ2 (ψQ1

− ψQ2
))

i.e.,
√
2 times the length of the circular arc from Q1 to Q2 on

the circumference with radius ρ2.
From a practical point of view, the infimum length path

can be approximated by paths consisting of a finite sequence
of involutes. The approximation error is as smaller as more
accurate is the wheel motor.

Definition 5: C(n) is the path from Q1 to Q2 on the cir-
cumference of radius ρ2 consisting of n identical sub-paths
of type C2, i.e., C(n) = IR− ∗ IL+ ∗ IR− ∗ IL+ ∗ . . . ∗ IR− ∗
IL+ ∗ IR− ∗ IL+.

The following corollary provides a sufficient number n of
sub-paths of type C2 in C(n) such that the length of any other
shorter path is no longer than an arbitrarily small ε > 0.

Corollary 1: Given a trajectory C(n) from Q1 to Q2 on
the circumference of radius ρ2 and a positive parameter ε > 0,
there exists c0 > 4Rb such that for

n ≥ c0 (ψQ1
− ψQ2

)2

2ε

we have L(C(n))− Linf (Q1, Q2) ≤ ε.
The proof can be found in Appendix C.
From a practical point of view, consider a robot whose motor

accuracy allows it to follow a path of type C2 on the circumfer-
ence of radius ρ2 with amplitudes larger than δ. Hence, given
points Q1 to Q2 on the circumference of radius ρ2, the path
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Fig. 7. Extremals in AZ and sequences of extremals (in the optimal language)
from points in IR2. Notice that in optimal paths the switching between involutes
may occur only once, e.g., IL+ ∗ IR− ∗ IL+ is never optimal. Moreover, the
symbol Z may appear only once in sequences associated to infimum length
paths.

of minimum length that can be followed by the robot is C(n)

with n = �|ψQ2
− ψQ1

|/δ whose length can be computed and
compared with Linf .

Definition 6: Given ε > 0, Zε = C(n(ε)) is the path consist-
ing of a sequence of n(ε) arcs of type C2 on circumference of
radius ρ2.

Since the infimum length is finite and there exist arcs of type
Zε whose lengths are arbitrarily close to the infimum one, with
an abuse of notation we will denote with Z the non-existing but
approximable path and we consider Z as a pseudo extremal arc.
The alphabet A is extended with Z obtaining a new alphabet
AZ . If a path contains the symbol Z we use the analytical
expression of the path length to determine the infimum length
path from any point of the motion plane. Notice that such paths
are optimal only if they do not contain arcs Z. With a slight
abuse of language sequences associated to infimum length paths
will be referred to as the optimal language on AZ and the
induced synthesis will be referred to as optimal synthesis. True
ε-optimal synthesis will finally be obtained substituting Z with
its ε-optimal subpath Zε.

V. THE OPTIMAL LANGUAGE

Based on the results of previous sections, we are now inter-
ested in determining the optimal language that characterizes
the infimum length paths. Based on Theorem 2, it follows
that sequences S+ ∗ IR− and IL+ ∗ S− do not belong to any
infimum length path. Indeed it holds

Proposition 6: Any path of type S+ ∗ IR− or IL+ ∗ S− can
be shortened by a path of type S+IL+ ∗ IR−S− or S+IL+ ∗
Z ∗ IR−S−.

The proof of this proposition can be found in Appendix D.
As a consequence, the so called optimal language LZ can be
described by the graph in Fig. 7.

The symbol Z occurs at most once in infimum length paths
as a consequence of the following Proposition.

Proposition 7: For any pair of points Q1 and Q2 with ρQ1
=

ρQ2
= ρ2, the path of infimum length from Q1 to Q2 is Z.
Proof: From the graph in Fig. 7 the only possible way to

connect Q1 and Q2 is with paths of type Z or with concate-
nations of type S+ ∗ IR− and IL+ ∗ S−. From the proof of
Proposition 6, such concatenation can be shortened by paths of
type IL+ ∗ IR− that in turn can be shortened by Z (see point 2
of Proposition 5). �

We are finally able to prove Theorem 1 that can now be
refined with the inclusion of the infimum length arc Z.

Theorem 1: For any Q on the upper half plane, one of the
following conditions is verified.

1) There exists a shortest path toward P of type S+IL+ ∗
IR−S− or IR− ∗ IL+ (or degenerate cases, with sub-
paths of zero length, e.g., S+ ∗ S−).

2) The infimum of the cost functional L is not reached
and hence the shortest path does not exist. Consider-
ing the infimum arc Z the infimum length paths are
of type S+IL+ ∗ Z ∗ IR−S−, S+IL+ ∗ ZIL+, IR−Z ∗
IR− ∗ S− or IR−ZIL+ (or degenerate cases).

Proof: From previous results, the optimal language repre-
sented in Fig. 7 has been obtained. Moreover, as a consequence
of Proposition 7, symbol Z may appear only once in infimum
length paths. On the other hand, sequences of three or more
involutes are never optimal. Indeed, one of the two concate-
nations IL+ ∗ IR− and IR− ∗ IL+ can always be shortened.
Which is the concatenation that can be shortened depends on
their evolution with respect to C2. For example, when evolving
inside C2, IL+ ∗ IR− is longer than a path of type IR− ∗ IL+

or IR−ZIL+. Finally, sequences of type ZIL+ ∗ IR− and Z ∗
IR− ∗ IL+ are never part of an infimum length path. Indeed,
the subpath IL+ ∗ IR− (IR− ∗ IL+) after Z evolves outside
(inside) C2 and hence can be shortened. Similarly, paths of type
IR− ∗ IL+ ∗ Z and IL+ ∗ IR−Z are never part of an infimum
length path. Hence, the thesis. �

VI. V-FOV OPTIMAL SYNTHESIS

In this section, we analyze the length of the extremal paths
from any point of the motion plane considering the alphabet AZ.

