Exploring the Role of N^{6}-Substituents in Potent Dual Acting 5^{\prime} - \mathbf{C} Ethyltetrazolyladenosine Derivatives: Synthesis, Binding, Functional Assays, and Antinociceptive Effects in Mice ${ }^{7}$

Riccardo Petrelli ${ }^{\dagger}$, Mirko Scortichini ${ }^{\dagger}$, Sonja Kachler ${ }^{\ddagger}$, Serena Boccella ${ }^{\S}$, Carmen Cerchiall, Ilaria Torquati ${ }^{\dagger}$, Fabio Del Bello ${ }^{\dagger}$, Daniela Salvemini ${ }^{\perp}$, Ettore Novellinoll, Livio Luongo§, Sabatino Maione§, Kenneth A. Jacobson\#, Antonio Lavecchia ${ }^{\star}$, $\|$, Karl-Norbert Klotz ${ }^{\ddagger}$, and Loredana Cappellacci** \uparrow
†School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
ҒInstitut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany
§Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
"Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II, 80131 Naples, Italy
 Louis, Missouri 63104, United States
\#Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States

Abstract

Structural determinants of affinity of N^{6}-substituted-5' $-C$-(ethyltetrazol-2-yl)adenosine and 2chloroadenosine derivatives at adenosine receptor (AR) subtypes were studied with binding and molecular modeling. Small N^{6}-cycloalkyl and 3 -halobenzyl groups furnished potent dual acting $\mathrm{A}_{1} \mathrm{AR}$ agonists and $\mathrm{A}_{3} \mathrm{AR}$ antagonists. $\mathbf{4}$ was the most potent dual acting human (h) $\mathrm{A}_{1} \mathrm{AR}$ agonist ($K_{\mathrm{i}}=0.45 \mathrm{nM}$) and $\mathrm{A}_{3} \mathrm{AR}$ antagonist ($K_{\mathrm{i}}=0.31 \mathrm{nM}$) and highly selective versus $\mathrm{A}_{2 \mathrm{~A}} ; \mathbf{1 1}$ and 26 were most potent at both h and rat (r) A_{3} AR. All N^{6}-substituted- $5^{\prime}-C$-(ethyltetrazol-2-

[^0]yl)adenosine derivatives proved to be antagonists at $\mathrm{hA}_{3} \mathrm{AR}$ but agonists at the $\mathrm{rA}_{3} \mathrm{AR}$. Analgesia of $\mathbf{1 1}, \mathbf{2 2}$, and $\mathbf{2 6}$ was evaluated in the mouse formalin test ($\mathrm{A}_{3} A R$ antagonist blocked and $A_{3} A R$ agonist strongly potentiated). N^{6}-Methyl- $5^{\prime}-C$-(ethyltetrazol-2-yl)adenosine (22) was most potent, inhibiting both phases, as observed combining $\mathrm{A}_{1} \mathrm{AR}$ and $\mathrm{A}_{3} \mathrm{AR}$ agonists. This study demonstrated for the first time the advantages of a single molecule activating two AR pathways both leading to benefit in this acute pain model.

Graphical Abstract

INTRODUCTION

Adenosine, the natural ligand of P1 receptors, is implicated in the control of many physiological and pathological conditions such as inflammation, pain, and cardiovascular and central nervous system (CNS) diseases. ${ }^{1,2} \mathrm{P} 1$ receptors belong to the large family of G-protein-coupled receptors (GPCRs) and are represented by four subtypes: $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}, \mathrm{~A}_{2 \mathrm{~B}}$, and A_{3} adenosine receptors (ARs).

Owing to the wide distribution of AR subtypes in virtually all tissues, avoiding side effects has a high priority in the development of selective AR ligands as therapeutic agents. However, designing a single drug molecule able to specifically interact with several targets simultaneously is becoming a major trend in drug discovery. ${ }^{3,4}$ A multitarget drug may display an improved therapeutic efficacy compared to a highly selective one. In fact, multitarget activities may potentiate the effect of treatment either additively or synergistically. Moreover, a multitarget drug has the advantage of following only one pharmacokinetic and metabolic pattern, thus overcoming the limits of combination therapy.

In the $A R$ field, several examples of dual acting ligands have been reported. A dual $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ agonist and $\mathrm{A}_{3} \mathrm{AR}$ antagonist has been investigated by Glaxo as an anti-inflammatory agent. ${ }^{5}$ Hou et al. reported dual acting $\mathrm{hA}_{2 \mathrm{~A}}$ agonists and $\mathrm{hA}_{3} \mathrm{AR}$ antagonists potentially useful in asthma and inflammatory diseases. ${ }^{6}$

Very recently, we reported the first highly potent dual acting $\mathrm{hA}_{1} \mathrm{AR}$ agonists and $\mathrm{hA}_{3} \mathrm{AR}$ antagonists potentially useful in the treatment of glaucoma and epilepsy. ${ }^{7}$ Combining a 5^{\prime} -Cethyltetrazol-2-yl group with the appropriate N^{6}-substitution in adenosine derivatives led to an increased affinity versus both $\mathrm{hA}_{1} \mathrm{AR}$ and $\mathrm{hA}_{3} \mathrm{AR}$, reaching subnanomolar values, while remaining agonists at hA_{1} and antagonists at $\mathrm{hA}_{3} \mathrm{AR}$.

The aim of this study was to extend the series of $5^{\prime}-C$-(ethyltetrazol-2-yl)adenosine and 2chloroadenosine derivatives, modifying the substituent in the N^{6}-position of the adenine ring
(compounds 1-17). Moreover, it is well-known that $\mathrm{A}_{3} A R$ represents the AR subtype with high species differences for both affinity and efficacy. ${ }^{8}$ For this reason we assayed the affinity and efficacy of some selected compounds also at the rat (r) $\mathrm{A}_{3} A R$.

Salvemini and colleagues and others have reported that highly selective A_{3} agonists reduce neuropathic pain in various models of neuropathic pain states including bone cancer pain, and some $A_{3} A R$ agonists are in preclinical studies for the treatment of these diseases. ${ }^{9-14}$ Our previous work demonstrated that also potent and selective $A_{1} A R$ agonists are effective in pain conditions. ${ }^{15-18}$ Therefore, combining the analgesic effects of both A_{1} and $A_{3} A R$ agonists in only one molecule might be highly advantageous in terms of reducing side effects and synergizing the antinociceptive activities.

RESULTS AND DISCUSSION

Chemistry

Compounds 1-17 were synthesized by reacting 2-(6-chloro-9H-purin-9-yl)-5-(2-ethyl-2 H -tetrazol-5-yl)-tetrahydrofuran-3,4-diyl diacetate (18) or 2-(2,6-dichloro-9H-purin-9-yl)-5-(2-ethyl-2 H -tetrazol-5-yl)tetrahydrofuran-3,4-diyl diacetate (19), ${ }^{7}$ with cycloalkyl, arylalkyl, or heteroaryl amines followed by the sugar deprotection in basic conditions (Scheme 1). Intermediates 18, 19, and reference compounds 20-26 (see Table 1) were synthesized as previously reported. ${ }^{7}$

Binding Affinity

Compounds 1-17 were tested for affinity for the human recombinant ARs, stably transfected into Chinese hamster ovary (CHO) cells, utilizing radioligand binding assays $\left(\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}\right.$, and A_{3}) or an adenylyl cyclase activity assay ($\mathrm{A}_{2 \mathrm{~B}}$) (Tables 1 and 2). ${ }^{19}$ Selected compounds were also tested at the recombinant $\mathrm{rA}_{3} \mathrm{AR}$, stably transfected into CHO cells utilizing radioligand binding assays, and the results are reported in Table 3.

As shown in Table 1, the introduction of a cyclopropyl or a cyclopropylmethyl group in N^{6} position furnished very potent dual $\mathrm{hA}_{1} \mathrm{AR}$ agonists and $\mathrm{hA}_{3} \mathrm{AR}$ antagonists (1-4) with K_{i} values at both receptor subtypes in the subnanomolar range ($K_{\mathrm{i}}=0.44-0.86 \mathrm{nM}$ at $\mathrm{A}_{1} \mathrm{AR} ; K_{\mathrm{i}}$ $=0.31-0.87 \mathrm{nM}$ at $\mathrm{A}_{3} \mathrm{AR}$). Substitution with a heteroaryl group (compounds 5-8) reduced the affinity in the low nanomolar range at both $\mathrm{hA}_{1}\left(K_{\mathrm{i}}=3.53-10.7 \mathrm{nM}\right)$ and $\mathrm{hA}_{3}\left(K_{\mathrm{i}}=\right.$ $1.31-4.85 \mathrm{nM})$ ARs. The reduction of affinity was more evident at $\mathrm{hA}_{1} \mathrm{AR}$ than at $\mathrm{h} \mathrm{A}_{3} \mathrm{AR}$. The effect on A_{1} and A_{3} AR affinities of a halogen at 3-position of N^{6}-benzyl-5 ${ }^{\prime}-C$ -(ethyltetrazol-2-yl)adenosine derivatives was also investigated.

Affinities at $\mathrm{hA}_{1} \mathrm{AR}$ of $5^{\prime}-C$-ethyltetrazol-2-yl-adenosine derivatives $\mathbf{9 - 1 5}$ increased with the size of the halogen. In fact, the rank order was 3-iodo-benzyl $\left(\mathbf{1 5}, K_{\mathrm{i}}=0.77\right)>3$ bromobenzyl $\left(\mathbf{1 3}, K_{\mathrm{i}}=0.95 \mathrm{nM}\right)>3$-chlorobenzyl $\left(\mathbf{1 1}, K_{\mathrm{i}}=1.41 \mathrm{nM}\right)>3$-fluorobenzyl $(\mathbf{9}$, $\left.K_{\mathrm{i}}=3.73 \mathrm{nM}\right)$. At hA ${ }_{3} \mathrm{AR}$, except for 3-fluorobenzyl derivative $9\left(K_{\mathrm{i}}=1.20 \mathrm{nM}\right)$, 3chlorobenzyl (11, $\left.K_{\mathrm{i}}=0.39 \mathrm{nM}\right)$, 3-bromobenzyl (13, $\left.K_{\mathrm{i}}=0.39 \mathrm{nM}\right)$, and 3-iodobenzyl (15, $K_{\mathrm{i}}=0.53 \mathrm{nM}$) derivatives were almost equipotent, showing subnanomolar affinities. The same results were reported by Jacobson et al. in the 4^{\prime}-truncated N^{6}-substituted-(N)methanocarbaadenosine derivatives. ${ }^{20}$ It is surprising to note that the corresponding 2-chloro
derivatives (compounds $\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 4}$, and $\mathbf{2 6},{ }^{7}$ respectively) were less active at $\mathrm{hA}_{1} \mathrm{AR}\left(K_{\mathrm{i}}=\right.$ $2.71-6.04 \mathrm{nM}$), while at $\mathrm{hA}_{3} \mathrm{AR}$ their affinities remained in the subnanomolar range ($K_{\mathrm{i}}=$ $0.34-0.58 \mathrm{nM})$ and marginally increased for the 3-fluorobenzyl-2-chloroadenosine derivative $10\left(K_{\mathrm{i}}=0.81 \mathrm{nM}\right)$. It should be underlined that except for 3fluorobenzyladenosine derivative $\mathbf{9}$, all N^{6}-cycloalkyl and N^{6}-3-halobenzyl derivatives (compounds 1-4 and $\mathbf{9}-\mathbf{1 5}$, respectively) showed subnanomolar affinity at $\mathrm{hA}_{3} A R$. The most potent 3-halobenzyl derivatives at $\mathrm{A}_{1} \mathrm{AR}$ were the 3-bromobenzyl and 3-iodobenzyl derivatives ($\mathbf{1 3}$ and 15), with K_{i} values in the subnanomolar range ($K_{\mathrm{i}}=0.95$ and 0.77 nM , respectively). With reduction of the size of the halogen, the affinity at $A_{1} A R$ decreased from 0.77 (3-iodo-, 15) to 6.04 nM (3-fluoro-, 10). However, an N^{6}-3-fluorobenzyl substituent increased the $\mathrm{A}_{2 \mathrm{~A}} / \mathrm{A}_{3}$ selectivity and compound $\mathbf{1 0}$ was the most selective $\mathrm{A}_{2 \mathrm{~A}} / \mathrm{A}_{3}$ ligand in the 3-halobenzyl series $\left(\mathrm{A}_{2 \mathrm{~A}} / \mathrm{A}_{3}=299\right.$, Table 4).

