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Abstract

Objectives—A reduction in glucose metabolism in the posterior cingulate cortex (PCC) predicts 

conversion to Alzheimer’s disease (AD) and tracks disease progression, signifying its importance 

in AD. We aimed to use decline in PCC glucose metabolism as a proxy for the development and 

progression of AD to discover common genetic variants associated with disease vulnerability.

Methods—We performed a genome-wide association study (GWAS) of decline in PCC [18F] 

FDG PET measured in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants (n=606). 

We then performed follow-up analyses to assess the impact of significant single nucleotide 

polymorphisms (SNPs) on disease risk and longitudinal cognitive performance in a large 

independent dataset (n=870). Lastly, we assessed whether significant SNPs influence gene 

expression using two RNA sequencing (RNA-Seq) datasets (n=210 & n=159).

Results—We demonstrate a novel genome-wide significant association between rs2273647-T in 

the gene PPP4R3A and reduced [18F] FDG decline (p= 4.44 × 10−8). In a follow-up analysis using 

an independent dataset, we demonstrate a protective effect of this variant against risk of conversion 

to MCI or AD (p=0.038) and against cognitive decline in individuals who develop dementia (p = 

3.41 × 10−15). Furthermore, this variant is associated with altered gene expression in peripheral 

blood and altered PPPP4R3A transcript expression in temporal cortex, suggesting a role at the 

molecular level.
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Interpretations—PPP4R3A is a gene involved in AD risk and progression. Given the protective 

effect of this variant PPP4R3A should be further investigated as a gene of interest in 

neurodegenerative diseases and as a potential target for AD therapies.

Introduction

Among the many biomarkers for Alzheimer’s disease (AD), decline in glucose metabolism 

in the posterior cingulate cortex (PCC) is one of the earliest, occurring years before 

symptom onset1. Furthermore, metabolic decline in the PCC actually predicts conversion 

from healthy aging to mild cognitive impairment (MCI), and from MCI to AD2,3, signifying 

its role in AD progression. The PCC is a central and highly interconnected brain region, with 

a crucial role in coordinating memory and internally driven cognitive processes4,5. It is also 

a component of the default mode network (DMN), a brain network that is particularly 

vulnerable in AD6,7. Therefore, molecular pathways involved in declining PCC glucose 

metabolism may be closely associated with disease progression and worsening of symptoms. 

Although early decline in PCC glucose metabolism is well established in AD pathology, the 

genetic contribution to these changes remains unknown. Common genetic variation may 

influence the extent to which individuals are protected from or predisposed to 

hypometabolism, and as a result, their risk of developing AD and memory impairment. 

Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms 

(SNPs), or common genetic variants, that are associated with hallmark pathological 

biomarkers of AD such as beta-amyloid plaques in the brain and phosphorylated tau in the 

CSF8,9. These studies have provided important insight into biological pathways associated 

with AD, however the link between PCC metabolic decline and vulnerability to AD is 

poorly understood. Decline in PCC metabolism correlates well with disease progression. By 

contrast, amyloid deposition measured with PET, appears less sensitive to disease 

progression10,11. As such, decline in PCC metabolism over time may provide distinct and 

important insights into biological mechanisms underlying the disease.

The primary aim of this study was to discover single nucleotide polymorphisms (SNPs) 

associated with longitudinal decline in PCC glucose metabolism that affect 1) the risk of 

developing AD and 2) the progression of the disease (i.e. cognitive decline). While the 

pathways linking PCC glucose metabolic decline to AD remain unknown, there is 

substantial evidence supporting a role for abnormal glucose regulation in AD. Cellular 

uptake of glucose is closely regulated by oxidative stress signaling pathways12. Furthermore, 

impaired oxidative stress signaling has been shown to lead to reduced glucose metabolism 

and the eventual development of memory impairment in AD13. Therefore, genes involved in 

adaptation to oxidative stress or the regulation of glucose metabolism may contribute to PCC 

metabolic decline and disease vulnerability. Since the PCC is the first and most pronounced 

region to undergo metabolic decline, PCC metabolism is a powerful and unexplored 

endophenotype for investigating unknown genetic contributions to AD. [18F] FDG PET 

measures the uptake of glucose into neurons and astrocytes, and can be used as a proxy for 

neuronal activity. Thus, in order to achieve these aims we performed a quantitative trait 

GWAS of longitudinal decline in PCC glucose metabolism as measured by [18F] FDG PET 

imaging in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our top 
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candidate from the GWAS was then explored further to determine its effects on AD risk, 

decline in cognitive performance over time, and gene expression in brain.