Based on all previous results, circumference C2 of radius
ρ2 = Rb

√
2 plays an important role and the resulting opti-

mal synthesis deeply depends on the position of the desired
and initial points P = (ρP , 0) and Q = (ρQ, ψQ), respectively,
with respect to C2. For this reason, to simplify the analysis,
the optimal graph represented in Fig. 7 will be specialized
depending on where Q and P are with respect to C2. Notice that
for all the positions of Q, P and C2 there are at most 4 switching
among extremals that are summarized in the following theorem
that corresponds to a detailed version of Theorem 1. Indeed,
Theorem 4 specifies the infimum path length type depending
on the values of ρQ, ρP , and ρ2.

Theorem 4: Given the initial point Q = (ρQ, ψQ), the final
point P = (ρP , 0) and the circumference C2 of radius ρ2, the
optimal language LO is characterized as follows:

a) For ρQ, ρP ≤ ρ2 the infimum length paths are of type
S+IL+, IR−S−, IR− ∗ IL+ or IR−Z ∗ IL+ (or degen-
erate cases).

b) For ρQ, ρP ≥ ρ2 the infimum length paths are of type
S+IL+ ∗ IR−S− or S+IL+ ∗ Z ∗ IR−S− (or degenerate
cases).

c) For ρP ≤ ρ2 ≤ ρQ the infimum length paths are of type
S+IL+ or S+IL+ ∗ ZIL+ (or degenerate cases).

d) For ρQ ≤ ρ2 ≤ ρP the infimum length paths are of type
IR−S− or IR−Z ∗ IR−S− (or degenerate cases).

The result of the theorem is summarized in Fig. 8 while
its proof can be found in Appendix E. Given the deep differ-
ences of the obtained optimal languages, next subsections are
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Fig. 8. Extremals and sequences of extremals, forming the sufficient
ε-optimal language depending on the values of ρP and ρQ with respect to
ρ2. The symbol Z may appear only once in sequences associated to infi-
mum length paths. (a) ρQ, ρP ≤ ρ2. (b) ρQ, ρP ≥ ρ2. (c) ρP ≤ ρ2 ≤ ρQ.
(d) ρQ ≤ ρ2 ≤ ρP .

Fig. 9. Optimal synthesis with Rb ≤ ρP ≤ ρ2.

dedicated to determine the optimal synthesis depending on the
position of final point P with respect to C2.

A. Optimal Synthesis for P With ρP ≤ ρ2

Consider the partition of the upper half-plane in eight re-
gions illustrated in Fig. 9. Regions are generalized polygonals
characterized by vertices and whose boundaries belong either
to the extremal curves or to the switching loci. Such regions
characterize the optimal synthesis as stated in the following
theorem that summarizes one of the main contributions of this
paper.

Theorem 5: The synthesis of the upper half-plane taking into
account the infimum path length Z as an extremal, is described
in Fig. 9 and Table I. For each region, the associated path type
entirely defines a path of infimum length to the goal.

TABLE I
OPTIMAL SYNTHESIS IN THE UPPER HALF-PLANE WHEN ρP ≤ ρ2.

C5 IS THE CIRCUMFERENCE OF RADIUS ρ5 =
√
5Rb

AND P5 ≡ C5 ∩ ILP WHILE P2 ≡ C2 ∩ ILP

To simplify the proof of this theorem, we first need to analyze
two cases corresponding to initial point Q inside or outside C2.

Referring to the graph in Fig. 8(a), we start considering initial
point Q with ρQ ≤ ρ2. Let P2 be the intersection point of C2

with ILP , see Fig. 9.
Proposition 8: Given Q ∈ C2 \ ΛP the infimum path length

is given by a path of type ZIL+
P if ψQ ≥ ψP2

, and of
type S+IL+

P otherwise. The degenerate case S+ occurs for
Q ∈ C2 ∩ ΛP .

Proof: The simple case of the minimum path length of
type S+ when Q ∈ C2 ∩ ΛP follows from Proposition 2. Con-
sider now Q ∈ C2 \ ΛP , path S+IL+

P exists only if Q is such
that LimQ ∩ IL+

P �= ∅ and, in this case, the switching point
V ∈ LimL

Q ∩ IL+
P . Hence, until ψQ is smaller than ψP2

it holds

LimQ ∩ IL+
P �= ∅, and the optimal path is of type S+IL+

P . As
soon as ψQ becomes larger than ψP2

we have LimQ ∩ IL+
P = ∅

and hence, from Proposition 7, the only admissible way to reach
the involute IL+

P from Q is towards Z. �
Referring to the graph in Fig. 8(c), we now consider initial

point Q with ρQ ≥ ρ2.
Proposition 9: Given Q on ILP , the infimum length paths

from Q to P are of type IL+
P if βQ ≤ arctan(2) (i.e., ρQ ≤

ρ5 = Rb

√
5) and of type S+IL+ ∗ ZIL+

P otherwise. The locus
of switching points between S+ and IL+ is the circumference
C5 centered in the origin with radius ρ5.

Proof: Consider a point Q with ρQ > ρ2 on ILP . Referring
to the graph in Fig. 8(c), the path from Q to P is of type
S+IL+ ∗ ZIL+

P . All those paths go through the intersection
point P2 between IL+

P and C2 (see Fig. 9) toward P . Hence,
we may consider only the sub-path S+IL+ ∗ Z from Q to P2.