Unexpectedly, the introduction of a chlorine at 2-position of the purine ring of this series did not improve the $\mathrm{A}_{1} \mathrm{AR}$ affinity. The 2-chloro substitution also did not influence the affinity at $A_{3} A R$ but led to a 4.8 -fold increase of the $\mathrm{A}_{2 \mathrm{~A}} / \mathrm{A}_{3}$ selectivity (e.g., compound $\mathbf{9}, \mathrm{A}_{2 \mathrm{~A}} / \mathrm{A}_{3}$ selectivity $=62$; compound $10=299$).

The 2-fluoro-4-chlorobenzyl substituent in N^{6}-position (compounds 16 and 17) reduced the affinity at both $\mathrm{A}_{1} \mathrm{AR}\left(K_{\mathrm{i}}=4.28\right.$ and 17.6 nM$)$ and $\mathrm{A}_{3} \mathrm{AR}\left(K_{\mathrm{i}}=4.67\right.$ and 5.17 nM$)$ with respect to the 3-halobenzyl derivatives and also compared to previously reported 2-fluoro-4chlorophenyl derivatives $\mathbf{2 4}$ and $\mathbf{2 5}\left(K_{\mathrm{i}}=0.43\right.$ and 1.67 nM at $\mathrm{A}_{1} \mathrm{AR}$ and 2.61 and 4.71 nM at $\mathrm{A}_{3} \mathrm{AR}$, respectively). ${ }^{7}$ As reported in our previous work, ${ }^{7}$ upon replacing the 5^{\prime} hydroxymethyl group in adenosine derivatives with the $5^{\prime}-C$-ethyltetrazol-2-yl, very high affinities at both hA_{1} and hA_{3} ARs were maintained, even with a small cycloalkyl group at the N^{6}-position. N^{6}-Cyclopropyl- and N^{6}-cyclopropylmethyl-5' - C-ethyltetrazol-2-
yladenosine and 2-chloroadenosine derivatives (compounds $\mathbf{1 - 4}$) emerged as the most potent dual acting $\mathrm{hA}_{1} \mathrm{AR}$ agonists ($K_{\mathrm{i}}=0.44-0.86 \mathrm{nM}$) and $\mathrm{hA}_{3} \mathrm{AR}$ antagonists ($K_{\mathrm{i}}=0.31-0.87$ nM) of the series and were highly selective versus $\mathrm{A}_{2 \mathrm{~A}}$. In particular, compound $\mathbf{4}$ ($K_{\mathrm{i}}=0.45$ and 0.31 nM at hA_{1} and $\mathrm{hA}_{3} \mathrm{AR}$, respectively) was 725 -fold A_{1} selective versus $\mathrm{A}_{2 \mathrm{~A}}$ and 1097 -fold A_{3} selective versus $\mathrm{A}_{2 \mathrm{~A}}$ and was therefore the most potent and selective compound of the series. Also, compound 2 was highly selective for A_{1} (510 -fold over $\mathrm{A}_{2 \mathrm{~A}}$) and A_{3} (596-fold over $\mathrm{A}_{2 \mathrm{~A}}$). It is interesting to note that in all compounds of the series the 2chloro derivatives were less potent at $\mathrm{A}_{2 \mathrm{~A}}$ than the 2 -unsubstituted counterparts (e.g., $\mathbf{4}$ vs $\mathbf{3}$, $\mathbf{1 0}$ vs $\mathbf{9}, \mathbf{1 2}$ vs $\mathbf{1 1}$, etc.). Moreover, as we previously reported, ${ }^{7}$ the $A_{2 A} A R$ does not seem to tolerate alkyl and cycloalkyl groups at the N^{6}-position (1-4, $\left.\mathrm{A}_{2 \mathrm{~A}} K_{\mathrm{i}}=112-329 \mathrm{nM}\right)$ but better tolerates 3-halobenzyl substituents ($\mathbf{9}-\mathbf{1 5}, \mathrm{A}_{2 \mathrm{~A}} K_{\mathrm{i}}=16.8-242 \mathrm{nM}$).

Owing to the species differences of affinity and efficacy at $A_{3} A R$, some selected compounds were also tested at $\mathrm{rA}_{3} \mathrm{~A}$. K_{i} values of selected compounds at $\mathrm{hA}_{3} \mathrm{AR}$ and $\mathrm{rA}_{3} \mathrm{AR}$ are compared (Table 3). In general, all compounds showed weaker binding affinities at $\mathrm{rA}_{3} \mathrm{AR}$ than at $\mathrm{hA}_{3} \mathrm{AR}$ as previously reported also by Jacobson et al. in a series of truncated N^{6} -substituted-(N)-methanocarbaadenosine derivatives. ${ }^{20}$ Surprisingly, at $\mathrm{rA}_{3} A R$ all tested compounds switched from antagonists to full agonists. It is interesting to note that 3halobenzyl derivatives $\mathbf{9}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 5}$, and $\mathbf{2 6}$ emerged as the most potent compounds at $r^{2} A R$, whereas compounds $\mathbf{1}$ and $\mathbf{3}$ were 76 - and 114 -fold less potent at $\mathrm{rA}_{3} A R$ than at
$\mathrm{hA}_{3} \mathrm{AR}\left(\mathrm{rA}_{3} \mathrm{AR} K_{\mathrm{i}}=66.0\right.$ and 65.2 nM , respectively; $\mathrm{hA}_{3} \mathrm{AR} K_{\mathrm{i}}=0.87$ and 0.57 nM , respectively). The most potent compounds at both $h_{A_{3}} A R$ and $r A_{3} A R$ were the 3-iodobenzyl-2-chloroadenosine derivative $26\left(K_{\mathrm{i}} \mathrm{rA}_{3} \mathrm{AR}=2.53 \mathrm{nM} ; \mathrm{hA}_{3} \mathrm{AR}=0.59 \mathrm{nM}\right.$; $\left.\mathrm{rA}_{3} \mathrm{AR} / \mathrm{hA}_{3} \mathrm{AR}=4.3\right)$ and the 3-chlorobenzyladenosine derivative $\mathbf{1 1}\left(K_{\mathrm{i}} \mathrm{rA}_{3} \mathrm{AR}=2.69 \mathrm{nM}\right.$; $\left.\mathrm{hA}_{3} \mathrm{AR}=0.39 \mathrm{nM} ; \mathrm{rA}_{3} \mathrm{AR} / \mathrm{hA}_{3} \mathrm{AR}=6.9\right)$. The highest differences were seen with a N^{6} methyl substituent: compounds $\mathbf{2 2}$ and $\mathbf{2 3}$ were 1000 -and 1400 -fold less potent at $\mathrm{rA}_{3} A R$ than at $h \mathrm{~A}_{3} \mathrm{AR}$, respectively.

Adenylyl Cyclase Activity

All novel compounds were tested in a functional $\mathrm{A}_{2 \mathrm{~B}} \mathrm{AR}$ assay and some showed a moderate potency in stimulation of adenylyl cyclase activity (Table 2). The most potent compound was $1\left(\mathrm{EC}_{50}=222 \mathrm{nM}\right)$, while the least potent was $17\left(\mathrm{EC}_{50}>30000 \mathrm{nM}\right)$. It is noteworthy that $\mathbf{1}, \mathbf{3}$, and $\mathbf{9}$ behaved as partial $\mathrm{A}_{2 \mathrm{~B}} \mathrm{AR}$ agonists, whereas all other compounds acted as full agonists (Table 2). All compounds were additionally tested for their functional effects on human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$, and A_{3} ARs by determination of adenylyl cyclase activity. As expected, all tested compounds were found to be agonists at A_{1} and $\mathrm{A}_{2 \mathrm{~A}} \mathrm{ARs}$, whereas they were antagonists at the A_{3} subtype (Table 2). Interestingly, only compound $\mathbf{1 5}$ was found to be a partial agonist at $\mathrm{A}_{1} \mathrm{AR}$. Compounds $\mathbf{1 - 4}$ showed the best EC_{50} values of the series at $\mathrm{hA}_{1} \mathrm{AR}(7.21-7.73 \mathrm{nM})$, whereas the most potent $\mathrm{hA}_{3} \mathrm{AR}$ antagonists $\mathbf{3}, \mathbf{1 1}, \mathbf{1 3}$, and $\mathbf{1 5}$ displayed EC_{50} values at $\mathrm{hA}_{3} \mathrm{AR}$ ranging from 2.07 to 3.53 nM , presenting as the most potent $\mathrm{hA}_{3} \mathrm{AR}$ antagonists of the series and also compared to the 5^{\prime}-C-tetrazol-2yladenosine derivatives previously published by us. ${ }^{7}$ Among the tested compounds, the best EC_{50} values at $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ were displayed by $\mathbf{1 1}(6.71 \mathrm{nM}), \mathbf{1 3}(4.46 \mathrm{nM})$, and $\mathbf{1 5}(2.87 \mathrm{nM})$. Some selected compounds were also tested at $\mathrm{rA}_{3} \mathrm{AR}$ in a cAMP functional assay and turned out to be full $\mathrm{A}_{3} \mathrm{AR}$ agonists.

Molecular Modeling

The 5^{\prime} - C-(ethyltetrazol-2-yl)-adenosine derivatives acting dually at $\mathrm{hA}_{1} \mathrm{AR}$ and $\mathrm{hA}_{3} \mathrm{AR}$, i.e., $\mathbf{9}\left(\mathrm{A}_{1}, K_{\mathrm{i}}=3.73 \mathrm{nM}\right), \mathbf{1 1}\left(\mathrm{A}_{1}, K_{\mathrm{i}}=1.41 \mathrm{nM}\right), \mathbf{1 3}\left(\mathrm{A}_{1}, K_{\mathrm{i}}=0.95 \mathrm{nM}\right)$, and $\mathbf{1 5}\left(\mathrm{A}_{1}, K_{\mathrm{i}}=0.77\right.$ $\mathrm{nM})$, exhibited increased binding affinity at the $\mathrm{hA}_{1} \mathrm{AR}$ upon changing the substituent on the N^{6}-benzyl moiety from F to Cl, Br, and I , and the same derivatives were almost equipotent at $\mathrm{hA}_{3} \mathrm{AR}\left(\mathbf{9}, \mathrm{A}_{3}, K_{\mathrm{i}}=1.20 \mathrm{nM} ; \mathbf{1 1}, \mathrm{A}_{3}, K_{\mathrm{i}}=0.39 \mathrm{nM} ; \mathbf{1 3}, \mathrm{A}_{3}, K_{\mathrm{i}}=0.39 \mathrm{nM} ; \mathbf{1 5}, \mathrm{A}_{3}, K_{\mathrm{i}}=0.53\right.$ $\mathrm{nM})$. To rationalize the observed variations in the $\mathrm{hA}_{1} \mathrm{AR}$ and $\mathrm{hA}_{3} \mathrm{AR}$ binding affinities among these compounds, molecular docking calculations were carried out using homology models of the $\mathrm{hA}_{1^{-}}$and $\mathrm{hA}_{3} \mathrm{ARs}$. In particular, two previously reported models were used: a $\mathrm{hA}_{1} \mathrm{AR}$ model entirely based on an agonist-bound $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ crystal structure (PDB code $3 \mathrm{QAK})^{21,22}$ and a $\mathrm{hA}_{3} \mathrm{AR}$ model based on a hybrid $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR} \beta_{2}$ adrenergic receptor template, where TM2 is shifted outward from the binding site. ${ }^{23,24}$

Docking was carried out using the GOLD Suite 5.4.1 docking package ${ }^{25}$ in combination with the ChemPLP ${ }^{26}$ scoring function (rescoring with ChemScore). ${ }^{27}$

In docking of selected compounds in the present series, a common binding mode was obtained in both the $\mathrm{hA}_{1} \mathrm{AR}$ and $\mathrm{hA}_{3} \mathrm{AR}$ models, and this mode featured all the key interactions found to anchor the adenine and ribose moieties of similar derivatives. ${ }^{7}$ As an
example, Figure 1 shows the docking poses of compound 15, which displayed high affinity at the two receptors.