Methods

Participant Details

Participants included in the original imaging GWAS were part of the ADNI (http://

www.adni.loni.usc.edu). We restricted the analysis to participants who were Caucasian with 

European ancestry. Individuals included in the imaging GWAS had [18F] FDG PET data 

available at two time points at least a year apart. This included a total of 606 ADNI 

participants (mean age of 74 years ± 7.1 (standard deviation) mean education of 16 years 

± 2.8, 43.7% APOE*4 carriers and 37.8% female; Table 1). Participants for the analysis of 

conversion to MCI or AD and of longitudinal cognitive change were from the National 

Alzheimer’s Coordinating Centre (NACC)14-16. This is a dataset including healthy elderly 

and AD participants with longitudinal clinical and cognitive data (Table 1). Participants for 

the brain RNA-Seq analysis were part of the MAYO RNA-Sequencing study17 and the Rush 

Memory and Aging Project (MAP) 18/Religious Orders Study (ROS)19. These are datasets 

with RNA-Seq transcript data and genotype data for healthy and AD participants. For the 

analysis of conversion to MCI or AD, we included healthy participants at baseline from 

NACC who had longitudinal clinical data and genotype data available (n= 870) in order to 

track their conversion over time (mean age of 74.9 years ± 8.8, mean education of 16 years 

± 8.8, 28% APOE*4 carriers and 59.2% female). For the longitudinal cognitive change 

analysis, we included all NACC participants who had longitudinal cognitive data at two time 

points at least a year apart and available genotype data (n= 851). All of the participants for 

this analysis overlapped with the participants included in the conversion analysis. For the 

RNA-Seq analysis we used two datasets from ROS/MAP and MAYO which provide RNA-

Seq data from the dorsolateral prefrontal cortex and temporal cortex, respectively. For 

ROS/MAP we included all participants with available dorsolateral prefrontal cortex 

(DLPFC) RNA-Seq data and genotype data (n=220, mean age of death 84.4 ± 4.5, mean 

education of 16.7 ± 3.4, 25.9% APOE*4 carriers and 66.4% female). For the MAYO dataset, 

we included all participants with available temporal cortex RNA-Seq data and genotype data 

(n= 159, mean age of death 80.3 ± 7.8, 32.9% APOE*4 carriers and 55% female). All 

participants provided written informed consent and the protocols were approved by their 

respective review boards. NACC, ROS/MAP and MAYO study data were retrieved from the 

“NIA Genetics of Alzheimer’s Disease Data Storage Site” (NIAGADS) and the Sage 

Bionetwork’s Synapse project. The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging, positron emission 

tomography, other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of mild cognitive impairment and early 

Alzheimer’s disease. This was a re-analysis of de-identified data available from shared data 

repositories. Accession codes for the publicly available data used for the present study are 

reported in the Data Software and Availability Section. The study protocol was granted an 

exemption by the Stanford Institutional Review Board because the analyses were carried out 

on “de-identified, off-the-shelf” data.
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Method Details

Imaging Analysis

All participants from ADNI-1 and ADNI-GO/2 with longitudinal [18F] FDG-PET available 

were included in the GWAS. [18F] FDG is used to measure resting cerebral metabolic rate of 

glucose uptake in the brain and is an early marker of neurodegeneration. [18F] FDG-PET 

scans were acquired and pre-processed using a region of interest approach as described 

previously20. In brief, ROIs were created using a meta-analytic approach to determine 

regions most frequently associated with glucose metabolic changes and Alzheimer’s disease. 

The PCC was selected as the primary ROI for this study. In previous work by Jagust et al., 

the most thoroughly pre-processed version of the ADNI [18F] FDG-PET data were 

downloaded and uptake in each region of interest was normalized to uptake in the pons as a 

reference region, resulting in summary values of [18F] FDG-PET uptake in a number of AD 

related brain regions20. These ROI data were used here to calculate decline in PCC [18F] 

FDG as the mean annual percent decline from baseline between the first and last [18F] FDG 

PET scan (Fig 1 A). Only participants who had at least one year of longitudinal follow-up 

were included.

Participants in NACC were used as an independent dataset to examine, respectively, the 

effect of significant SNPs obtained from the GWAS in ADNI on 1) risk of conversion to 

MCI or AD as assessed by the clinical diagnosis at each visit, 2) disease progression (i.e. 

longitudinal cognitive performance). RNA-Seq data from dorsolateral prefrontal cortex were 

also available for participants in the ROS and MAP studies and in participants from the 

MAYO study, and these were used to test the functional impact of significant SNPs on brain 

transcript expression levels.

Genotyping and Imputation

ADNI GWAS data were downloaded from the ADNI database. Genotyping in ADNI was 

performed using blood DNA samples with three genotyping arrays: Illumina 610-Quad, 

Illumina-OmniExpress or Illumina HumanOmni2.5-4v1 as previously described21. 