Let V and N be the switching points between the straight line
and the involute and between the involute and Z, respectively.
The straight sub-path S+ from Q can be parametrized by the
bearing angle βS ∈ [0, βQ] in Q where βQ = arccos(Rb/ρQ)
is the bearing angle of the vehicle aligned with IL+ in Q. The
switching point V lays on LimL

Q and hence S+ is tangent in
V to an involute. Hence, the bearing angle in V is (cf. proof of
Proposition 2)

βV = arctan

(
Rb

ρQ
sinβS

)
= arctan

(
sinβS

cosβQ

)
. (12)

The length of the considered sub-path S+
QIL+ ∗ Z from Q

to P2 is given by L = lS + lI + lZ . From the equation of the
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Pascal’s Limaçon reported in the proof of Proposition 2 the
length of the straight arc is

lS = Rb

(
cosβS

cosβQ
− 1

)
. (13)

From (10) the length of the involute arc is

lI = (V,N) = 0(βV )− 0(βN ). (14)

Finally, from Theorem 3

lZ = 2Rb (Ψ(βQ)−Ψ(βV )− βV + βS) . (15)

From (9), (10), and (12) the derivative of L with respect to
βS is given by

∂L(βS)

∂βS
= Rb

(
−1 +

cosβS

cosβQ

)(
−2 +

sinβS

cosβQ

)

that is zero if βS = βQ and if βS = arcsin(2 cosβQ) with
βQ ≥ arctan(2) (to ensure βS ≤ βQ).

Notice that if βQ ≤ arctan(2) the length is decreasing and
hence the minimum is attained at βS = βQ (that corresponds
to a zero length S and Z and an optimal path from Q to P of
type I+P ), for βQ ≥ arctan(2) the minimum is attained with
βS = arcsin(2 cosβQ) (that corresponds to an optimal path
from Q to P of type S+IL+ ∗ ZIL+

P ). Considering the optimal
value βS = arcsin(2 cosβQ), the corresponding point V has
bearing angle βV = arctan(2) and it does not depend on βQ.
Indeed, the locus of switching points V is the circumference C5

centered in the origin and with radius ρ5 = Rb

√
5. �

To prove Theorem 5 we now study each region separately.
Regions are defined in Table I and represented in Fig. 9.

Proof (Theorem 5)—Region I, IC: From any point in this
region it is possible to reach P with a straight path in backward
(Region I) or forward (Region IC) motion without violating the
V-FOV constraint (cf. Proposition 2).

Region II: For any Q in this region it holds ρQ ≤ ρP . From
any of those Q, P cannot be reached with only a straight line
or only an involute covered backward. Moreover, the involute
IRQ intersects LimP before than intersecting the involute IL+

P

or C2, i.e., extremal IR−
Q cannot be followed neither by IL+

P

nor by Z. Hence, referring to the graph in Fig. 8(a), the only
possible path from Q to P is IR−

Q S−
P .

Region III: From any Q in this region the point P cannot be
reached with only a straight line or only an involute covered
backward. Moreover, the involute IRQ intersects IL+

P before
intersecting C2 and does not intersect LimP , i.e., extremal
IR−
Q cannot be followed neither by Z nor by S−. Hence, the

only possible concatenation is IR−
Q ∗ IL+

P , see Fig. 8(a).
Region IV: For any Q in this region it holds ρQ ≤ ρP . From

any Q, referring to graph in Fig. 8(a), the only possible path
toward P is IR−

Q ZIL+
P . Indeed, P cannot be reached with only

a straight line or only an involute covered backward. Moreover,
the involute IRQ intersects C2 before than ILP and does not
intersect LimP , i.e., IR−

Q can not be followed by S− or by IL+.
Region V: From Proposition 9, since the region is delimited

by C5, the infimum length path is of type IL+ ∗ ZIL+
P .

Region VI: We start considering Q in the area delimited
by C5 and the involute ILP starting from point P5. From
Proposition 9, for such Q there exists an infimum length path
toward P from a point on ILP that crosses Q. Hence, the sub-
path from Q to P is of type S+IL+ ∗ ZIL+

P . Referring to the
graph in Fig. 8(c), from all other points Q in Region VI the
path is still of type S+IL+ ∗ ZIL+

P . Notice that the common
border of Regions VI and IIC is an optimal path of type S+IL+

P

as proved in Proposition 9, see Fig. 9. As a consequence, an
infimum length path of type S+IL+ ∗ ZIL+

P can not cross that
border. Hence, from those Q the path of infimum length can
only cross the involute ILP starting from point P5. The infimum
length path from that involute are of type S+IL+ ∗ ZIL+

P and
hence the possible concatenation with those paths is through a
straight arc that hat smoothly connects Q to those paths.

Region IIC : From points Q in this region the point P can
be reached through paths with last extremal S+ or IL+

P , see
the borders of the adjacent regions. Referring to the graphs in
Fig. 8(a) and (c), no extremal can precede S+ in an optimal
path while only S+ can precede IL+

P . Indeed, arc IL+
P is pre-

ceded by Z or by IR− only for points that are outside IIC . �

B. Optimal Synthesis for P With ρP > ρ2

We will now prove that for P with ρP > ρ2 a new Region
is obtained with respect to the case ρP ≤ ρ2 based on a similar
approach to the one used in Proposition 9. For example, the
circumference C5 is still the locus of switching points between
S+ and IL+ but from a point P5 that does not lay on ILP
anymore.

Without loss of generality, consider P with ρP > ρ2, and Q
on ILP with ρQ ≥ ρP . Referring to the graph in Fig. 8(b) the
infimum length path can be of type K = S+IL+ ∗ Z ∗ IR−S−

or of type P = S+IL+ ∗ IR−S−. Starting from point Q on the
involute ILP , we are hence interested in comparing the length of
paths K and P . Notice that, the path of type IL+

P from Q to P
can be considered as a degenerate case of K and P . Moreover,
βQ = arccos(Rb/ρQ) > βP = arccos(Rb/ρP ) > π/4. Based
on the computation of first and second derivatives of K and P ,
the infimum length paths are proved to depend on the positions
of P and Q with respect to C5. Hence, we start considering
ρP ≤ ρ5. The lengths comparison can be summarized by the
following theorem.