The side chain at position 6.55 (using standard notation; ${ }^{28} \mathrm{~N} 254$ in the $\mathrm{h} \mathrm{A}_{1} \mathrm{AR}$ and N 250 in the $h_{3} A R$) strongly interacted with the two compounds through two H -bonds involving the 6-amino group and the adenine N7 atom. Moreover, the adenine ring was engaged in aromatic $\pi-\pi$ stacking with a conserved phenylalanine in EL2 (F171 in the $\mathrm{hA}_{1} \mathrm{AR}$ and F 168 in the $\mathrm{hA}_{3} \mathrm{AR}$) and strong hydrophobic contacts with leucine 6.51 (L 250 in $\mathrm{hA}_{1} \mathrm{AR}$ and L 246 in $\mathrm{hA}_{3} \mathrm{AR}$) and isoleucine 7.39 (I274 in the $\mathrm{hA}_{1} \mathrm{AR}$ and I268 in the $\mathrm{hA}_{3} \mathrm{AR}$).

The 3^{\prime} - and $2^{\prime}-\mathrm{OH}$ groups of the ribose ring formed H -bonds with the side chains at positions 7.42 (T 277 in $\mathrm{hA}_{1} \mathrm{AR}$ and S 271 in $\mathrm{hA}_{3} \mathrm{AR}$) and $7.43\left(\mathrm{H} 278\right.$ in $\mathrm{hA}_{1} \mathrm{AR}$ and H 272 in $\mathrm{hA}_{3} \mathrm{AR}$), respectively. The $5^{\prime}-C$-tetrazole ring was stabilized by two strong H-bonds with T91 ${ }^{3.36}$ and $\mathrm{H} 251^{6.52}$ side chains in the $\mathrm{hA}_{1} \mathrm{AR}$, whereas it was not able to interact either with $\mathrm{T} 94^{3.36}$ or with $\mathrm{S} 247^{6.52}$ in the $\mathrm{hA}_{3} \mathrm{AR}$. The residue at position 3.36 is conserved among all four AR subtypes, while the one at position 6.52 is conserved in $\mathrm{hA}_{1^{-}}, \mathrm{hA}_{2 \mathrm{~A}^{-}}$, and $\mathrm{hA}_{2 \mathrm{~B}} \mathrm{ARs}$ but is substituted with a smaller serine in the $\mathrm{hA}_{3} \mathrm{AR}$. These polar amino acids at TMs 3 and 7 play key roles in the binding of the hydrophilic ribose moiety of nucleoside agonists and are considered to be important for receptor activation. ${ }^{22,29}$ Thus, the missing interaction with T94 ${ }^{3.36}$ and/or S247 ${ }^{6.52}$ was considered the reason for the low efficacy profile of these $5^{\prime}-C$-tetrazolylethyl nucleosides at the $\mathrm{hA}_{3} \mathrm{AR}$. In fact, even though no mutagenesis data are available for position 3.36 at the hA_{3} subtype, previous mutagenesis studies have shown the importance of this threonine in agonist but not antagonist binding at the hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ subtypes. ${ }^{30,31}$ Therefore, interaction of ligands with $\mathrm{T}^{3.36}$ might be crucial to lock the 5^{\prime}-ribose moiety in an optimal conformation to strongly interact with residues at positions 7.42 and 7.43 in order to pull TM7 toward TM3 to efficiently activate the receptor.

As shown in Figure 1A, the $N^{6}-3$-iodobenzyl substituent of $\mathbf{1 5}$ perfectly fit in a hydrophobic pocket, located between TM6 and TM7 of hA ${ }_{1}$ AR and delimited by residues L253 ${ }^{6.54}$, $\mathrm{T} 257^{6.58}, \mathrm{~T} 270^{7.35}$ and at the bottom by $\mathrm{L} 250^{6.51}$. It is to be noted that the iodine, bromine, and chlorine atoms of adenosine derivatives $\mathbf{1 5}, \mathbf{1 3}$, and $\mathbf{1 1}$ appeared perfectly poised for halogen bonding with the N^{δ} atom of $\mathrm{H} 264^{6.66}$. This interaction is characterized by the requirement for nearly colinear alignment of the halogen bond donor $\mathrm{C}-\mathrm{X}$ (where $\mathrm{X}=\mathrm{F}, \mathrm{Cl}$, $\mathrm{Br}, \mathrm{I})$ with the halogen bond acceptor atom at a distance less than the van der Waals (vdW) distance, thus allowing the acceptor atom to orient its electron density into the σ-hole, which corresponds to the σ^{*}-orbital of the $\mathrm{C}-\mathrm{X}$ bond (Figure 2). Typically, the distance between the halogen atom and the nitrogen atom $(\mathrm{X} \cdots \mathrm{N})$ is equal to or less than the sum of their radii (3.02 \AA for $\mathrm{F} \cdots \mathrm{N} ; 3.30 \AA$ for $\mathrm{Cl} \cdots \mathrm{N} ; 3.40 \AA$ for $\mathrm{Br} \cdots \mathrm{N} ; 3.53 \AA$ for $\mathrm{I} \cdots \mathrm{N}$), ${ }^{32,33}$ while the mean values for the $\mathrm{C}-\mathrm{X} \cdots \mathrm{N}$ angle are 154.6° for $\mathrm{Cl}, 164.1^{\circ}$ for $\mathrm{Br}, 171.4^{\circ}$ for $\mathrm{I} .^{34}$ The complex of 3-Cl-benzyl derivative $\mathbf{1 1}$ showed a Cl $\cdots \mathrm{N}$ distance of $3.0 \AA$ (91% sum of vdW radii) and a $\mathrm{C}-\mathrm{Cl} \cdots \mathrm{N}$ angle of 161° (Figure 2B). In the complex of the 3-Br-benzyl derivative 13, the $\mathrm{Br} \cdots \mathrm{N}$ distance was $3.1 \AA$ (88% sum of vdW radii) and the $\mathrm{C}-\mathrm{Br} \cdots \mathrm{N}$ angle was 164° (Figure 2C). With an I $\cdots \mathrm{N}$ distance of $3.0 \AA$ (85% sum of vdW radii) and a C-I $\cdots \mathrm{N}$ angle of 161° (Figure 2D), the 3-I-benzyl derivative $\mathbf{1 5}$ displayed the closest contact of the halide to the $\mathrm{H} 2644^{6.66}$ nitrogen atom. These intermolecular distances are in very good agreement with
quantum mechanically calculated minimum energy separations (3.0-3.1 \AA) in model systems of a histidine side chain interacting with halogen-substituted phenyls. ${ }^{35}$ The predicted gain in interaction energy by approximately $1 \mathrm{kcal} / \mathrm{mol}$ from Cl to Br to I each correlates qualitatively with the observed increase in binding affinity (Table 1). In sharp contrast, the F atom in compound 9 bound to $\mathrm{hA}_{1} \mathrm{AR}$ was located at an $\mathrm{F} \cdots \mathrm{N}$ distance of 3.8 \AA and a C-I $\cdots \mathrm{N}$ angle of 125° (Figure 2A), indicative of an unfavorable interaction when organofluorine pointed at the N atom of $\mathrm{H} 264^{6.66}$. This is reflected in the approximately 5 fold lower K_{i} value for binding to the $\mathrm{hA}_{1} \mathrm{AR}$.

On the other hand, in the binding pose of derivatives $9-15$ at the $h_{3} A R$, the $N^{6}-3-$ halobenzyl substituents were in proximity of a small, secondary (side) pocket delimited by TM5, TM6, and EL2 (Figure 1C) and established strong hydrophobic interactions with residues V169 ${ }^{\mathrm{EL} 2}$, M172 ${ }^{\mathrm{EL} 2}$, M174 $4^{5.35}$, M177 ${ }^{5.38}$, and $\mathrm{I} 253^{6.58}$. A specific $\mathrm{S} \cdots \pi$ interaction was observed between the residue M174 and the $N^{6}-3$-halobenzyl ring of $\mathbf{9 - 1 5}$. The sulfur atom of M174 was 3.6 and $3.7 \AA$ from the bridgehead carbons of the 3-halobenzyl ring in the bound ligands. ${ }^{36}$ The good fit of these substituents with this region can explain the very high affinity of such compounds at the $\mathrm{hA}_{3} \mathrm{AR}$. As reported in Table 1, the binding affinity correlated well with the increasing lipophilicity of the halogen substituent at position 3 of the benzyl ring (K_{i} values from 1.20 nM for the 3-F-benzyl derivative 9 to 0.532 nM for 3-Ibenzyl derivative 15). The size of the halogen could also contribute to the effect since the larger iodine led to a 0.7 -fold decrease of the binding affinity in comparison to the smaller bromine and chlorine.

To understand the gain of $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ affinity of the N^{6}-(3-halobenzyl) derivatives (compounds 9-15) compared to the N^{6}-alkyl or cycloalkyl ones (compounds $\mathbf{1 - 4}$), $\mathbf{1 5}$ was docked into the binding site of the $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ crystal structure. In the docked poses of compound $\mathbf{1 5}$ inside the $A_{2 A} A R$, the benzyl ring formed an edge-to-face π-stacking interaction with the $\operatorname{Tyr} 271^{7.36}$ aromatic ring, whereas the $3-\mathrm{Cl}$ atom was within proper distance to make halogen bond interactions to the negatively charged carboxylate group of Glu169EL2. The absence of these interactions in the $1 / A_{2 A} A R$ complex rationalized the diminished $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ affinity of N^{6}-alkyl or cycloalkyl derivatives 1-4.

Formalin Test

Antinociceptive Effect—We have evaluated the potential analgesic activity of some 5^{\prime} -C-tetrazolyl- Λ^{6}-adenosine derivatives using the formalin test. Formalin injection induces a biphasic stereotypical nocifensive behavior. ${ }^{37}$ Nociceptive responses are divided into an early, short lasting first phase ($0-7 \mathrm{~min}$) caused by a primary afferent discharge produced by the stimulus, followed by a quiescent period and then a second, prolonged phase (15-60 \min) of tonic pain. Formalin tests were performed on compounds 11, 22, and 26 (Figures 3 and 4). Surprisingly, compound 26 at the highest dose tested ($1 \mathrm{mg} / \mathrm{kg}$, ip) was inactive (Figure 3B), while systemic administration of $\mathbf{1 1}(0.5-1.0 \mathrm{mg} / \mathrm{kg}$, ip), 10 min before formalin (Figure 3A), reduced the late nociceptive behavior induced by formalin in a dosedependent manner $(P<0.005)$. The most potent compound was compound 22. In fact, systemic administration of $\mathbf{2 2}$ at $0.3 \mathrm{mg} / \mathrm{kg}$, ip, 10 min before formalin (Figure 4A) reduced the late nociceptive behavior induced by formalin, and this effect was dose-dependent. Our
previous work demonstrated that systemic 2 -chloro- $2^{\prime}-C$-methyl- N^{6}-cyclopentyladenosine (27, 2^{\prime}-MeCCPA, $2.5-5 \mathrm{mg} / \mathrm{kg}$, ip) $)^{15}$ and 5^{\prime}-chloro- 5^{\prime}-deoxy- $N^{6}-(\pm)$-endo-norborn-2yl)adenosine ($\mathbf{2 8}, 5^{\prime} \mathrm{Cl} 5^{\prime} \mathrm{d}-(\pm)$-ENBA, $1-2 \mathrm{mg} / \mathrm{kg}$, ip), ${ }^{16}$ two potent and selective $\mathrm{A}_{1} \mathrm{AR}$ agonists, also inhibited the second phase of formalin-induced hyperalgesia in a dosedependent manner, and this effect was blocked by 8-cyclopentyl-1,3-dipropylxanthine (29, DPCPX, $3 \mathrm{mg} / \mathrm{kg}$, ip), a selective $\mathrm{A}_{1} \mathrm{AR}$ antagonist.

In order to prove that the strong analgesic effect of $\mathbf{2 2}$ depends also on its A_{3} agonistic activity, an experiment with 1,4-dihydro-2-methyl-6-phenyl-4-(phenylethynyl)-3,5-pyridinedicarboxylic acid 3-ethyl-5-[(3-nitrophenyl)methyl] ester (30, MRS1334), ${ }^{38}$ a selective A_{3} receptor antagonist, was carried out. As shown in Figure 4B the antinociceptive effect of 22 $\left(0.5 \mathrm{mg} / \mathrm{kg}\right.$, ip) was reverted by $\mathbf{3 0}\left(2 \mathrm{mg} / \mathrm{kg}\right.$, ip), demonstrating that in $\mathbf{2 2}$ both the A_{1} and A_{3} agonistic effects contributed to the analgesic behavior. This result was further confirmed by an experiment in which a combination of $\mathbf{2 8}\left(1 \mathrm{mg} / \mathrm{kg}\right.$, ip) and 2-chloro- $\Lambda^{6}-(3-$ iodobenzyl)-5' $-N$-methylcarboxamidoadenosine (31, 2Cl-IBMECA, $1 \mathrm{mg} / \mathrm{kg}$, ip) was assayed in formalin test in mice. As shown in Figures 5 and 6 the combination of 28, the most selective A_{1} agonist so far known ($\mathrm{hA}_{1} \mathrm{AR}$ vs $\mathrm{hA}_{3} \mathrm{AR} \sim 2600$-fold ${ }^{16}$ and mouse $\mathrm{A}_{1} \mathrm{AR}$ vs $A_{3} A R \sim 10000$-fold ${ }^{39}$), and a selective A_{3} agonist (31) showed greater effects when combined in reducing both the first and the second phases of formalin test.