Genotype data underwent standard quality control including identity checks, cryptic 

relatedness (identity-by-descent (IBD) > 0.0625), sample exclusion for call rate< 95%, SNP 

exclusion for call rate< 95%, Hardy-Weinberg Equilibrium (HWE) of p< 1 × 10−6 and 

Minor Allele Frequency (MAF) < 1%. Unlinked SNPs [Linkage Disequilibrium (LD) 

pruning at r2=0.1] passing the quality control criteria were used to determine the first ten 

principal components for population structure using EIGENSTRAT22 and to remove 

population structure outliers. Imputation was performed using IMPUTE2 software, using the 

European population from the 1000 Genomes Project, Phase 3 as a reference panel23. After 

imputation, we excluded SNPs with an info quality score < 0.9, MAF < 0.05 and HWE (p < 

5 × 10−6). This yielded a total of 2,820,932 SNPs for the GWAS analysis. A subset of ADNI 

subjects (n=818) was also whole-genome sequenced and available data were used to confirm 

the results obtained from SNP imputation. VCF files were annotated using SNPeff24, and 

analyzed by PLINK 1.925. GWAS data was also used for obtaining the genotype information 

for significant SNP(s) in our follow-up analyses. These datasets also underwent the same 

quality control pipeline and imputation described above.
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Quantification and Statistical Analysis

GWAS—The GWAS was performed using PLINK software. The analysis was run using a 

linear regression under the assumption of an additive genetic model. Covariates included 

baseline age, sex, education, disease status and the first three principal components for 

population structure. We did not include APOE*4 as a covariate in the initial GWAS, due to 

the colinearity between disease status and APOE*4 dosage. The suggestive association 

threshold was p < 1 × 10−5 and the threshold for genome-wide significance was p < 5 × 

10−8. This is a more conservative, consensus threshold for genome-wide significance based 

on correction for 1 million independent tests26. We aimed to discover SNPs passing the 

genome-wide significant threshold. Manhattan plots and QQ plots were generated using the 

package “qqman” in R (Version 3.3.1). Regional association plot was created using 

LocusZoom.

Competing Risks Regression Analysis

We ran a Competing Risks Regression analysis developed by Fine and Gray to evaluate the 

risk of conversion to MCI or AD by genotype (of significant SNPs), while accounting for 

death as a competing risk27. This analysis was carried out using the “cmprsk” package in 

R28. Competing risks analysis is a type of time-to-event analysis that aims to accurately 

estimate the marginal probability of an event in the presence of competing events such as 

death. This approach is relevant in this study because the participants are elderly and death 

may occur before the event of interest (i.e. conversion to MCI or AD) is observed, which can 

produce bias in risk estimates. We included all participants from the NACC dataset who 

were healthy at baseline, had genotyping data available, and had at least one year of follow-

up to assess the effect of significant SNPs on risk of conversion. Age at entry, APOE*4 

status, sex and education were included as covariates in the analysis (n=870, Table 1). 

Disease was not included as a covariate as all participants were healthy at baseline.

Linear Mixed Effects Analysis of Longitudinal Cognition

We tested the association between significant SNPs and longitudinal change in cognitive 

performance using participants from the NACC dataset who had longitudinal 

neuropsychological testing data available (n=851). We used the Logical Memory Delayed 

Recall Score (out of 25) to assess episodic memory, the Boston Naming Task (BNT) (out of 

30) to assess language and the Mini Mental State Examination (MMSE) (out of 30) to assess 

global cognitive function. These tests are known to be sensitive measures of cognitive 

decline in AD, and were acquired longitudinally in the NACC dataset. We tested all 

participants (n= 851) who were healthy at baseline who had available genotype information. 

We analyzed the data using a linear mixed effects model implemented in R, testing for the 

association between genotype and the change in cognitive performance over time i.e. a time 

by genotype interaction. This model accounts for correlations among repeated measurements 

within each participant, and permits varying observation periods and varying rates of decline 

among individuals. In addition to genotype, the time of measurement, and the interaction 

between these two variables, we included age at baseline, APOE*4 dosage, final diagnosis, 

education and sex as covariates.

Christopher et al. Page 5

Ann Neurol. Author manuscript; available in PMC 2018 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RNA-Seq Analysis

We tested whether transcript expression was altered between AD cases and controls for 

genes containing significant SNPs from the GWAS. We then tested the effect of significant 

SNPs on transcript expression of genes of interest using the ROS/MAP & MAYO RNA-Seq 

datasets from dorsolateral prefrontal cortex tissue and temporal cortex tissue, respectively. 

We used the general linear model implemented in R to perform a regression analysis looking 

at the effect of genotype on transcript expression for genes containing significant hits in the 

GWAS. All analyses included age at death, APOE*4 status, sex, disease status, post-mortem 

interval (PMI) & education (not available in the MAYO dataset) as covariates. We removed 

outliers greater than 2 absolute standard deviations from the mean to exclude the possibility 

of sampling errors. We also examined two large publicly available online peripheral blood 

gene expression datasets to test whether significant SNPs modified gene expression in blood 

(https://eqtl.onderzoek.io/index.php?page=info & http://genenetwork.nl/bloodeqtlbrowser/).