Theorem 6: Let P be a point with ρ2 < ρP ≤ ρ5 and con-
sider a point Q lying on the involute through P and such that
ρQ > ρP . The infimum length path from Q to P is:

1) IL+
P for π/4 ≤ βP ≤ βQ and βQ ≤ κ(βP ).

2) S+IL+ ∗ IR−
P for βQ > κ(βP ) and ν(βQ, βP ) ≤

Ψ(π/4).
3) S+IL+ ∗ Z ∗ IR−

P for βQ > κ(βP ) and ν(βQ, βP ) >
Ψ(π/4).

where

κ(βP ) = arctan

(
1

cosβP sinβP

)
(16)

and ν(βQ, βP ) = (1/2)(2− arcsin(2 cosβQ) + 2Ψ(βP )−
Ψ(βQ)).
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Fig. 10. Infimum length path subdivision on the (βP , βQ) plane with Q

on ILP . Recall that an angle β = arctan(2) corresponds to a radius ρ = ρ5.

Fig. 11. Optimal synthesis with ρ2 < ρP ≤ Rb

√
5.

For space limitations the proof of the theorem is omitted.2

However, for reader convenience, the infimum length paths
from Q on ILP to P are reported in the left sector of Fig. 10
as a function of βP ≤ arctan(2) and βQ. Referring to Figs. 10
and 11, for ρP ≤ ρ5, i.e., βP ≤ arctan(2), consider all Q
with βP ≤ βQ ≤ κ(βP ). From the first case of Theorem 6,
the optimal path is IL+

P for all points Q on ILP between
P and PI characterized by βPI

= κ(βP ). Consider Q with
κ(βP ) ≤ βQ ≤ κ(βP ) below the curve ν(βQ, βP ) = Ψ(π/4).
From the second case of Theorem 6 the optimal path is of
type S+IL+IR−

P for all points Q on ILP between PI and P ′
I

characterized by ν(βP ′
I
, βP ) = Ψ(π/4). Finally, consider Q

above the curve ν(βQ, βP ) = Ψ(π/4) with ΨQ ≤ π (i.e., Q is
on the upper half-plane). From the third case of Theorem 6 the

2The complete proof of Theorems 6 and 7 and other details can be
found in the Appendix of http://www.centropiaggio.unipi.it/sites/default/files/
vfovdim.pdf.

infimum length path is of type S+IL+ ∗ Z ∗ IR−
P for all points

Q on ILP after P ′
I .

From the proof of Theorem 6 in case of infimum length
path of type S+IL+ ∗ Z ∗ IR−

P , the locus of switching points
between S+ and IL+ is C5. Given P ′

I the optimal path is
S+IL+ ∗ IR−

P where the switching point between S+ and IL+

is denoted by P5, while the switching point between IL+ and
IR− is denoted by P2. Notice that P2 is the point of intersection
between IRP and C2. Hence, for all Q with infimum length path
of type S+IL+ ∗ Z ∗ IR−

P , the switching point between Z and
IR−
P is P2 that is independent from Q.

The construction of Theorem 6 identifies two regions of
the upper half-plane. The first region, R1, is delimited by the
circumference CRb

and the arc ILP while the second, R2, is the
complementary one. From the analysis in Theorem 6, the op-
timal synthesis for ρP ≤ ρ5 can be obtained straightforwardly.
Indeed, for any point Q′ ∈ R1 that lays outside C2 there exists
a point Q on ILP such that the infimum length path from Q to P
crosses Q′. For all Q ∈ R1 inside C2 the synthesis for ρP ≤ ρ2
can be used by switching the roles of P and Q. Moreover, from
the graph reported in Fig. 8(b), the only possible way to obtain
an infimum length path from points Q ∈ R2 is to connect to
the path of infimum length from point on ILP smoothly with an
arc S+ or to go toward P directly with S+. Finally, for the
remaining points Q in the region delimited by IRP from P to
CRb

and CRb
previous result can be applied by switching the

roles of P and Q.
To conclude, the obtained synthesis is reported in Fig. 11.

Notice that, for ρP ≤ ρ2, whose synthesis is reported in Fig. 9,
the points P5, PI and P ′

I were coincident. Hence, for ρ2 ≤
ρP ≤ ρ5 the synthesis is similar to the one for ρP ≤ ρ2 but
has two more regions. However, for space limitation is not
possible to provide here an analytical characterization of the
curve between PI and P5 of switching points between S+ and
IL+. Numerically, it can be obtained as a solution of a set of
nonlinear equations.

To conclude the optimal synthesis analysis, the case ρP >
ρ5 must now be taken into account. Similarly to what has
been done for ρP ≤ ρ5 the following theorem summarizes the
lengths comparison of paths K and P .

Theorem 7: Let P be a point with ρP > ρ5 and consider a
point Q lying on the involute through P and such that ρQ > ρP .
The infimum length path from Q to P is:

1) IL+
P for π/4 ≤ βP ≤ βQ and βQ ≤ κ(βP ).

2) S+IL+ ∗ IR−S−
P for βQ > κ(βP ) and ν(βQ, βP ) ≤

Ψ(π/4).
3) S+IL+ ∗ Z ∗ IR−S−

P for βQ > κ(βP ) and ν(βQ, βP ) >
Ψ(π/4).

where

κ(βP ) = arctan

(
1

cosβP sinβP

)
(17)

and

ν(βQ, βP )

=
4−arcsin(2 cosβQ)−arcsin(2 cosβP )+Ψ(βP )−Ψ(βQ)

2
.
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Fig. 12. Optimal synthesis with ρP > Rb

√
5.

For the proof of the theorem, see footnote 2. For reader
convenience, the infimum length paths from Q on ILP to P are
reported in Fig. 10 as a function of βP and βQ.