Moreover, systemic administration of the combination of 22 ($0.3 \mathrm{mg} / \mathrm{kg}$ ip) and $\mathbf{3 1}(1 \mathrm{mg} / \mathrm{kg}$ ip), 10 min before formalin injection, completely erased the second phase and reduced the first phase of formalin-induced nociceptive behavior ($P<0.005$) (Figure 7). A_{1} agonists can at high doses reduce the early phase, ${ }^{16}$ whereas A_{3} agonists do not affect the first phase. ${ }^{12}$ However, in this study we showed that molecule with hybrid mechanism of action $\left(\mathrm{A}_{1} / \mathrm{A}_{3}\right.$ agonist) or the combination of $\mathrm{A}_{1} \mathrm{AR}$ and $\mathrm{A}_{3} \mathrm{AR}$ agonists, co-injected simultaneously, can reduce both the early and the late phases associated with the formalin injection. This effect can be due to the A_{1} component. Interestingly, also subthreshhold doses of both A_{1} and A_{3} agonists ($0.5 \mathrm{mg} / \mathrm{kg}$ ip, Figure 6), which did not reduce either the first or the second phase of formalin per se, decreased both early and late phases when co-injected in this model. This effect needs further investigation to better understand how A_{1} and $A_{3} A R s$ can cooperate and/or how $A_{3} A R$ stimulation could sensitize the $A_{1} A R$, in turn making it more able to reduce the first phase at low doses.

The loss of antinociceptive effect displayed by $\mathbf{2 6}$ compared to the good analgesic effect of 11 is quite surprising because these compounds displayed similar affinity and efficacy profiles at both human and rat A_{1} ARs. Furthermore, $\mathbf{2 6}$ could have more favorable bloodbrain transport characteristics owing to its higher lipophilicity $(\log P=4.06)$ vs $\mathbf{1 1}(\log P=$ 2.57). Further studies are needed to verify if the loss of activity of $\mathbf{2 6}$ is due to some metabolic instability.

CONCLUSIONS

This study reports for the first time that potent dual acting N^{6}-substituted- $5^{\prime}-C$ -
(ethyltetrazol-2-yl)adenosine and 2-chloroadenosine derivatives showed strikingly different efficacy at human and rat $\mathrm{A}_{3} \mathrm{ARs}$, acting as antagonists at $\mathrm{hA}_{3} \mathrm{~A}$ and as agonists at $\mathrm{rA}_{3} \mathrm{AR}$.

The combination of a 5^{\prime} - C-ethyltetrazol-2-yl moiety with a small cycloalkyl or 3-halobenzyl group at N^{6}-position in adenosine derivatives provided very potent dual A_{1} and A_{3} ligands at both human and rat A_{1} and A_{3} ARs. This novel series allowed us to discover $N^{6}-$ cyclopropylmethyl-5'-C-(ethyltetrazol-2-yl)-2-chloroadenosine (4), a very potent dual $\mathrm{A}_{1} / \mathrm{A}_{3}$ agonist in rat and A_{1} agonist/ A_{3} antagonist in human, confirming the concept that the "cyclopropyl fragment" is a versatile player which confers high affinity also in this class of AR ligands. The most potent antinocifensive activity was obtained with compound 22, which at $0.5 \mathrm{mg} / \mathrm{kg}$ reduced both the first and the second phases of formalin test. A combination of $\mathbf{2 2}(0.3 \mathrm{mg} / \mathrm{kg})$ with $\mathrm{A}_{3} \mathrm{AR}$ agonist $\mathbf{3 1}(1 \mathrm{mg} / \mathrm{kg})$ reduced completely the nocifensive behavior in both the first and the second phases of formalin test.

In conclusion, this study demonstrates that a combination of an A_{1} agonist and an $A_{3} A R$ agonist shows a highly potent analgesic activity. Therefore, combining both A_{1} and $\mathrm{A}_{3} A R$ agonistic activity in one single molecule, such as the $5^{\prime}-C$-tetrazolyl- Λ^{6}-substituted adenosine derivatives, could be beneficial for the treatment of pain. This series of $5^{\prime}-C$ -(ethyltetrazol-2-yl)adenosine derivatives may open the field to the research of more active and less toxic analgesic drugs in the treatment of neuropathic pain. Moreover, they represent very useful pharmacological tools for in vivo studies in order to investigate the advantages of dual acting A_{1} and $\mathrm{A}_{3} \mathrm{AR}$ agonists in cardio- and neuroprotection. Finally, due to their different efficacy at $\mathrm{A}_{3} \mathrm{AR}$ in two species, further studies are needed in order to identify an animal model that reproduces the efficacy shown by this series of compounds in humans, i.e., $A_{1} A R$ agonism and $A_{3} A R$ antagonism. This animal model will allow us to study the advantages of a single molecule with one pharmacokinetic profile, activating one signaling pathway while blocking another one, both leading to beneficial effects for the treatment of diseases such as glaucoma and epilepsy.

EXPERIMENTAL SECTION

Chemical Synthesis. Materials and Instrumentation

All reagents and solvents were purchased from Sigma-Aldrich Chemical Co, were analytical grade, and were used as received. Thin layer chromatography (TLC) was run on silica gel 60 F254 plates; silica gel 60 (70-230 mesh Merck and 200-400 mesh, Merck) for column chromatography was used. Preparative thin layer chromatography was run on silica gel GF ($20 \mathrm{~cm} \times 20 \mathrm{~cm}, 1000 \mu \mathrm{~m}$, Analtech). The final compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, and elemental analyses. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 400 MHz NMR spectrometer (Varian Mercury AS400 instrument). The chemical shift values are expressed in δ values (ppm), and coupling constants (J) are in hertz; tetramethylsilane (TMS) was used as an internal standard. Proton chemical data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{pd}=$ pseudo doublet, $\mathrm{t}=$ triplet, $\mathrm{dt}=$ doublet of triplets, $\mathrm{pt}=$ pseudo triplet, $\mathrm{q}=$ quartet, $\mathrm{dq}=$ doublet of quartets, $\mathrm{pq}=$ pseudo quartet, $\mathrm{m}=$ multiplet, brs = broad singlet) coupling constant(s), integration. The presence of all exchangeable protons was confirmed by addition of $\mathrm{D}_{2} \mathrm{O}$. The purity of final compounds was checked using an Agilent 1100 series instrument equipped with Gemini-NX, $5 \mu \mathrm{~m}$ C-18 $100 \AA, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$. Mobile phase consisted of a mixture of water/methanol (95:5) at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Peaks
were detected by UV adsorption with a diode array detector (DAD) at 230, 254 and, 280 nm . All derivatives tested for biological activity showed $\geq 96 \%$ purity by HPLC analysis (area \% purity was detected at 210 or 254 nm). Mass spectra were recorded on an HP 1100 series instrument. All measurements were performed in the positive ion mode using atmospheric pressure electrospray ionization (API-ESI). Elemental analyses (C, H, and N) were determined on ThermoFisher Scientific FLASH 2000 CHNS analyzer and are within 0.4% of theoretical values.

General Procedure for the Amination of 18 or 19 into Compounds 1-17

To a stirred solution of $(2 R, 3 R, 4 R, 5 R)$-2-(6-chloro-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diyl diacetate $(\mathbf{1 8})^{7}(1.0 \mathrm{mmol})$ or $(2 R, 3 R, 4 R, 5 R)-2-(2,6-$ dichloro- $9 H$-purin-9-yl)-5-(2-ethyl-2 H-tetrazol-5-yl)tetrahydrofuran-3,4-diyl diacetate (19) ${ }^{7}$ $(1.0 \mathrm{mmol})$ in absolute ethanol $(20 \mathrm{~mL})$ and TEA (3.0 mmol) only in the case of compounds 15-17, the appropriate ammine (1.6 mmol) was added. The reaction mixture was refluxed for the time reported below and concentrated in vacuo. The residue was dissolved in methanolic ammonia (10 mL) and stirred at room temperature overnight. The solution was evaporated to dryness, and the residue was purified by chromatography on a silica gel column.
(2R,3S,4R,5R)-2-(6-(Cyclopropylamino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (1)—Reaction of 18 with cyclopropylamine at reflux for 5 h followed by deprotection and chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5\right)$ gave 1 as a white solid (45% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 0.57-0.61(\mathrm{~m}, 2 \mathrm{H})$, $0.68-0.75(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.90-3.10(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.76-4.84(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ $(\mathrm{d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{brs}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 7.71, 7.92, 14.33, 26.45, 48.32, 73.62, 73.93, 76.48, 88.01, 118.54, 139.78, 149.22, $153.01,156.28,164.06 \mathrm{ppm}$. MS (API-ESI): m/z $374.17[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{9} \mathrm{O}_{3}$: C, 48.25; H, 5.13; N, 33.76. Found: C, 48.26; H, 3.12; N, 33.75.
(2R,3R,4S,5R)-2-(2-Chloro-6-(cyclopropylamino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (2)—Reaction of 19 with cyclopropylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}, 95: 5$) gave 2 as a white solid (61% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.60$ (s, 2H), 0.70 $(\mathrm{s}, 2 \mathrm{H}), 1.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.95(\mathrm{brs}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.78(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $7.74,7.91,14.26,26.34,48.73,73.02,73.87,75.91,88.57,119.02,140.11,149.57,153.21$, 155.93, 164.28 ppm. MS (API-ESI): $\mathrm{m} / z 408.12[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClN}_{9} \mathrm{O}_{3}$: C, 44.18; H, 4.45; N, 30.91. Found: C, 44.17; H, 4.46; N, 30.92.

(2R,3S,4R,5R)-2-(6-((Cyclopropylmethyl)amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (3)—Reaction of 18 with

 cyclopropanemethylamine at reflux for 6 h followed by deprotection and chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 97: 3\right)$ gave $\mathbf{3}$ as a white solid (89% yield). ${ }^{1} \mathrm{H}$ NMR(DMSO- d_{6}): $\delta 0.21-0.27(\mathrm{~m}, 2 \mathrm{H}), 0.36-0.41(\mathrm{~m}, 2 \mathrm{H}), 1.08-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 3.31-3.42(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{q}, J=4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}$, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{brs}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right): 7.22,7.31$, $10.94,14.46,48.81,60.22,73.32,74.01,75.33,88.62,118.69,140.57,149.84,152.92$, 155.43, 164.31 ppm. MS (API-ESI): $\mathrm{m} / z 388.18[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{9} \mathrm{O}_{3}: \mathrm{C}$, 49.61; H, 5.46; N, 32.54. Found: C, 49.59; H, 5.45; N, 32.55.

(2R,3R,4S,5R)-2-(2-Chloro-6-((cyclopropylmethyl)amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (4)—Reaction of 19 with

cyclopropylmethylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 97: 3\right)$ gave 4 as a white solid (57% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.25(\mathrm{pq}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.38-0.43(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.21-3.29(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.75-4.93(\mathrm{~m}$, $1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}$,), $8.41(\mathrm{~s}, 1 \mathrm{H}), 8.48$ (brs, 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 7.22, 7.29, 10.65, 14.57, $48.32,60.43,73.24,73.88,75.18,89.01,119.03,140.63,149.57,153.05,155.82,164.41$ ppm. MS (API-ESI): $m / z 422.14[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClN}_{9} \mathrm{O}_{3}: \mathrm{C}, 45.56 ; \mathrm{H}$, 4.78; N, 29.88. Found: C, 45.57; H, 4.77; N, 29.86.
(2R,3S,4R,5R)-2-(2-Ethyl-2H-tetrazol-5-yl)-5-(6-((furan-2-ylmethyl)amino)-9H-purin-9-yl)tetrahydrofuran-3,4-diol (5)—Reaction of 18 with furfurylamine at reflux for 3 h followed by deprotection and chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\right.$ MeOH, 95:5) gave 5 as a white solid (68% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.52$ (t, $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 4.59(\mathrm{pq}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.82(\mathrm{q}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=0.85 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}$, 1H), 8.32 (brs, 1H), 8.41 (s, 1H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.33, 39.53, 48.51, 73.56, 73.74, $76.59,88.32,107.25,112.23,119.44,139.83,141.15,143.05,149.83,152.45,155.37$, 164.26 ppm . MS (API-ESI): m/z $414.16[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{9} \mathrm{O}_{4}$: C, 49.39; H, 4.63; N, 30.49. Found: C, 49.38; H, 4.62; N, 30.48.