Data and Software Availability

GWAS data and [18F] FDG PET imaging data used in the present study were retrieved 

through ADNI (http://adni.loni.usc.edu). GWAS datasets for follow-up competing risks 

regression and linear mixed effects analyses were retrieved through NIAGADS (https://

www.niagads.org) [ADC1 (NG00022), ADC2 (NG00023), ADC3 (NG00024)] for the 

NACC participants and [ROSMAP (NG00029)] for the ROS/MAP participants. Clinical and 

cognitive visit data for the NACC participants were obtained by request from the 

longitudinal uniform dataset (RDD-UDS). RNA-sequencing data in ROS/MAP participants 

and MAYO participants were obtained from Sage Bionetwork’s Synapse project (https://

www.synapse.org, syn3388564).

Results

GWAS identifies a variant in PPP4R3A associated with decline in PCC [18F] FDG PET

There was a total of 606 ADNI participants included in the GWAS for PCC decline. 

Participants included a mixture of 192 healthy adults, 335 MCI patients and 79 AD patients.

We identified 130 SNPs that passed the suggestive association threshold (Fig 1 B, 

Supplementary Table 1). These SNPs corresponded to nine loci on 7 separate chromosomes. 

Only one SNP passed the genome-wide significance threshold (5 × 10−8). This was 

rs2273647, an intronic variant located in the gene PPP4R3A (OMIM*610351, on chr. 

14q32.12) (Fig 1 B, MAF= 0.326, β = 1.303, p = 4.44 × 10−8, Fig 2 A, Supplementary Table 

1). The SNP, rs2273647 is located in a transcription factor binding site near a coding region 

of the gene PPP4R3A (alternate name SMEK1). One other SNP came close to genome-wide 

significance located on chromosome 10 in an intronic region of the gene CDH23 (rs754726, 

β=−2.98, p = 5.29 × 10−8, See Supplementary Table 1). Rs2273647 in PPP4R3A was in high 

LD (r2>0.8) with other SNPs located nearby on chromosome 14 (Fig 2 B). We generated a 

Q-Q plot to compare the observed versus the expected p values for the GWAS. The genomic 

inflation factor λ was equal to 1.00 indicating there is no systemic inflation of the observed 

p values in our dataset.
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The minor allele of rs2273647-T demonstrated a protective effect on PCC glucose metabolic 

decline, with the homozygous minor allele group showing the least reduction in PCC 

glucose metabolism followed by the heterozygous group, and the homozygous wild-type 

groups (Fig 2 B). We determined that rs2273647 was an imputed SNP. Therefore, we 

checked the concordance rate between rs2273647 genotype in individuals who had whole 

genome sequencing data in ADNI. There was a 98% concordance rate between rs2273647 

genotype and whole genome sequencing data in ADNI, confirming the validity of 

imputation for rs2273647.

There were 274 individuals who were homozygous wild-type (C/C), 266 individuals who 

were heterozygous (C/T) and 66 individuals who were homozygous recessive (T/T) at 

rs2273647 (Table 2). There were no significant differences in baseline age, education, sex or 

disease status between the three genotypes groups. There was a significant difference in the 

proportion of APOE*4 carriers versus non-carriers (p = 0.011) across rs2273647 genotype 

groups. When the GWAS was rerun to include APOE*4 status as a covariate in addition to 

the original covariates, the effect of rs2273647-T remains quite strong (p =1.67 × 10−7).

PPP4R3A rs2273647-T Affects Risk of Conversion to MCI or AD

We aimed to assess whether the significant SNP was associated with risk of clinical 

conversion from healthy aging to MCI or AD. In order to evaluate the risk by genotype, we 

performed a competing risks regression analysis with death as the competing risk. 

Participants from the NACC dataset who were healthy controls at baseline, had longitudinal 

clinical visit data and had available genotype information were included in the analysis 

(Table 1, n =870). These subjects are independent from those used in the ADNI GWAS. For 

the 870 participants included in the analysis, the mean duration of follow-up was 4.3 years 

and the maximal follow-up time was 7 years. Risk of conversion was considered the risk of 

conversion from healthy to MCI or from healthy directly to AD (whichever conversion came 

first). Genotype was coded using an additive model (by dosage of the minor allele). 

Genotype for rs2273647 was significantly associated with risk of conversion to MCI or AD 

in 870 healthy controls. The minor allele (T) dosage was significantly associated with a 

reduced probability of developing MCI or AD (Fig 3 A, Hazard Ratio (HR)= 0.76, p= 0.038, 

n= 870). While the difference in risk between the heterozygote and homozygote T allele 

carriers was small, there was a more dramatic difference in the risk of conversion between 

the carriers and non-carriers of the T allele characteristic of a dominant effect. Therefore, we 

also ran the competing risks regression using a dominant model (ie. minor allele carriers 

(CT&TT) vs. non-carriers (CC)). There was a significant dominant effect on risk of 

conversion (Fig 3 B, HR= 0.70, p= 0.041, n= 870) with T allele carriers demonstrating a 

significantly lower risk compared to non-carriers.