With respect to the analysis for ρP ≤ ρ5 the point PI ′ is
such that ν(βP ′

I
, βP ) = Ψ(π/4) with function ν as defined in

Theorem 7. From P ′
I the optimal path is of type S+IL+ ∗

IR−S− where the switching point between S+ and IL+ is
denoted by P5 on C5 and the switching point between IL+

and IR− is denoted by P2 on C2. Finally, the switching point
between IR− and S− is denoted by P ′

5 ∈ LimR
P ∩ C5.

The optimal synthesis can be obtained straightforwardly
using an approach similar to the one used for ρP ≤ ρ5 and
it is reported in Fig. 12. In this case, the region character-
ized by the optimal path of type S+IL+ ∗ IR−S− formally
consists in two sub regions characterized by non-degenerate
path of type S+IL+ ∗ IR−S− and the degenerate paths of type
S+IL+ ∗ IR−.

Formally, the three synthesis obtained in this paper pro-
vide paths of infimum length that do not exist. However, by
substituting the (non-existing) arc Z with Zε an ε-optimal
synthesis has been obtained such that each ε-optimal path is
not longer than ε with respect to the associated infimum length
path.

VII. CONCLUSIONS AND FUTURE WORKS

Given the finite optimal language associated to the extremals
of the considered optimal control problem, all regions of points
from which the optimal path does not exist have been herein
characterized. However, the infimum length of paths from such
regions is finite and can be analytically obtained. Its length
can be used to compute an optimal synthesis of infimum
length paths. Moreover, since the infimum can be arbitrarily
well approximated using paths containing a finite number of
switching between involute arcs the ε-optimal synthesis can be
straightforwardly obtained. Notice that the ε-optimal paths can
be determined based on the motor characteristics of the robotic
vehicle and hence there exist control laws that are able to steer
the vehicle along such paths.

Future works will be dedicated to the integration of the
results obtained for the H-FOV and the V-FOV in a complete
synthesis for a more realistic camera. Moreover, from such
synthesis optimal feedback control laws could be determined
with a similar approach to the one used in [20].

APPENDIX

A. Proof of Proposition 2

Proposition 2: For any starting point Q, all points of LimQ

(ΛQ) are reachable by a forward (backward) straight path
without violating the V-FOV constraints.

The proof of Proposition 2, is based on how the projection on
the image plane of the landmark moves within the sensor limits
(see [26]) when vehicle performs extremal maneuvers. For this
purposes, we need to introduce the basic notations and results
of the projective geometry used in visual servoing applications.
Let F = (Ix, Iy) be the position of the landmark with respect to
a reference frame 〈I〉 = (OI , XI , YI) centered on the principal
point of the image plane (see Fig. 2). The velocity of F is
related to the linear and angular velocity (v and ω) of the vehicle
through the image Jacobian [23]. For a rotation on the spot (∗),
setting ν = 0 in the image Jacobian, the trajectories follows by
F is given by

Iy =

Iyi cos
(
arctan

(
Ixi

f

))
cos

(
arctan

(
Ix
f

)) =
Iyi cosβi

cosβ
(18)

where (Ixi,
Iyi) is the initial position of F with respect to 〈I〉.

Equation (18) represents a conic, i.e., the intersection between
the image plane and the right circular cone with vertex in
Oc and directrix passing through the landmark position. For a
straight lines path (S), setting ω = 0 in the image Jacobian, the
trajectory follows by F is given by

Iy =
Iyi
Ixi

Ix (19)

which represents a straight line passing through OI .
With those notations and results we can prove Proposition 2.

Proof: For any starting point Q = (ρQ, ψQ), with βQ =
0, let us consider the vehicle rotating on the spot. During such
maneuver, the landmark moves on the image plane along a
conic until the V-FOV constraint is activated and Iy = f tan φ̂.
Let β̃ be the corresponding value of the bearing angle. The new
direction of motion of the vehicle is now tangent to an involute
of circle. Moreover, from (5), ρQ cos β̃ = h/ tan φ̂ = Rb. From
all configurations (ρQ, ψQ, βQ) with βQ ∈ [−β̃, β̃] the vehicle
can move backward on a straight line without violating the
constraint. Hence, referring to Definition 4, the region of points
reachable from Q with a backward straight line is ΛQ.

In order to determine the region reachable with a forward
straight line, assume ηQ = (ρQ, ψQ, βQ) with bearing angle
βQ ∈]− β̃, β̃[, i.e., the direction of motion is not necessarily
tangent to one of the involutes through Q. Let V be the point
on the forward straight line where the V-FOV constraint is
activated. While the vehicle moves along the straight line, the
landmark moves, in the image plane, along a straight line as
well, i.e., from (4) and (5), Iy = (Iyi/

Ixi)
Ix where Iyi =

f(h/ρQ cosβQ) and Ixi = f tanβQ. As before, when the
V-FOV constraint is active, Iy = f tan φ̂ and hence Ix =
f(ρQ/h) tan φ̂ sinβQ. From (4), in V , Ix = f tanβV and
hence the bearing angle in V is βV = arctan((ρQ/h) tan φ̂
sinβQ) = β̄. Moreover, since the V-FOV constraint is active
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in V , the direction of motion of the vehicle is tangent to an
involute through V . Hence, the distance ρV can be determined
by the equation ρV cosβV = Rb. By using the Carnot theorem
and Rb = h/ tan φ̂, distance d covered by the vehicle is d =
a+ b cosβ with a = −Rb and b = ρQ > a, i.e., the equation
describing a Pascal’s Limaçon with respect to a reference frame
with origin in Q and the x-axis aligned with the line through Ow

and Q, (see Fig. 4). As a consequence, referring to Definition 3,
points of LimQ are reachable by a forward straight line. �

B. Proof of Proposition 4

Consider Q1=(ρQ1
, ψQ1

) and Q2=(ρQ2
, ψQ2

) with ρQ1
=

ρQ2
and ψQ1

> ψQ2
. The points Q1 and Q2 can be connected

by two paths, each one symmetric with respect to the bisectrix
of angle ̂Q1OwQ2, consisting of two pairs of involute curves
C1 = IL+ ∗ IR− and C2 = IR− ∗ IL+. Let H1 = (ρH1

, ψH1
)

and H2 = (ρH2
, ψH2

) be the points of intersection of the invo-
lute curves on C1 and C2 respectively, i.e., ρH1

< ρQi
< ρH2

and ψH1
= ψH2

. We denote by L(C1) and L(C2) the lengths of
the curves C1 and C2, respectively.