(2R,3R,4S,5R)-2-(2-Chloro-6-((furan-2-ylmethyl)amino)-9H-purin-9-yl)-5-(2-

 ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (6)—Reaction of 19 withfurfurylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 98: 2\right)$ gave 6 as a white solid (51% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $1.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.55(\mathrm{pq}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{brs}, 2 \mathrm{H}), 4.70(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.78(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.85$ (brs, 1H). ${ }^{13}$ C NMR (DMSO- d_{6}): 14.31, 39.26, 48.59, 73.67, 73.83, 76.22, 88.79, 107.02, 113.01, 118.89, 140.07, 141.43, 143.12, 149.56, 153.07, 155.87, 164.35 ppm . MS (APIESI): $m / z 448.12[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{9} \mathrm{O}_{4}$: C, 49.39; H, 4.63; N, 30.49. Found: C, 49.38; H, 4.62; N, 30.48.
(2R,3S,4R,5R)-2-(2-Ethyl-2H-tetrazol-5-yl)-5-(6-((thiophen-2-
ylmethyl)amino)-9H-purin-9-yl)tetrahydrofuran-3,4-diol (7)—Reaction of $\mathbf{1 8}$ with
2-thiophenemethylamine at reflux for 14 h followed by deprotection and chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5\right)$ gave 7 as a white solid (50% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.59(\mathrm{pq}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.77-4.86(\mathrm{~m}, 3 \mathrm{H}), 5.19(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $4.7,1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.24, 49.07, 51.73, 73.35, 73.97, 76.57, 89.03, 119.41, 125.54, 126.71, 127.35, 140.31, 141.03, 149.53, 153.31, $155.67,164.31 \mathrm{ppm}$. MS (API-ESI): $\mathrm{m} / \mathrm{z} 430.13[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{9} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 47.55$; H, 4.46; N, 29.35. Found: C, 47.56; H, 4.47; N, 29.36.
> (2R,3R,4S,5R)-2-(2-Chloro-6-((thiophen-2-ylmethyl)amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (8)-Reaction of 19 with 2thiophenemethylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 98: 2$) gave $\mathbf{8}$ as a white solid (76% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.55(\mathrm{pq}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.74-4.80(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.86$ (d, $J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $5.9,1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 9.03$ (brs, 1 H$).{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.21, 48.97, 51.67, 73.22, 73.56, 76.89, 89.21, 118.57, 125.33, 126.62, 127.22, 140.56, 141.13, 149.37, 153.45, 155.58, 164.13 ppm . MS (API-ESI): m/z 464.09 [M + H] ${ }^{+}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{9} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 44.02 ; \mathrm{H}, 3.91$; N, 27.17. Found: C, 44.03; H, 3.92; N, 27.16.

(2R,3R,4S,5R)-2-(2-Ethyl-2H-tetrazol-5-yl)-5-(6-((3-fluorobenzyl)amino)-9H-purin-9-yl)tetrahydrofuran-3,4-diol (9)—Reaction of $\mathbf{1 8}$ with 3-fluorobenzylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\right.$ MeOH, 97:3) gave 9 as a white solid (72% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.50(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 4.58-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.82(\mathrm{q}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (dt, $J=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=9.2,15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}$, $1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.51$ (brs, 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.61, 43.34, 48.91, 74.24, 74.51, $77.85,88.55,114.23,114.35,114.73,118.92,123.93,131.11,140.45,143.24,150.26$, 152.22, 155.33, 164.67 ppm . MS (API-ESI): $\mathrm{m} / \mathrm{z} 442.18[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{9} \mathrm{O}_{3}$: C, 51.70; H, 4.57; N, 28.56. Found: C, 51.71; H, 4.56; N, 28.57.
(2R,3R,4S,5R)-2-(2-Chloro-6-((3-fluorobenzyl)amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (10)—Reaction of 19 with 3-
fluorobenzylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 97: 3$) gave 10 as a white solid (84% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 1.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.55(\mathrm{q}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=2.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{pt}, J=9.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.92$ (brs, 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.81, 43.39, 48.94, 74.21, 74.49, 77.92, 88.46, 114.27, 114.51, 114.75, 118.87, 123.93, 131.06,
140.41, 143.21, 150.12, 153.16, $155.59,164.78 \mathrm{ppm}$. MS (API-ESI): $\mathrm{m} / z 476.13[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClFN}_{9} \mathrm{O}_{3}$: C, 47.96; H, 4.02; N, 26.49. Found: C, 47.97; H, 4.03; N, 26.47.
(2R,3S,4R,5R)-2-(6-((3-Chlorobenzyl)amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (11)-Reaction of $\mathbf{1 8}$ with 3-chlorobenzylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 97: 3$) gave $\mathbf{1 1}$ as a white solid (94% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.50(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.58-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.83(\mathrm{q}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.45($ brs, 1 H$), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.51$ (brs, 1 H$).{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $14.42,42.94,48.53,73.95,74.16,77.33,88.16,118.79,126.16,126.93$, 127.26, 130.47, 133.24, 139.46, 143.08, 148.62, 153.04, 154.73, 164.53 ppm . MS (APIESI): $m / z 458.14[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{9} \mathrm{O}_{3}$: C, 49.84; H, 4.40; N, 27.53 . Found: C, 49.85; H, 4.41; N, 27.54.
(2R,3R,4S,5R)-2-(2-Chloro-6-((3-chlorobenzyl)amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (12)—Reaction of 19 with 3chlorobenzylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 98: 2$) gave $\mathbf{1 2}$ as a white solid (57% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.56(\mathrm{q}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.85 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.43(\mathrm{~m}, 4 \mathrm{H}), 8.43$ (s, 1H), 8.91 (brs, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.39, 43.01, 48.59, 73.91, 74.15, 77.64, 88.15, 118.88, 126.32, 127.21, 127.49, 130.58, 133.31, 140.01, 142.11, 150.32, 153.64, 155.23, $164.45 \mathrm{ppm} . \mathrm{MS}$ (API-ESI): $m / z 492.10[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{3}: \mathrm{C}, 46.35 ; \mathrm{H}, 3.89 ; \mathrm{N}$, 25.61. Found: C, 46.36; H, 3.88; N, 25.62.
(2R,3S,4R,5R)-2-(6-((3-Bromobenzyl)amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (13)—Reaction of $\mathbf{1 8}$ with 3-bromobenzylamine at reflux for 5 h followed by deprotection and chromatography on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5$) gave $\mathbf{1 3}$ as a white solid (58% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.50(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.63(\mathrm{pq}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.81(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.18 (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (d, $J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (brs, 1 H$), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.51$ (brs, 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.81, 43.05, 48.91, 74.23, 74.47, 77.61, 88.44, 119.02, 122.23, 126.86, 130.19, 130.43, 131.17, 139.86, 143.88, 150.43, 153.41, 155.23, 164.83 ppm . MS (API-ESI): m/z $502.09[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrN}_{9} \mathrm{O}_{3}$: C, 45.43; H, 4.01; N, 25.10. Found: C, $45.44 ; \mathrm{H}, 4.02 ; \mathrm{N}, 25.11$.

(2R,3R,4S,5R)-2-(6-((3-Bromobenzyl)amino)-2-chloro-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (14)—Reaction of 19 with 3-

 bromobenzylamine at reflux for 4 h followed by deprotection and chromatography on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5$) gave $\mathbf{1 4}$ as a white solid (68% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.55(\mathrm{q}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H})$,$4.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{q}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.7,1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $7.7,1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{brs}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.78, 43.31, 48.93, 74.22, 74.48, 77.61, 88.47, 119.14, 122.27, 127.06, $130.44,130.75,131.26,140.42,142.69,150.61,153.97,155.51,164.79$ ppm. MS (APIESI): $m / z 536.05[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrClN}_{9} \mathrm{O}_{3}$: C, 42.51; H, 3.57; N, 23.49. Found: C, 42.52; H, 3.56; N, 23.48.

(2R,3R,4S,5R)-2-(2-Ethyl-2H-tetrazol-5-yl)-5-(6-((3-iodobenzyl)amino)-9H-purin-9-yl)tetrahydrofuran-3,4-diol (15)—Reaction of 18 with 3-iodobenzylamine

 hydrochloride (1.1 mmol) and TEA (3.1 mmol) for 9 h followed by deprotection gave 15, which was purified by chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 98: 2\right)$ as a white solid (48% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.61$ (pq, $J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{brs}, 1 \mathrm{H}), 8.20(\mathrm{~s}$, $1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.31, 42.21, 48.73, 73.42, 74.48, 77.11, 88.08, 93.96, 118.87, 126.37, 130.06, 135.11, 135.74, 140.58, 143.01, 149.22, 153.02, $154.65,164.39 \mathrm{ppm}$. MS (API-ESI): m/z 550.07 [M + H] ${ }^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{IN}_{9} \mathrm{O}_{3}$: C, 41.54; H, 3.67; N, 22.95. Found: C, 41.55; H, 3.66; N, 22.96.(2R,3S,4R,5R)-2-(6-((4-Chloro-2-fluorobenzyl)amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydrofuran-3,4-diol (16)—Reaction of 18 with 4-chloro-2-fluorobenzylamine hydrochloride (1.1 mmol) and TEA (3.1 mmol) for 8 h followed by deprotection gave $\mathbf{1 6}$, which was purified by chromatography on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5$) as a white solid (76% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.50(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.62(\mathrm{pq}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.81(\mathrm{pq}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (d, $J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=1.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=1.9,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.47$ (brs, 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 14.43, 38.21, 48.56, 73.93, 74.15, 77.35, 88.15, 115.74, 116.24, 119.24, 124.81, 124.87, 130.68, 133.21, 139.56, 149.76, 153.02, 155.03, 164.52 ppm . MS (API-ESI): m/z 476.13 [M + H] ${ }^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClFN}_{9} \mathrm{O}_{3}$: C, 47.96; H, 4.02; N, 22.49. Found: C, 47.95; H, 4.03; N, 22.47.
(2R,3R,4S,5R)-2-(2-Chloro-6-((4-chloro-2-fluorobenzyl)-amino)-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)-tetrahydrofuran-3,4-diol (17)—Reaction of 19 with 4-chloro-2-fluorobenzylamine hydrochloride (1.1 mmol) and TEA (3.1 mmol) for 8 h followed by deprotection gave $\mathbf{1 7}$, which was purified by chromatography on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 95: 5\right)$ as a white solid (52% yield). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.52(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.53(\mathrm{pq}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.78$ (pq, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (dd, $J=$ $1.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.43 (s, 1H), 8.92 (brs, 1H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $14.76,39.45,48.93$, 74.16, 74.45, 77.92, 88.41, 116.33, 116.58, 119.18, 125.27, 131.27, 131.32, 133.03, 140.48,
150.63, 153.92, $155.51,164.76 \mathrm{ppm}$. MS (API-ESI): $\mathrm{m} / \mathrm{z} 510.09[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{FN}_{9} \mathrm{O}_{3}$: C, 44.72; H, 3.56; N, 24.70. Found: C, 44.73; H, 3.57; N, 24.71.

Membrane Preparation

Membranes for radioligand binding were prepared as described earlier. ${ }^{19}$ In brief, after homogenization of CHO cells stably transfected with the human AR subtypes or rat $\mathrm{A}_{3} \mathrm{AR}$ membranes were prepared in a two-step procedure. A first low-speed centrifugation ($1000 g$) was used to remove cell fragments and nuclei and was followed by a high-speed centrifugation $(100000 \mathrm{~g})$ of the supernatant in order to sediment a crude membrane fraction. The resulting membrane pellets were resuspended in the buffer used for the respective binding experiments, frozen in liquid nitrogen, and stored in aliquots at $-80^{\circ} \mathrm{C}$. Adenylyl cyclase activity was measured in a membrane fraction obtained in a simplified procedure with only one high-speed centrifugation of the homogenate. The resulting crude membrane pellet was resuspended in 50 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 7.4$, and used immediately for the cyclase assay.