To reduce the risk of bias due to the inclusion of individuals with a very short duration of 

follow-up, we restricted the analysis to those participants who had a minimum of 2 and 3 

years of follow-up in separate analyses, and tested both the additive and dominant models. 

When we restricted the sample to those with a minimum of 2 years of follow-up (n=735, 

mean follow-up time of 4.8 years), there was a significant additive effect of genotype on risk 

of conversion (HR= 0.72, p=0.01, n=735) and an even stronger dominant effect on risk of 
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conversion (HR= 0.58, p=0.0014, n=735). When we restricted the sample to those with a 

minimum of 3 years of follow-up (n=635, mean follow-up time of 5.2 years), genotype was 

no longer significantly associated with risk of conversion for the additive model (p= 0.13), 

however, there was a strong significant association between genotype and risk of conversion 

for the dominant model (HR= 0.63, p= 0.006, n=635). These results suggest that genotype 

has a consistent and significant impact on the risk of developing disease. When comparing 

models, the dominant model provided a better model fit with lower Bayesian information 

criterion (BIC). Therefore, we used a dominant model as the default for the remainder of the 

follow-up analyses and reported additive model results as well.

PPP4R3A rs2273647-T Affects Longitudinal Cognitive Performance

Next, we aimed to assess the relationship between the PPP4R3A variant and cognitive 

performance over time. We performed a linear mixed effects analysis on all NACC 

participants to assess the association between rs2273647-T and the change in cognitive 

performance (memory, language and global cognition) over time, by evaluating time by 

rs2273647 interaction. All participants who were healthy at baseline had longitudinal 

cognitive data and genotype data available were included in the model and classified 

according to final diagnosis (n= 819 for BNT, n= 822 for MMSE & n= 854 for Logical 

Memory Delayed Recall). Our analysis showed that cognitive decline was modified by the 

genotype of rs2273647, with significant interaction for time by genotype observed on both 

BNT (p= 1.37 × 10−6) and MMSE (p= 3.41 × 10−15) in individuals with a final diagnosis of 

AD (Fig 4 A–B); the extent of cognitive decline over time was reduced among individuals 

with the T allele in rs2273647 versus wild type homozygotes, demonstrating its protective 

effect on cognitive performance. The results were also significant when using the additive 

model, for both the time by genotype effect on BNT (p< 0.05) and MMSE (p< 5× 10−6). All 

effects were significant after controlling for age at baseline, APOE*4 dosage, final 

diagnosis, education and sex as covariates.

There were no significant time by genotype interactions in individuals with a final diagnosis 

of healthy or MCI, whose cognitive performance remained relatively stable over time (Fig 4 

A–B). There were no significant interactions in any of the three groups on longitudinal 

logical memory (Fig 4 C).

PPP4R3A rs2273647-T Affects Gene Expression

Lastly, we wanted to assess whether PPP4R3A transcript expression is altered in disease and 

whether rs2273647-T has a functional impact on gene expression. First, we identified the 

most highly expressed transcripts in brain tissue for PPP4R3A. There were two transcripts 

that were fully annotated, protein coding and expressed in brain: ENST00000554684 & 

ENST00000555462. The mean expression in FPKM of ENST00000554684 in DLPFC and 

temporal cortex tissue was 1.41 (± 0.89) and 28.59 (± 5.34), respectively. The mean 

expression in FPKM of ENST00000555462 in DLPFC and temporal cortex was 1.39 

(± 0.65) and 4.77 (± 0.98), respectively. Firstly, we aimed to test whether there were 

differences in the expression of PPP4R3A between AD cases and healthy controls in the 

RNA-Seq datasets from DLPFC and temporal cortex. We found a significant difference 

between cases and controls in ENST00000554684 expression after controlling for age at 
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death, sex, APOE*4 status and PMI. The healthy controls demonstrated lower expression 

compared to AD (Fig 5 B, p= 0.0038, n= 159), suggesting that transcript expression of this 

gene is altered by disease. There were no significant differences between AD and healthy 

controls within DLPFC tissue for either transcript.

Next, we aimed to assess whether rs2273647 genotype is associated with altered transcript 

expression. The rs2273647-T genotype was associated with lower PPP4R3A 
ENST00000555462 transcript expression in temporal cortex of healthy control participants 

from the MAYO dataset, with carriers of the minor allele demonstrating lower transcript 

expression compared to non-carriers (Fig 5 A, p= 0.011, n=159). Our results were also 

significant when using an additive model (p=0.015). There was no significant difference in 

expression of this isoform in AD participants. Furthermore, there was no effect of genotype 

on transcript expression in the DLPFC tissue from the ROS/MAP dataset.