Proposition 4: There exist ρ̄>ρ2>ρ̃ such that:
1) ρQ1

≤ ρ2 ⇒ L(C2) ≤ L(C1)∀ρH1
.

2) ρQ1
∈ (ρ2, ρ̄), ρH1

< ρ̃ ⇒ L(C2) < L(C1).
3) ρQ1

∈ (ρ2, ρ̄), ρH1
> ρ̃ ⇒ L(C1) < L(C2).

4) ρQ1
≥ ρ̄ ⇒ L(C1) ≤ L(C2)∀ρH1

.
Proof: Consider the parametric equations of involute I0⎧⎨

⎩
x(λ) = Rb(cosλ+ λ sinλ)
z(λ) = Rb(sinλ− λ cosλ)
λ = tanβ, β ≥ 0.

Since the involute length depends on the cosine of angle β,
without loss of generality we consider H ′

2 = (ρH2
, ψH′

2
) that

lays on I0 as Q1 and H1 and has βH′
2
= −βH2

, see Fig. 3.
The heading angles corresponding to the points Q1, H1 are

given by

βQ1
= arccos

(
Rb

ρQ1

)
= arctan

√
ρ2Q1

R2
b

− 1 (20)

βH1
= arccos

(
Rb

ρH1

)
= arctan

√
ρ2H1

R2
b

− 1. (21)

The heading angle associated to H ′
2 can be computed by means

of the function Ψ(β), imposing the identity ψH1
= ψH2

, βH′
2
=

Ψ−1(2Ψ(βQ1
)−Ψ(βH1

)). In this way one has

L(C1)
2

= 1 (βQ1
, βH1

) = 0 (βQ1
)− 0 (βH1

)

L(C2)
2

= 2 (βQ1
, βH2

) = 0
(
βH′

2

)
− 0 (βQ1

) . (22)

To simplify the notation, let y = βH1
≤ w = βQ1

≤ y′ =
βH′

2
. To compare L(C1), L(C2) we analyze the function

Δ�(w, y) = 2 (w, y
′(y))− 1(w, y) = 0(y)

+ 0 (y
′(y))− 20(w) (23)

where y′(y) = Ψ−1(2Ψ(w)−Ψ(y)). The function Δ�(w, y) is
always zero for y = w, i.e., Δ�(w,w) = 0 w ∈ [0, π/2]. More-
over we will now prove that it is always negative and increasing

if w ≤ π/4 while, for w > π/4 it is negative for y ≤ ȳ ≤ π/4
and positive for y ∈ [ȳ, w] (where ȳ will be determined in the
following). To prove this we analyze the sign of the derivative
of Δ(w, y) with respect to y.

The derivate of y′(y) with respect to y is dy′(y)/dy =
− tan2 y/ tan2 y′(y). For the sake of simplicity, in the follow-
ing, we omit the dependency of y in y′(y). Hence

∂Δ�(w, y)

∂y
=

d0(y)

dy
− d0(y

′)

dy

tan2 y

tan2 y′
.

Substituting d0(y)/dy = (Rb/2)(1 + tan2 y) we obtain

∂Δ�(w, y)

∂y
= Rb

tan y

tan y′
(tan y′ − tan y)(1− tan y′ tan y).

Since y ≤ w ≤ y′ we have that the sign of ∂Δ�(w, y)/∂y is
equal to the sign of the function F (y) = 1− tan y′ tan y with
y ∈ [0, w].

Upon simple computations, we obtain

dF (y)

dy
= − tan y′ − tan y

tan2 y′
(tan2 y + tan2 y′ + tan y′ tan y

+ tan2 y′ tan2 y)

that is always negative for y ∈ [0, w) and zero only in y = w.
Moreover, F (0) = 1 and F (w) = 1− tan2 w. Hence, F (y) is
always non-negative for w ≤ π/4 (is zero only for y = w =
π/4) while is positive and then negative for π/4 ≤ w ≤ w̄ and
finally always positive for w > w̄. The value ρ̄ associated to
βQ1

= w̄ is hence larger than ρ2, i.e., ρ̄ > ρ2.
Based on those results, we have that Δ�(w, y) is always

negative and increasing (F (y) is non-negative) if w = βQ1
≤

π/4 (i.e., ρQ1
≤ ρ2) while, for π/4 < w ≤ w̄ (i.e., ρ2 ≤ ρQ1

≤
ρ̄) there exists a ỹ ≤ π/4 (i.e., a ρ̃ ≤ ρ2) such that Δ�(w, y)
is negative for y = βH1

< ỹ (i.e., ρH1
< ρ̃) and positive for

y ∈ [ỹ, w] (i.e., ρH1
≥ ρ̃), finally for w > w̄ (i.e., ρQ1

> ρ̄) is
always positive. �

C. Proof of Corollary 1

Corollary 1: Given a trajectory C(n) from Q1 to Q2 on the
circumference of radius ρ2 consisting of n identical sub-paths
of type C2 and a positive parameter ε > 0, given

n ≥ c0 (ψQ1
− ψQ2

)2

2ε

we have

L
(
C(n)

)
− Linf (Q1, Q2) ≤ ε.