Radioligand Binding and Adenylyl Cyclase Assay

In competition experiments the following radioligands were used: $1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{CCPA}$ for hA_{1} receptors, $10 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ NECA for $\mathrm{hA}_{2 \text { AARs, }} 1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ HEMADO for $\mathrm{hA} \mathrm{A}_{3}$ ARs, and 30 nM $\left[{ }^{3} \mathrm{H}\right]$ NECA for rA_{3} ARs. ${ }^{19,40}$ Nonspecific binding of $\left[{ }^{3} \mathrm{H}\right] \mathrm{CCPA}$ was determined in the presence of 1 mM theophylline, while nonspecific binding of $\left[{ }^{3} \mathrm{H}\right]$ NECA and $\left[{ }^{3} \mathrm{H}\right]$ HEMADO was estimated in the presence of $100 \mu \mathrm{M}$ R-PIA. Dissociation constants (K_{i} values) were calculated from radioligand competition experiments utilizing the program Prism (GraphPad).

Due to the lack of a useful high-affinity radioligand for $\mathrm{A}_{2 \mathrm{~B}}$ ARs, stimulation of adenylyl cyclase activity was measured to determine agonist potency (EC_{50} values). ${ }^{19}$ If only partial agonistic activity was observed, efficacy was compared to $100 \mu \mathrm{M} \mathrm{NECA}^{41}$ as a full agonist. All values are given as geometric means with 95% confidence intervals ($n \geq 3$). The functional activity at the $\mathrm{hA}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$, and A_{3} receptors was determined in adenylyl cyclase experiments. The inhibition of forskolin-stimulated adenylyl cyclase via hA_{1} and A_{3} receptors was measured as described earlier. ${ }^{19,42}$ As reference agonists (efficacy $=100 \%$), CCPA ${ }^{43}$ and NECA, respectively, were used. Compounds were considered to be A_{3} antagonists if they fully reversed (>85\%) the NECA-mediated inhibition of adenylyl cyclase activity (EC_{50} values in Table 2). The functional activity of selected derivatives at the rat A_{3} receptor was also determined in adenylyl cyclase experiments. Functional $\mathrm{A}_{2 \mathrm{~A}}$ activity was determined as described for $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptors (see above and ref 19).

Formalin Test

The experimental procedures applied in the formalin test were approved by the Animal Ethics Committee of the University of Campania. Animal care was in compliance with the IASP and European Community guidelines on the use and protection of animals in experimental research (E.C. L358/118/12/86). All efforts were made to minimize animal suffering and to reduce the number of animals used. Formalin injection induces a biphasic stereotypical nocifensive behavior. ${ }^{37}$ Nociceptive responses are divided into an early, short
lasting first phase ($0-7 \mathrm{~min}$) caused by a primary afferent discharge produced by the stimulus, followed by a quiescent period and then a second, prolonged phase ($15-60 \mathrm{~min}$) of tonic pain. Mice received formalin $(1.25 \%$ in saline, $30 \mu \mathrm{~L})$ in the dorsal surface of one side of the hind paw. Each mouse was randomly assigned to one of the experimental groups ($n=$ $8-10$) and placed in a Plexiglas cage and allowed to move freely for $15-20 \mathrm{~min}$. A mirror was placed at a 45° angle under the cage to allow full view of the hind paws. Lifting, favoring, licking, shaking, and flinching of the injected paw were recorded as nociceptive responses. The total time of the nociceptive response was measured every 5 min and expressed as the total time of the nociceptive responses in minutes (mean $\pm \mathrm{SEM}$). Recording of nociceptive behavior commenced immediately after formalin injection and was continued for 60 min . The version of the formalin test we applied is based on the fact that a correlational analysis showed that no single behavioral measure can be a strong predictor of formalin or drug concentrations on spontaneous behaviors. ${ }^{44}$ Consistently, we considered that a simple sum of time spent licking plus elevating the paw, or the weighted pain score, is in fact superior to any single (lifting, favoring, licking, shaking and, flinching) measure (r ranging from 0.75 to 0.86$).{ }^{45}$ For treatments, groups of $8-10$ animals per treatment were used with each animal being used for one treatment only. Mice received intraperitoneal vehicle ($10 \% \mathrm{DMSO}$ in $0.9 \% \mathrm{NaCl}$) or different doses of $\mathbf{1 1}, \mathbf{2 2}, \mathbf{2 6}, \mathbf{2 8}, \mathbf{3 0}$, and $\mathbf{3 1 .} \mathbf{3 0}$ was purchased from Tocris. $\mathbf{2 8}$ and $\mathbf{3 1}$ were synthesized in our laboratory as previously reported. ${ }^{16,46}$

Computational Chemistry

Molecular modeling and graphics manipulations were performed using MOE (Molecular Operating Environment, version 2013.08, Chemical Computing Group, Toronto, Canada) and UCSF-CHIMERA 1.8.1 (http://www.cgl.ucsf.edu/chimera) software packages, running on an E4 Computer Engineering E1080 workstation provided with an Intel Xeon processor. GOLD Suite 5.4.1 docking package (CCDC Software Limited: Cambridge, U.K., 2008) ${ }^{25}$ was used for all docking calculations. Figures were generated using Pymol 1.8.2 (Schrödinger, LLC, New York, NY, 2016).

Residue Indexing

The Ballesteros-Weinstein double-numbering system ${ }^{28}$ was used to describe the transmembrane (TM) location of the amino acids. Along with numbering their positions in the primary amino acid sequence, the residues have numbers in parentheses $(X . Y Z)$ that indicate their position in each transmembrane (TM) helix (X), relative to a conserved reference residue in that TM helix $(Y Z)$.

3D Structures of $h \mathrm{~A}_{1} A R$ and $h \mathrm{~A}_{3} A R$

As, to date, no crystallographic information about the $\mathrm{hA}_{1} \mathrm{AR}$ and $\mathrm{hA}_{3} \mathrm{AR}$ is available, previously reported molecular models, ${ }^{20,47}$ built using the alignment and the homology modeling tools implemented in the program MOE, were used in this study. The hA $\mathrm{A}_{1} \mathrm{AR}$ homology model was built using as template the crystal structure of the human $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ cocrystallized with the agonist UK-432097 (PDB code 3QAK). ${ }^{21}$ The 3QAK structure was also selected as a template for the entire $\mathrm{A}_{3} \mathrm{AR}$ structure except for the extracellular terminus
of TM2 (residues from V63 to S73) and EL1 (residues from L74 to Y81). The X-ray

Docking Simulations of $5^{\prime}-C$-(Ethyltetrazol-2-yl)adenosine Derivatives at the $\mathrm{hA}_{1} \mathrm{AR}$ and $h^{\prime} \mathbf{H}_{3} A R$ Models

Structures of compounds $\mathbf{9}, \mathbf{1 1}, \mathbf{1 3}$, and $\mathbf{1 5}$ were built using the builder tool implemented in the MOE suite and subjected to a MMFF94x energy minimization until a rms gradient was $<0.05 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-1}$. Molecular docking was performed by means of the GOLD software, which uses a genetic algorithm and considers full ligand conformational flexibility and partial protein flexibility, i.e., the flexibility of side chain residues only. The coordinates of four key residues in the binding pocket of both $\mathrm{hA}_{1} \mathrm{AR}$ and $\mathrm{hA}_{3} \mathrm{AR}$ models, that is, F (EL2), $\mathrm{N}^{6.55}, \mathrm{~W}^{6.48}$, and $\mathrm{H}^{7.43}$, were chosen as active-site origin. The active-site radius was set equal to $13 \AA$. The mobility of residues at positions $3.36,6.48,6.52,7.43,6.55,6.66$ (only for $\mathrm{hA}_{1} \mathrm{AR}$), and 7.42 side chains was set up using the flexible side chains option in the GOLD front end, which incorporates the Lovell rotamer library. ${ }^{49}$ Each GA run used the default parameters of 100000 genetic operations on an initial population of 100 members divided into five subpopulations, with weights for crossover, mutation, and migration being set to 95,95 , and 10 , respectively. GOLD allows a user-definable number of GA runs per ligand, each of which starts from a different orientation. For these experiments, the number of GA runs was set to 200 without the option of early termination, and scoring of the docked poses was performed with the original ChemPLP scoring function followed by rescoring with ChemScore. ${ }^{26}$ The top scoring docking conformations for each ligand were subjected to visual inspection and analysis of protein-ligand interactions to select the proposed binding conformations in agreement with the experimental data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We express our gratitude to Prof. Mario Grifantini and Prof. Palmarisa Franchetti for their suggestions and comments for this manuscript. This work was supported by grants from the University of Camerino (FAR 2014/15, Fondo di Ateneo per la Ricerca, Grant FPI000044), by the Italian MIUR funds (PRIN 2009, Prot. N. 20094BJ9R7 and PRIN 2009, Prot. N. 200928EEX4_004), and by the NIDDK Intramural Research Program.

ABBREVIATIONS USED

$\mathrm{A}_{1} \mathrm{AR}$

A_{1} adenosine receptor
$\mathbf{A}_{2 A} \mathbf{A R}$
$\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor
A $_{2 B}$ AR
$\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor
$\mathrm{A}_{3} \mathrm{AR}$
A_{3} adenosine receptor
cAMP
cyclic adenosine 5^{\prime}-monophosphate
CCI
chronic constriction injury
CCPA
2-chloro- N^{6}-cyclopentyladenosine
CHO
Chinese hamster ovary

2-Cl-IBMECA

2-chloro- N^{6}-(3-iodobenzyl)-5' N-methylcarboxamidoadenosine
$5^{\prime} \mathrm{Cl}^{\prime} \mathbf{d} \mathbf{d}(\pm)$-ENBA and 5^{\prime} CIENBA
5^{\prime}-chloro- 5^{\prime}-deoxy- N^{6}-(\pm)-(endo-norborn-2-yl)adenosine

DPCPX

8-cyclopentyl-1,3-dipropylxanthine
EL
extracellular loop

GPCR
G-protein-coupled receptor
HEMADO
2-(hexyn-1-yl)- N^{6}-methyladenosine
ip
intraperitoneal