Finally, we took advantage of two, large web-based expression quantitative trait loci (eQTL) 

datasets to test the effect of rs2273647-T dose on PPP4R3A expression in peripheral blood. 

Results in these datasets are only available for the additive model. We found that rs2273647 

was an eQTL, lowering the expression of PPP4R3A in blood with increasing dosage of the 

minor allele in a large meta-analysis of 9 datasets including 5311 samples (p= 4.75 × 10−10, 

Z= −6.23)29. We were able to confirm this result in a second blood eQTL dataset of 4896 

participants of European ancestry (p = 2.53 × 10−10; https://eqtl.onderzoek.io), providing 

further support for the involvement of this variant in modifying gene expression in blood30.

Discussion

Previous GWAS studies using imaging markers including hippocampal atrophy, beta-

amyloid, and CSF tau have provided insight into the mechanisms underlying genetic 

vulnerability to AD, implicating a number of genes associated with these AD 

endophenotypes8,9,21,31. The significant advantage of using PCC metabolic decline as an 

endophenotype in the present study, is that it is a consistent early biomarker for AD that has 

been shown to correlate well with disease progression, to a greater extent than beta-amyloid 

deposition10,11. Thus, using it as an endophenotype has the potential to reveal important 

genes that are closely associated with the mitigation (or exacerbation) of disease 

progression.

In this study, we demonstrate that rs2273647-T is associated with less metabolic decline in 

the PCC, a reduced risk of conversion to MCI or AD and reduced cognitive decline. 

Previous studies have tested for associations between known AD risk variants and imaging 

markers of AD progression including PCC hypometabolism32, however, this is the first 

study to identify a novel genome-wide association between a common variant and 

longitudinal PCC metabolic decline.

Taken together, these results suggest that the T allele confers a protective advantage by 

preserving brain glucose uptake in the face of AD pathology. We show that rs2273647-T is 

associated with a reduced risk of conversion to MCI or AD, suggesting that PPP4R3A plays 

a role in predisposition to disease. We also show that rs2273647-T is protective against 
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language and global cognitive decline, in those individuals who progress to AD over their 

follow-up period. The lack of significant interaction effects in those who remain healthy or 

convert to MCI in our study is likely due to the fact that many of these participants remained 

healthy for a large proportion of the study and do not show substantial decline regardless of 

genotype (as is apparent in Fig 4), thus obscuring the effect of rs2273647-T. Our findings 

demonstrate a strong protective effect in those individuals who convert to AD, especially 

against global cognitive decline, emphasizing that individuals carrying rs2273647-T perform 

better despite the onset of disease.

In order to provide a functional link between PPP4R3A at the molecular level and the 

clinical level, we aimed to assess whether rs2273647 genotype was significantly associated 

with PPP4R3A transcript expression. We were able to detect a significant effect of genotype 

in healthy controls for one of the protein-coding transcripts in temporal cortex, whereby 

healthy control carriers demonstrated lower transcript expression. We also demonstrated that 

transcript expression is significantly lower in healthy controls compared to AD, providing 

further evidence that PPP4R3A is altered in disease. The reason for healthy control carriers 

demonstrating lower transcript expression, but not AD participants is unclear, however, it is 

possible that the effect of disease on transcript expression outweighs the effect of the 

protective genotype. The lack of replication of these results in the DLPFC may be due to a 

regional effect of rs2276347 on transcript expression within the temporal cortex, which is 

more strongly affected by AD progression. Gene expression changes appear to be triggered 

by the onset of AD-associated pathology, which is present earlier and to a greater extent in 

the temporal cortex than in the frontal cortex. Further work will be needed to determine the 

regionally specific effects of rs2273647 on gene expression in the brain.

In previous work PPP4R3A was shown to be involved in gluconeogenesis. Furthermore, 

reduced expression of PPP4R3A was directly linked to lower fasting blood glucose levels, 

while increased PPP4R3A expression was linked to insulin resistance33. This strongly 

suggests that PPP4R3A plays an important role in influencing glucose uptake in humans, 

and that increased PPP4R3A expression may be detrimental. More tellingly, the SNP 

identified here has been associated with reduced fasting blood glucose levels (β = −0.015, 

p= 1.7 × 10−4)34. Furthermore, we confirmed that it is an eQTL in blood in two independent 

datasets, significantly reducing gene expression in T allele carriers29,30. Taking this into 

consideration with our findings, rs2273647-T carriers may have reduced gene expression 

and reduced fasting blood glucose levels, which could contribute directly to a protective 

effect on [18F] FDG decline. Conversely, higher expression of PPP4R3A may result in 

insulin resistance and reduced brain glucose uptake, which has been linked to AD12,35. 