Proof: Since Ψ(π/4 + s) ≥ Ψ(π/4) + s ∀ s ∈ [0, π/4),
and since the function Ψ−1 is increasing, the following inequal-
ity can be deduced

Ψ−1
(
Ψ
(π
4

)
+ s

)
≤ π/4 + s ∀s ∈

[
0,

π

4

)
.

Moreover, the single pair of involute of type C2 between Q1 and
Q2 with ̂Q2OwQ1 = ζ has length:

L(C2)=L
(
C(1)

)
=2

(
0

(
Ψ−1

(
ζ

2
+Ψ

(π
4

)))
− 0

(π
4

))
.
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Fig. 13. Graphical construction for the proof of Proposition 6.

Hence

L
(
C(n)

)
=2n

(
0

(
Ψ−1

(
ζ

2n
+Ψ

(π
4

)))
− 0

(π
4

))

≤ 2n

(
0

(
π/4 +

ζ

2n

)
− 0

(π
4

))
.

The following estimate holds:

0(π/4 + s) ≤ 0(π/4) + 2Rbs+ c0s
2 (24)

with c0 > 4Rb and s ∈ [0, f(c0)) where f(c0) is solution of
(24) as an equality. Since we are interested in finding a good
approximation of the shortest path, it is reasonable to consider
small increments of the variable ζ/n ≤ f(c0). Substituting (24)
in L(C(n)), we obtain L(C(n)) ≤ 2Rbζ + c0(ζ

2/n)∀n ≥ 2, or
equivalently

L
(
C(n)

)
≤ 2Rbζ + c0

ζ2

n
∀n ≥ 2.

As a consequence the bound L(C(n))− Linf (Q1, Q2) ≤ ε is
ensured if

n ≥ c0 (ψQ1
− ψQ2

)2

2ε
.

�

D. Proof of Proposition 6

For the proof of Proposition 6, we first need the following:
Lemma 1: Consider a function f(x) with f(0)=0, f(x̄)>

0, f ′(x)≥0 for x∈ [0, x̄] with x̄≤1 and a function g(x) with
g(x̄)=f(x̄) > 0, g(1)=0 and g′(x)≤0 for x∈ [x̄, 1]. Let Lf

and Lg be the lengths of the paths γf (s)=f(sx̄) and γg(s)=
g(s(1−x̄)+x̄) with s ∈ [0, 1] respectively. The following holds

Lf ≤ 1 + Lg.

Proof: Since for x, y ≥ 0,
√
x+ y ≤ √

x+
√
y, the

length of the path γf (s) verifies

Lf =

x̄∫
0

√
1 + f ′2(s)ds ≤

x̄∫
0

(1 + f ′(s)) ds = x̄+ f(x̄).

On the other hand, since g′(x) ≤ 0, the length of the path γg(s)
verifies

Lg=

1∫
x̄

√
1 + g′2(s)ds ≥ −

1∫
x̄

g′(s)ds = g(x̄)− g(1) = f(x̄).

Hence, Lf ≤ x̄+ f(x̄) ≤ 1 + f(x̄) = 1 + Lg . �
Proposition 6: Any path of type S+ ∗ IR− or IL+ ∗ S− can

be shortened by a path of type S+IL+ ∗ IR−S− or S+IL+ ∗
Z ∗ IR−S−.

Proof: Consider a path of type S+ ∗ IR− and assume that
it evolves completely outside C2. There always exist two points
Q1 and Q2 along arcs S+ and IR− respectively, with ρQ1

=
ρQ2

> ρ2.
We now prove that the subpath S+

Q1
∗ IR−

Q2
can be shortened

by paths of type IL+
Q1

∗ IR−
Q2

, S+
Q1

IL+ ∗ IR−
Q2

or S+
Q1

IL+ ∗ Z ∗
IR−
Q2

. Indeed, consider the two palindrome paths constructed

from S+
Q1

∗ IR−
Q2

: S+
Q1

∗ IR− ∗ IL+ ∗ S−
Q1

and IL+
Q1

∗ IR−
Q2

.
From Proposition 1, those paths are of smaller or of equal
length with respect to S+

Q1
∗ IR−

Q2
. If IL+

Q1
∗ IR−

Q2
is smaller the

thesis is proved. Otherwise, since the path S+
Q1

∗ IR− ∗ IL+ ∗
S−
Q1

is assumed to evolve outside C2, from points 3 or 4 of
Proposition 4 and point 2 of Theorem 2, the subpath IR− ∗
IL+ can be shortened by IL+ ∗ IR− or by IL+ ∗ Z ∗ IR−.
Considering again the original path S+ ∗ IR− the thesis follows
from the fact that a path of type S− ∗ IR− can be shortened by
a path of type IR−S−, see [22].

If the path of type S+ ∗ IR− evolves also inside C2, there
always exist two points Q1 and Q2 along arcs S+ and
IR− respectively, with ρQ1

= ρQ2
< ρ2, see Fig. 13. We will

prove that the path S+
Q1

∗ IR−
Q2

is longer than the path IL+
Q1

∗
IR−
Q2

.
Still referring to Fig. 13, let V and N be the switching points

between S+
Q1

and IR−
Q2

and between IL+
Q1

and IR−
Q2

, respectively.
It is hence sufficient to prove that the path consisting of S+ be-
tween Q1 and V and of IR− from V to N is longer than the arc
IL+ between Q1 and N . To do this, we apply Lemma 1 where
γf (s) is the arc IL+ (between Q1 and N ) and γg(s) is the arc
IR− (between V and N ). The lemma will be applied consider-
ing the origin in Q1 and the x-axis laying along S+. Moreover,
the distances are normalized with respect to the length of the S+

arc. Once the hypothesis of the lemma are verified the thesis of
this proposition will hence follow straightforwardly.