NECA
$5^{\prime}-\mathrm{N}$-ethylcarboxamidoadenosine

R-PIA

(R)- Λ^{6}-phenylisopropyladenosine

TEA

triethylamine

TM

transmembrane domain

References

1. Jacobson KA, Muller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016; 104:31-49. [PubMed: 26686393]
2. Beamer E, Goloncser F, Horvath G, Beko K, Otrokocsi L, Kovanyi B, Sperlagh B. Purinergic mechanisms in neuroinflammation: An update from molecules to behavior. Neuropharmacology. 2016; 104:94-10. [PubMed: 26384652]
3. Lavecchia A, Cerchia C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discovery Today. 2016; 21:288-298. [PubMed: 26743596]
4. Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014; 57:7874-7887. [PubMed: 24946140]
5. Bevan N, Butchers R, Cousins R, Coates J, Edgar V, Morrison V, Sheehan J, Reeves J, Wilson DJ. Pharmacological characterisation and inhibitory effects of (2R,3R,4S,5R)-2-(6-amino-2-\{[(1S)-2-hydroxy-1-(phenylmethyl)ethyl]amino\}-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydro-3,4furandiol, a novel ligand that demonstrates both adenosine A2A receptor agonist and adenosine A3 receptor antagonist activity. Eur J Pharmacol. 2007; 564:219-225. [PubMed: 17382926]
6. Hou X, Majik MS, Kim K, Pyee Y, Lee Y, Alexander V, Chung HJ, Lee HW, Chandra G, Lee H, Park S, Choi WJ, Kim O, Phan K, Gao G, Jacobson KA, Choi S, Lee SK, Jeong LS. Structureactivity relationships of truncated C2- or C8-substituted adenosine derivatives as dual acting $\mathrm{A}_{2 \mathrm{~A}}$ and A_{3} adenosine receptor ligands. J Med Chem. 2012; 55:342-356. [PubMed: 22142423]
7. Petrelli R, Torquati I, Kachler S, Luongo L, Maione S, Franchetti P, Grifantini M, Novellino E, Lavecchia A, Klotz KN, Cappellacci L. $5^{\prime}-C$-tetrazolyl- N^{6}-substituted adenosine and 2chloroadenosine derivatives as highly potent dual acting A_{1} adenosine receptor agonists and A_{3} adenosine receptor antagonists. J Med Chem. 2015; 58:2560-2566. [PubMed: 25699637]
8. Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. The A ${ }_{3}$ adenosine receptor: history and perspectives. Pharmacol Rev. 2015; 67:74-102. [PubMed: 25387804]
9. Chen Z, Janes K, Chen C, Doyle T, Bryant L, Tosh DK, Jacobson KA, Salvemini D. Controlling murine and rat chronic pain through A_{3} adenosine receptor activation. FASEB J. 2012; 26:18551865. [PubMed: 22345405]
10. Varani K, Vincenzi F, Targa T, Paradiso B, Parrilli A, Fini M, Lanza G, Borea PA. The stimulation of A_{3} adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer. 2013; 49:482-491. [PubMed: 22770890]
11. Tosh DK, Finley A, Paoletta S, Moss SM, Gao ZG, Gizewski ET, Auchampach JA, Salvemini D, Jacobson KA. In Vivo phenotypic screening for treating chronic neuropathic pain: modification of C2-arylethynyl group of conformationally constrained A_{3} adenosine receptor agonists. J Med Chem. 2014; 57:9901-9914. [PubMed: 25422861]
12. Little JW, Ford A, Symons-Liguori AM, Chen Z, Janes K, Doyle T, Xie J, Luongo L, Tosh DK, Maione S, Bannister K, Dickenson AH, Vanderah TW, Porreca F, Jacobson KA, Salvemini D. Endogenous adenosine A_{3} receptor activation selectively alleviates persistent pain states. Brain. 2015; 138:28-35. [PubMed: 25414036]
13. Janes K, Symons-Liguori AM, Jacobson KA, Salvemini D. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesic. Br J Pharmacol. 2016; 173:1253-1267. [PubMed: 26804983]
14. Yan H, Zhang E, Feng C, Zhao X. Role of A_{3} adenosine receptor in diabetic neuropathy. J Neurosci Res. 2016; 94:936-946. [PubMed: 27319979]
15. Maione S, De Novellis V, Cappellacci L, Palazzo E, Vita D, Luongo L, Stella L, Franchetti P, Marabese I, Rossi F, Grifantini M. The antinociceptive effect of 2-chloro-2' $-C$-methyl- Λ^{6} cyclopentyladenosine ($2^{\prime}-\mathrm{Me}-\mathrm{CCPA}$), a highly selective adenosine A_{1} receptor agonist, in the rat. Pain. 2007; 131:281-292. [PubMed: 17317007]
16. Franchetti P, Cappellacci L, Vita P, Petrelli R, Lavecchia A, Kachler S, Klotz KN, Marabese I, Luongo L, Maione S, Grifantini M. N^{6}-Cycloalkyl- and N^{6}-bicycloalkyl-C5'(C2')-modified adenosine derivatives as high-affinity and selective agonists at the human A_{1} adenosine receptor with antinociceptive effects in mice. J Med Chem. 2009; 52:2393-2406. [PubMed: 19317449]
17. Luongo L, Petrelli R, Gatta L, Giordano C, Guida F, Vita P, Franchetti P, Grifantini M, De Novellis V, Cappellacci L, Maione S. 5^{\prime}-Chloro-5'-deoxy-ENBA, a potent and selective adenosine A_{1} receptor agonist, alleviates neuropathic pain in mice through functional glial and microglial changes without affecting motor and cardiovascular functions. Molecules. 2012; 17:13712-13726. [PubMed: 23174891]
18. Petrelli R, Grifantini M, Cappellacci L. Development of C-methyl branched purine ribonucleoside analogs: chemistry, biological activity and therapeutic potential. Curr Med Chem. 2016; 23:31183135. [PubMed: 27356543]
19. Klotz KN, Hessling J, Hegler J, Owman B, Kull B, Fredholm BB, Lohse MJ. Comparative pharmacology of human adenosine receptor subtypes-characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg's Arch Pharmacol. 1997; 357:1-9.
20. Nayak A, Chandra G, Hwang I, Kim K, Hou X, Kim HO, Sahu PK, Roy KK, Yoo J, Lee Y, Cui M, Choi S, Moss SM, Phan K, Gao ZG, Ha H, Jacobson KA, Jeong LS. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists. J Med Chem. 2014; 57:1344-1354. [PubMed: 24456490]
21. Tosh DK, Phan K, Deflorian F, Wei Q, Gao Z, Jacobson KA. Truncated (N)-methanocarba nucleosides as A_{1} adenosine receptor agonists and partial agonists: overcoming lack of a recognition element. ACS Med Chem Lett. 2011; 2:626-631. [PubMed: 21858244]
22. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens R. Agonist bound structure of the human adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor. Science. 2011; 332:322-327. [PubMed: 21393508]
23. Paoletta S, Tosh DK, Finley A, Gizewski E, Moss SM, Gao ZG, Auchampach JA, Salvemini D, Jacobson KA. Rational design of sulfonated A_{3} adenosine receptor-selective nucleosides as pharmacological tools to study chronic neuropathic pain. J Med Chem. 2013; 56:5949-5963. [PubMed: 23789857]
24. Jeong LS, Lee HW, Jacobson KA, Kim HO, Shin DH, Lee JA, Gao ZG, Lu C, Duong HT, Gunaga P, Lee SK, Jin DZ, Chun MW, Moon HR. Structure-activity relationships of 2-chloro- N^{6} -substituted-4'-thioadenosine-5'-uronamides as highly potent and selective agonists at the human A $_{3}$ adenosine receptor. J Med Chem. 2006; 49:273-281. [PubMed: 16392812]
25. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997; 267:727-748. [PubMed: 9126849]
26. Verdonk ML, Giangreco I, Hall RJ, Korb O, Mortenson N, Murray W. Docking performance of fragments and druglike compounds. J Med Chem. 2011; 54:5422-5431. [PubMed: 21692478]
27. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins: Struct, Funct Genet. 2003; 52:609-623. [PubMed: 12910460]
28. Ballesteros JA, Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure-function relationships in G-protein coupled receptors. Methods Neurosci. 1995; 25:366-428.
29. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG. Agonist-bound adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor structures reveal common features of GPCR activation. Nature. 2011; 474:521-525. [PubMed: 21593763]
30. Kim SK, Gao ZG, Van Rompaey P, Gross AS, Chen A, Van Calenbergh S, Jacobson KA. Modeling the adenosine receptors: comparison of the binding domains of $\mathrm{A}_{2} \mathrm{~A}$ agonists and antagonists. J Med Chem. 2003; 46:4847-4859. [PubMed: 14584936]
31. Rivkees SA, Barbhaiya H, IJzerman AP. Identification of the adenine binding site of the human A_{1} adenosine receptor. J Biol Chem. 1999; 274:3617-3621. [PubMed: 9920910]
32. Kolář MH, Hobza P. Computer modeling of halogen bonds and other σ-hole interactions. Chem Rev. 2016; 116:5155-5187. [PubMed: 26840433]
33. Bondi A. Van der Waals volumes and radii. J Phys Chem. 1964; 68:441-451.
34. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. The halogen bond. Chem Rev. 2016; 116:2478-2601. [PubMed: 26812185]
35. Lange A, Zimmermann M, Wilcken R, Zahn S, Boeckler F. Targeting histidine side chains in molecular design through nitrogen-halogen bonds. J Chem Inf Model. 2013; 53:3178-3189. [PubMed: 24127844]
36. Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA. A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem. 2015; 58:4383-4438. [PubMed: 25734370]
37. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977; 4:161-174. [PubMed: 564014]
38. Jacobson KA, Klutz AM, Tosh DK, Ivanov AA, Preti D, Baraldi PG. Medicinal chemistry of the A 3 adenosine receptor: agonists, antagonists, and receptor engineering. Handb Exp Pharmacol. 2009; 193:123-159.
39. Carlin JL, Jain S, Gizewski E, Wan TC, Tosh DK, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML. Hypothermia in mouse is caused by adenosine A_{1} and A_{3} receptor agonists and AMP via three distinct mechanisms. Neuropharmacology. 2017; 114:101-113. [PubMed: 27914963]
40. Klotz KN, Kachler S, Falgner N, Volpini R, Dal Ben D, Lambertucci C, Mishra RC, Vittori S, Cristalli G. [$\left.{ }^{3} \mathrm{H}\right]$-HEMADO-a novel highly potent and selective radiolabeled agonist for A_{3} adenosine receptors. Eur J Pharmacol. 2007; 556:14-18. [PubMed: 17126322]
41. Prasad RN, Bariana DS, Fung A, Savic M, Tietje K, Stein HH, Brondyk HD, Egan RS. Modification of the 5^{\prime}-position of purine nucleosides. 2. Synthesis and some cardiovascular properties of adenosine- $5^{\prime}-(N$-substituted)carboxamides. J Med Chem. 1980; 23:313-319. [PubMed: 7365748]
42. Klotz KN, Cristalli G, Grifantini M, Vittori S, Lohse MJ. Photoaffinity labeling of A_{1}-adenosine receptors. J Biol Chem. 1985; 260:14659-14664. [PubMed: 2997218]
43. Lohse MJ, Klotz KN, Schwabe U, Cristalli G, Vittori S, Grifantini M. 2-Chloro- N^{6} cyclopentyladenosine: a highly selective agonist at A_{1} adenosine receptors. NaunynSchmiedeberg's Arch Pharmacol. 1988; 337:687-689. [PubMed: 3216901]
44. Saddi G, Abbott FV. The formalin test in the mouse: a parametric analysis of scoring properties. Pain. 2000; 89:53-63. [PubMed: 11113293]
45. Abbott FV, Franklin KB, Westbrook RF. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain. 1995; 60:91-102. [PubMed: 7715946]
46. Cappellacci L, Franchetti P, Pasqualini M, Petrelli R, Vita P, Lavecchia A, Novellino E, Costa B, Martini C, Klotz KN, Grifantini M. Synthesis, biological evaluation, and molecular modeling of ribose-modified adenosine analogues as adenosine receptor agonists. J Med Chem. 2005; 48:1550-1562. [PubMed: 15743197]
47. Tosh DK, Deflorian F, Phan K, Gao ZG, Wan TC, Gizewski E, Auchampach JA, Jacobson KA. Structure-guided design of A_{3} adenosine receptor-selective nucleosides: Combination of 2arylethynyl and bicyclo[3.1.0]hexane substitutions. J Med Chem. 2012; 55:4847-4860. [PubMed: 22559880]
48. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK. Crystal structure of the β_{2} adrenergic receptorGs protein complex. Nature. 2011; 477:549-555. [PubMed: 21772288]
49. Lovell SC, Word JM, Richardson JS, Richardson DC. The penultimate rotamer library. Proteins: Struct, Funct Genet. 2000; 40:389-408. [PubMed: 10861930]

Figure 1.
Putative binding mode of $5^{\prime}-C$-(ethyltetrazol-2-yl)adenosine derivative 15 (purple carbons) obtained after docking simulations at the $\mathrm{hA}_{1} \mathrm{AR}$ (A, cyan ribbons) and $\mathrm{hA}_{3} \mathrm{AR}$ (C , green ribbons) models. Poses are viewed from the membrane side. Ligands and interacting key residues are represented as stick models. The amino acids important for ligand recognition are labeled in red. H-bonding interactions are pictured as dotted black lines, and nonpolar hydrogens are undisplayed for clarity. The halogen bond of $\mathbf{1 5}$ to His $264^{6.66}$ in $\mathrm{hA}_{1} \mathrm{AR}$ is highlighted as a green dashed line. 2D diagram of interactions between $\mathbf{1 5}$ and both $\mathrm{hA}_{1} \mathrm{AR}$ (B) and $\mathrm{hA}_{3} \mathrm{AR}(\mathrm{D})$ models generated by the MOE software package (MOE 2013.08, Chemical Computing Group, Inc.): green spheres = "greasy" residues; spheres with red outline $=$ acidic residues; spheres with blue outline $=$ basic residues; spheres with black outline = polar residues; blue background spheres = receptor exposure to solvent; blue spheres on ligand atoms = ligand exposure to solvent; green dotted lines = side chain donors/ acceptors; gray dotted line $=$ proximity contour. A naphthyl icon represents a $\pi-\pi$ stacking interaction.