Another possibility, is that T-allele carriers experience a lower risk for diabetes as a result of 

their differential glucose regulation, thus indirectly affecting AD risk and brain metabolic 

decline36. Reduced brain glucose uptake is an early marker of neurodegeneration, and not 

necessarily specific to AD. Therefore, it is possible that PPP4R3A may influence 

vulnerability to multiple neurodegenerative diseases37. Although the exact mechanism of 

action of PPP4R3A in AD is unknown, abnormal regulation of insulin signaling and glucose 

metabolism is associated with greater oxidative stress, and thus PPP4R3A may play a role in 

the predisposition of neuronal cells to oxidative damage and metabolic dysfunction 

associated with neurodegenerative disease pathology. Interestingly, smk-1 (PPP4R3A 
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ortholog) has been shown to play a direct role in mediating longevity via the insulin-

signaling pathway38,39. Furthermore, accumulating evidence suggests that the effective 

regulation of insulin-signaling promotes healthy aging and is protective against toxic age-

related protein aggregation including amyloid-beta40–42. Thus, alterations in PPP4R3A may 

help slow the onset and accumulation of AD pathology via the modification of insulin-

signaling pathways. In a follow-up search for previous associations between PPP4R3A and 

AD risk, we found that a distinct variant in PPP4R3A passed the suggestive threshold for 

association with risk of AD in a family-based GWAS, lending additional support for the 

involvement of this gene in AD43. Further investigations will be needed to identify the 

protective mechanisms by which PPP4R3A affects disease vulnerability.

One limitation to our study is that we have not been able to determine definitively whether 

the true biological effect of rs2273647-T is dominant or additive. As is conventionally done 

in GWAS studies, we identified this variant in our initial analysis with an additive model. We 

observed in the follow-up analyses, however, the effect of genotype on disease risk, 

progression, and gene expression was stronger when rs2273647 genotype was classified 

according to a dominant model. We therefore returned to the original GWAS and checked 

the p-value of our SNP assuming a dominant model and found that it remains quite 

significant at p= 1.32 × 10−7. On balance, our results support an additive model with the 

dominant model appearing stronger mainly in those analyses (such as gene expression in 

brain) with smaller sample sizes and relatively few homozygous recessive subjects.

In conclusion, we identify a novel protective variant in the gene PPP4R3A associated with 

reduced glucose metabolic decline. We were able to replicate the protective effect in an 

independent dataset, demonstrating that the minor allele at rs2273647 is associated with a 

reduced risk of developing AD and a slower rate of cognitive decline in subjects who 

ultimately develop AD. Importantly, our findings strongly support a role for PPP4R3A in 

AD vulnerability and progression. Furthermore, this variant affects PPP4R3A gene 

expression indicating a functional effect. While the specific biological pathways underlying 

the role of PPP4R3A in AD vulnerability require further investigation, the results reported 

here suggest that PPP4R3A should be considered as a potential therapeutic target in AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A common variant in PPP4R3A is associated with less decline in posterior cingulate glucose 

metabolism. A. PCC ROI overlaid on a template brain in MNI space illustrating the region 

where [18F] FDG PET decline was measured for each participant. MNI coordinates are 

displayed below. B. Manhattan plot demonstrating the results of the GWAS including all 

ADNI participants. The blue line represents a suggestive association threshold (1 × 10−5) 

and the red line indicates the genome-wide association threshold (5 × 10−8). Arrow indicates 

significant SNP passing genome-wide significance threshold located on Chromosome 14 in 

an intronic region of the PPP4R3A gene.
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Figure 2. 
Regional association and pattern of PCC [18F] FDG decline for rs2273647 in PPP4R3A. A. 
Regional association plot demonstrating regional linkage disequilibrium for rs2273647 with 

other SNPs. B. Longitudinal decline in PCC glucose metabolism by rs2273647 genotype. 

The T allele is associated with significantly less decline in glucose metabolism.
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Figure 3. 
The minor allele (T) of rs2273647 in PPP4R3A is associated with reduced risk of conversion 

to MCI or AD. A. Cumulative incidence functions demonstrating the risk of conversion to 

MCI or AD for three genotypes of rs2273647 over a 7-year time period using an additive 

model. T allele dosage was significantly associated with the risk of conversion to MCI or 

AD over time after controlling for APOE*4 status, age at entry, sex and education (HR = 

0.76, p= 0.038, n=870). B. Cumulative incidence functions demonstrating the risk of 

conversion to MCI or AD using a dominant model. T allele carriers demonstrate 

significantly lower risk of conversion to MCI or AD over time after controlling for APOE*4 

status, age at entry, sex and education (HR = 0.70, p= 0.041, n=870).
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Figure 4. 
Cognitive decline is significantly modified by genotype in individuals with a final diagnosis 

of AD. A. Participants who develop AD demonstrate a significant time by genotype 

interaction on BNT scores (p = 1.37 × 10−6, n= 819) indicating a protective effect on 

language decline. B. Participants who develop AD demonstrate a significant time by 

genotype interaction on MMSE scores (p = 3.41 × 10−15, n= 822) indicating a protective 

effect on global cognitive decline. Interactions were significant after controlling for baseline 

age, education, APOE*4 dosage and sex. C. Time by genotype effect was not significant for 

longitudinal memory scores in any diagnostic category. Final DX = Final diagnosis.
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Figure 5. The effect of genotype and disease status on PPP4R3A transcript expression. A
There is a significant dominant effect of genotype on transcript expression 