To apply Lemma 1 we first need to prove that the projection
of point N along S+ lays between Q1 and V , i.e., that x̄ of
the lemma lays in [0, 1]. Secondly we need to prove that the
half-line from the origin through V forms an angle with the
line through Q1 and V that is smaller with respect to the angle
formed with the tangent to IL+

Q1
in V . Indeed, this would prove

that f ′(x) ≥ 0. The condition g′(x) ≤ 0 for x ∈ [x̄, 1] is clearly
verified.

To prove that the projection of point N along S+ lays be-
tween Q1 and V , consider the point H of intersection between
the orthogonal to S+ through V and the circle of radius ρQ1

=

ρQ2
= ρQH

. We need to prove that ̂V OwH ≥ ̂V OwQ2. Indeed,
if this holds the projection of Q2 on S+ lays between Q1 and
V and even more so does N .

For the relations between heading angles of points on
involutes and their distance with respect to the origin, we
have that the angle ̂V OwQ2 = Ψ(βQ1

)−Ψ(βV ) = tanβQ1
−

βQ1
−(tanβV − βV ). On the other hand, for the definition of

point H , the angle ̂OwV H = π/2 + βV while for sine rule
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̂V HOw=arcsin((ρV /ρQ1
) cosβV ). Since ρV =Rb/ cosβV

and ρQ1
=Rb/ cosβQ1

, ̂V HOw=arcsin cosβQ1
=π/2−βQ1

.
Hence, from the sum of internal angles of a triangle and the
fact that angles are smaller than π/2, we have ̂V OwH=βQ1

−
βV . To conclude we have that ̂V OwH− ̂V OwQ2=2βQ1

−
tanβQ1

−(2βV −tanβV ). Since function F (β)=2β−tan β is

increasing in [0, π/4] and since βV < βQ1
it holds ̂V OwH −

̂V OwQ2 ≥ 0 and hence the first hypothesis of the lemma is
verified.

To verify the second hypothesis let K be the point of
intersection between the half-line from OW through V and
the tangent to IL+ in N . The hypothesis holds if ̂OWKN>

βV . The angle ̂OWNK=π−βN while ̂NOWK=tanβN−
βN−(tanβV −βV ). Hence, ̂OWKN=2βN−tanβN−(βV −
tanβV ). Since βN >βV and the function F (β) is increasing
we have ̂OWKN>βV and hence the thesis.

A similar proof can be applied to paths of type IL+ ∗ S−. �

E. Proof of Theorem 4

Theorem 4: Given the initial point Q = (ρQ, ψQ), the final
point P = (ρP , 0) and the circumference C2 of radius ρ2, the
optimal language LO is characterized as follows:

a) For ρQ, ρP ≤ ρ2 the infimum length paths are of type
S+IL+, IR−S−, IR− ∗ IL+ or IR−Z ∗ IL+ (or degen-
erate cases).

b) For ρQ, ρP ≥ ρ2 the infimum length paths are of type
S+IL+ ∗ IR−S− or S+IL+ ∗ Z ∗ IR−S− (or degenerate
cases).

c) For ρP ≤ ρ2 ≤ ρQ the infimum length paths are of type
S+IL+ or S+IL+ ∗ ZIL+ (or degenerate cases).

d) For ρQ ≤ ρ2 ≤ ρP the infimum length paths are of type
IR−S− or IR−Z ∗ IR−S− (or degenerate cases).

Proof:

a) For Q and P with ρQ, ρP ≤ ρ2, the sub-path of type C1 =
IL+ ∗ IR− does not belong to an infimum length path.
Indeed, if it does there exists a pair of points Q1 and Q2

with ρQ1
= ρQ2

≤ ρ2, i.e., that verifies the first condition
of Proposition 4, for which C2 is shorter than C1.

Moreover, from Theorem 3, the infimum length path
from Q to P lays completely inside the circumference
C2 or, at most, contains the sub-path Z. Hence, the
sequences Z ∗ IR− and IL+ ∗ Z, as ρQ ≤ ρ2, can not
be part of an infimum length path. Hence, the sufficient
optimal language is described by the graph represented in
Fig. 8(a).

b) For ρQ, ρP ≥ ρ2, from cases 3) and 4) of Proposition 4
and from the case 2) of the same proposition and
Theorem 3, the infimum length path from Q to P can
not include a sub-path of type C2 = IR− ∗ IL+. Indeed, if
ρQ, ρP ≥ ρ2 one of the conditions 2)–4) of Proposition 4
holds. In cases 3) and 4) the sub-path C2 can be shortened
by C1. On the other hand, in case 2), by applying Theorem
3 the sub-path C2 can be shortened by a path of type
IL+ ∗ Z ∗ IR−.

Moreover, similarly to the previous case, the infimum
length path from Q to P lays completely outside the
circumference C2 or, at most, contains the sub-path Z.
Hence, Z ∗ IL+ and IR− ∗ Z can not be part of an infi-
mum length path. Concluding, the sufficient optimal lan-
guage is described by the graph represented in Fig. 8(b).

c) For ρP ≤ ρ2 ≤ ρQ there always exists a point V on
the infimum length path that lays on C2. The sub-path
from V to P has been previously considered in point a)
(ρV , ρP ≤ ρ2). Hence, from the graph in Fig. 8(a) the
only infimum length sub-path is of type ZIL+. On the
other hand, the sub-path from Q to V has been considered
in point b) (ρV , ρQ ≥ ρ2). Hence, from the graph in
Fig. 8(b), to reach Z, the infimum length sub-path is of
type S+IL+ ∗ Z or of type S+ ∗ S−. The sufficient opti-
mal language is finally described by the graph represented
in Fig. 8(c).

d) Same reasoning used in c), switching the roles of P and
Q, can be done for ρQ ≤ ρ2 ≤ ρP leading to the sufficient
optimal language described in Fig. 8(d). Notice that the
switch between IR− (IL+) and Z may occur only once
in any infimum length path.
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