(ENST00000555462) in the temporal cortex of healthy controls with T allele carriers 

demonstrating lower expression compared to non-carriers (p= 0.011, n= 159). There is no 

significant effect of genotype on transcript expression in AD. B. PPP4R3A transcript 

expression (ENST00000554684) is significantly lower in healthy control compared to 

Alzheimer’s disease patients in temporal cortex (p=0.0038, n= 149). FPKM = Fragments Per 

Kilobase of transcript per Million mapped reads.
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Table 1
Participant Demographics

Table demonstrates demographics for each dataset used in the GWAS (ADNI) and follow-up analyses 

including the analysis for conversion to MCI or AD (NACC) & the analysis for longitudinal cognition 

(NACC). Values in brackets are standard deviation. ADNI= Alzheimer’s Disease Neuroimaging Initiative; 

NACC= National Alzheimer’s Coordinating Centre.

ADNI NACC

Participants (n) 606 870

APOE*4 (Carriers/Non-Carriers) 265/341 244/626

Baseline Age (years) 74.1 (7.1) 74.9 (8.80.30)

Education (years) 16.0 (2.8) 16.8 (8.80.94)

Sex (Female/Male) 229/377 515/355
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Table 2
RNA-Seq Participant Demographics

Table demonstrates demographic information for each dataset used in the RNA-Seq analysis. Values in 

brackets are standard deviation. MCI = Mild Cognitive Impairment, AD = Alzheimer’s Disease, DPLFC = 

Dorsolateral Prefrontal Cortex, BA = Broadmann Area

ROS/MAP RNA-Seq MAYO RNA-Seq

Participants (n) 220 149

APOE*4 (Carriers/Non-Carriers) 57/163 49/100

Age at Death (years) 84.4 (4.5) 80.3 (7.8)

Sex (Female/Male) 146/74 82/67

Disease Group (Healthy/MCI/AD) 68/63/89 72/0/77

Post-mortem Interval (years) 7.0 (4.6) 6.6 (6.3)

Education (years) 16.6 (3.4) -

Tissue Type DLPFC Temporal cortex
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Table 3
ADNI participant demographics according to disease status

This table includes demographic information for individuals from ADNI included in the imaging GWAS. 

Values in brackets are standard deviation.

Healthy Controls
(n= 192)

MCI
(n=335)

AD
(n=79) p-value

APOE*4 (Carriers/Non-Carriers) 46/146 161/174 56/23 p= 4.6 ×10−13*

Baseline Age (years) 75.1 (5.2) 72.9 (7.7) 76.6 (7.2) p = 0.3

Education (years) 16.3 (2.7) 16.1(2.7) 14.9 (3.2) p= 0.9

Sex (Female/Male) 78/114 115/220 29/50 p= 0.35

PPP4R3A rs2273647 Genotype (C/C, C/T, T/T) 91/81/20 143/151/41 40/30/9 p=0.67

*
p < 0.05 significant difference in frequencies between groups with Pearson’s chi-squared test

MCI= mild cognitive impairment, AD= Alzheimer’s disease

Ann Neurol. Author manuscript; available in PMC 2018 December 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Christopher et al. Page 23

Table 4
Demographics for NACC participants (healthy at baseline) according to PPP4R3A 
rs2273647 genotype

This table includes demographic information for individuals from NACC included in the follow-up analyses. 

Values in brackets are standard deviation.

T/T
(n=130)

C/T
(n=381)

C/C
(n=359) p-value

APOE*4 (Carriers/Non-Carriers) 36/94 111/270 97/262 p= 0.81

Baseline Age (years) 74.6 (8.8) 74.9 (8.8) 75.1(8.7) p = 0.54

Education (years) 16.6 (7.8) 16 .8(8.9) 16.8 (9.2) p= 0.81

Sex (Female/Male) 68/62 237/144 210/149 p= 0.47
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Table 5
Demographics for Mayo RNA-Seq data from temporal cortex stratified by disease

There were no significant differences between groups in any of the variables other than APOE*4 status. 

Healthy controls had a significantly different proportion of APOE*4 carriers than AD cases (*p = 7.5 × 10−7, 

Pearson’s chi-squared test). Values with brackets are standard deviation.

Alzheimer’s disease
(n=77)

Healthy Controls
(n=72)

APOE*4 (Carriers/Non-Carriers) 40/37 9/63*

Age at Death (years) 80.2(7.5) 80.3(8.2)

Sex (Female/Male) 47/30 35/37
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