Figure 2.
Close-up of the interaction between the N^{δ} atom of $\mathrm{H} 264^{6.66}$ in the $\mathrm{hA}_{1} \mathrm{AR}$ hydrophobic pocket and the 3-F-benzyl derivative 9 (A, magenta carbons), 3-Cl-benzyl derivative 11 (B , orange carbons), 3-Br-benzyl derivative $\mathbf{1 3}$ (C, green carbons), and 3-I-benzyl derivative 15 (D , purple carbons).

A

B

Figure 3.
Effect of subcutaneous formalin $(1.25 \%, 30 \mu \mathrm{~L})$ injections into the hind paw of mice on the time course of the nociceptive behaviors. Formalin was injected 10 min after the systemic administration of vehicle $(0.9 \% \mathrm{NaCl}, \mathrm{ip})$ or drugs. Part A shows the effects of the systemic administration of $\mathbf{1 1}(0.3,0.5,1 \mathrm{mg} / \mathrm{kg}$, ip). Part B shows the effects of the systemic administration of $26(0.3,0.5$, and $1 \mathrm{mg} / \mathrm{kg}$, ip). Recording of nocifensive behavior began immediately after the injection of formalin (time 0) and was continued for 60 min . Each point represents the total time of the nociceptive responses (mean (SEM) of 8 mice per group, measured every 5 min . * indicates significant differences versus vehicle. $P<0.05$ was considered statistically significant.

A

B

Figure 4.
Effect of subcutaneous formalin $(1.25 \%, 30 \mu \mathrm{~L})$ injections into the hind paw of mice on the time course of the nociceptive behaviors. Formalin was injected 10 min after the systemic administration of vehicle $(0.9 \% \mathrm{NaCl}, \mathrm{ip})$ or drugs. Part A shows the effects of the systemic administration of $\mathbf{2 2}(0.1,0.3$, and $0.5 \mathrm{mg} / \mathrm{kg}$, ip). Part B shows the effects of the systemic administration of $\mathbf{2 2}\left(0.5 \mathrm{mg} / \mathrm{kg}\right.$, ip) in combination with $\mathbf{3 0}\left(2 \mathrm{mg} / \mathrm{kg}\right.$, ip) an $\mathrm{A}_{3} \mathrm{AR}$ antagonist. Recording of nocifensive behavior began immediately after the injection of formalin (time 0) and was continued for 60 min . Each point represents the total time of the nociceptive responses (mean (SEM) of 8 mice per group, measured every 5 min . * indicates significant differences versus vehicle and \bigcirc indicates significant differences versus 220.5 $\mathrm{mg} / \mathrm{kg} . P<0.05$ was considered statistically significant.

Figure 5.
Effect of subcutaneous formalin $(1.25 \%, 30 \mu \mathrm{~L})$ injections into the hind paw of mice on the time course of the nociceptive behaviors. Formalin was injected 10 min after the systemic administration of vehicle $(0.9 \% \mathrm{NaCl}$, ip) or drugs. Effects of the systemic administration of $\mathbf{2 8}(1 \mathrm{mg} / \mathrm{kg}, \mathrm{ip})$ and $\mathbf{3 1}(1 \mathrm{mg} / \mathrm{kg}$, ip) alone or in combination. Recording of nocifensive behavior began immediately after the injection of formalin (time 0) and was continued for 60 min . Each point represents the total time of the nociceptive responses (mean (SEM) of 8 mice per group, measured every 5 min . * indicates significant differences versus vehicle, \bigcirc indicates significant differences versus $\mathbf{2 8}(1 \mathrm{mg} / \mathrm{kg})$, and § indicates significant differences versus $31(1 \mathrm{mg} / \mathrm{kg}) . P<0.05$ was considered statistically significant.

Figure 6.
Effect of subcutaneous formalin $(1.25 \%, 30 \mu \mathrm{~L})$ injections into the hind paw of mice on the time course of the nociceptive behaviors. Formalin was injected 10 min after the systemic administration of vehicle $(0.9 \% \mathrm{NaCl}, \mathrm{ip})$ or drugs. Effects of the systemic administration of $\mathbf{2 8}(0.5 \mathrm{mg} / \mathrm{kg}, \mathrm{ip})$ and $\mathbf{3 1}(0.5 \mathrm{mg} / \mathrm{kg}, \mathrm{ip})$ alone or in combination. Recording of nocifensive behavior began immediately after the injection of formalin (time 0) and was continued for 60 min. Each point represents the total time of the nociceptive responses (mean (SEM) of 8 mice per group, measured every 5 min . § indicates significant differences versus vehicle, * indicates significant differences versus $\mathbf{2 8}(0.5 \mathrm{mg} / \mathrm{kg})$, and \bigcirc indicates significant differences versus $\mathbf{3 1}(0.5 \mathrm{mg} / \mathrm{kg}) . P<0.05$ was considered statistically significant.

Figure 7.
Effect of subcutaneous formalin $(1.25 \%, 30 \mu \mathrm{~L})$ injections into the hind paw of mice on the time course of the nociceptive behaviors. Formalin was injected 10 min after the systemic administration of vehicle $(0.9 \% \mathrm{NaCl}, \mathrm{ip})$ or drugs. Effects of the systemic administration of $\mathbf{2 2}(0.3 \mathrm{mg} / \mathrm{kg}, \mathrm{ip})$ and $\mathbf{3 1}(1 \mathrm{mg} / \mathrm{kg}$, ip) alone or in combination. Recording of nocifensive behavior began immediately after the injection of formalin (time 0) and was continued for 60 min . Each point represents the total time of the nociceptive responses (mean (SEM) of 8 mice per group, measured every 5 min . * indicates significant differences versus vehicle, \bigcirc indicates significant differences versus $22(0.3 \mathrm{mg} / \mathrm{kg})$, and § indicates significant differences versus $\mathbf{3 1}(1 \mathrm{mg} / \mathrm{kg}) . P<0.05$ was considered statistically significant.

Scheme 1.

Synthesis of Target Compounds 1-17
Author Manuscript
Id!̣ısnuew roułn
Table 1
Author Manuscript
Binding Affinity of 5^{\prime} - C-Ethyltetrazolyladenosine Derivatives
Id!̣っsnuew 」Oułn \forall
EC_{50} Values for Adenylyl Cyclase Activation $\left(\mathrm{A}_{2 \mathrm{~A}}\right.$ and $\left.\mathrm{A}_{2 \mathrm{~B}}\right)$ or Inhibition $\left(\mathrm{A}_{1} \text { and } \mathrm{A}_{3}\right)^{a}$

compd	R	R1	$\mathrm{EC}_{50}(\mathrm{nM})$			
			A_{1}	$\mathrm{A}_{2 \mathrm{~A}}$	$\mathrm{A}_{2 \mathrm{~B}}$	A_{3}
1	cyclopropyl	H	7.66 (4.71-12.5)	21.6 (20.1-23.2)	222 (147-336) (pag 86\%)	5.40 (3.16-9.22)
2	cyclopropy	Cl	7.21 (6.89-7.54)	21.5 (16.6-27.9)	677 (556-824)	14.1 (10.4-19.10)
3	cyclopropylmethyl	H	7.73 (5.57-10.7)	16.6 (15.3-17.9)	637 (500-813) (pag\% 81\%)	3.53 (1.21-7.10)
4	cyclopropylmethyl	Cl	7.21 (5.64-9.21)	28.6 (24.7-33.1)	1961 (1527-2518)	14.4 (8.95-17.0)
5	furyl-2-methyl	H	552 (361-844)	54.3 (38.5-76.6)	1930 (1140-3270)	125 (83.8-185)
6	furyl-2-methyl	Cl	341 (259-449)	60.2 (57.4-63.1)	2570 (1960-3370)	52.4 (48.5-56.5)
7	thienyl-2-methyl	H	208 (159-273)	14.7 (11.2-19.3)	527 (298-929)	59.7 (32.5-110)
8	thienyl-2-methyl	Cl	222 (199-248)	38.4 (31.6-46.7)	2140 (1340-3430)	44.7 (35.6-56.1)
9	3 -fluoro-benzyl	H	147 (95.6-227)	14.4 (12.8-16.2)	1100 (682-1760) (pag 86\%)	12.5 (7.23-21.8)
10	3-fluorobenzyl	Cl	239 (142-400)	31.3 (24.2-40.6)	2230 (2020-2450)	31.5 (24.6-40.3)
11	3-chlorobenzyl	H	58.5 (50.2-68.3)	6.71 (6.28-7.17)	592 (366-957)	2.20 (1.26-3.84)
12	3-chlorobenzyl	Cl	116 (90.3-148)	16.0 (12.4-20.6)	2390 (1640-3500)	7.61 (6.47-8.95)
13	3 -bromobenzyl	H	45.1 (34.9-58.2)	4.46 (4.17-4.78)	408 (288-576)	2.07 (0.993-4.30)
14	3-bromobenzyl	Cl	72.8 (50.2-106)	13.3 (10.8-16.4)	1650 (1360-1990)	9.64 (5.83-15.9)
15	3-iodobenzyl	H	27.4 (22.0-34.1) (pag 87\%)	2.87 (1.67-4.92)	235 (174-319)	2.38 (1.38-4.12)
16	2-fluoro-4-chlorobenzyl	H	230 (189-280)	40.7 (38.9-42.6)	1290 (739-2260)	25.4 (20.1-32.1)

ıd!ıכSnuew ıouın甘

compd	R	R_{1}	$\mathrm{EC}_{50}(\mathrm{nM})$			
			A_{1}	$\mathrm{A}_{2} \mathrm{~A}$	$\mathrm{A}_{2 \mathrm{~B}}$	\mathbf{A}_{3}
17	2-fluoro-4-chlorobenzyl	Cl	539 (359-809)	96.5 (85.5-109)	>30000	105 (95.6-116)
20^{b}	H	H	26.3 (20.8-33.3)	2.36 (2.00-2.78)	347 (266-454)	93.6 (79.7-110)
$21{ }^{b}$	H	Cl	19.8 (14.3-27.5)	3.84 (3.32-4.44)	542 (340-865)	31.7 (23.2-43.2)
22^{b}	CH_{3}	H	97.2 (84.4-112)	1710 (1150-2530)	1480 (923-2390)	6.38 (5.03-8.07)
23^{b}	CH_{3}	Cl	250 (204-307)	238 (206-274)	3510 (2290-5360) (pag 75\%)	7.69 (6.34-9.32)
$24^{\text {b }}$	2-fluoro-4-chlorophenyl	H	10.2 (9.48-11.1)	8.40 (7.41-9.53)	530 (314-896)	33.9 (21.1-54.5)
25^{b}	2-fluoro-4-chlorophenyl	Cl	64.8 (47.9-87.8)	28.8 (20.8-39.9)	1110 (888-1400)	37.0 (27.1-50.7)
26^{b}	3-iodobenzyl	Cl	64.9 (54.2-77.8)	9.04 (6.37-12.8) (pag 75\%)	834 (563-1230) (pag 76\%)	13.3 (6.72-26.5)

[^1]

łd!̣こsnuew doułn

Author Manuscript

Table 4
Author Manuscript
Author Manuscript
${ }^{a}$ Values in bold mark compounds with selectivities of ≥ 30 for both A_{1} and $\mathrm{A}_{3} \mathrm{vs} \mathrm{A}_{2} \mathrm{~A}$. A1 vs A_{3} selectivity is ≤ 10 for all compounds.

[^0]: $\nabla_{\text {This work was presented in part at the 6th Joint German-Italian Purine Club Meeting, Purines 2015, Hamburg, Germany, July 2015, }}^{\text {, }}$ and at the 33rd Camerino-Cyprus Symposium. Receptor Chemistry: Reality and Vision, Camerino, Italy, May 2016.
 *Corresponding Authors: A.L.: antonio.lavecchia@unina.it; phone, +39-081-678613/623; fax, +39-081-678012. L.C.:
 loredana.cappellacci@unicam.it; phone, +39-0737-402228; fax, +39-0737-637345.
 ORCID
 Kenneth A. Jacobson: 0000-0001-8104-1493
 Loredana Cappellacci: 0000-0001-8155-7211
 Notes
 The authors declare the following competing financial ibrnterest(s): Daniela Salvemini is cofounder of BioIntervene Inc.
 Supporting Information
 The Supporting Information is available free of charge on the ACS Publications Web site at DOI: Molecular formula strings (CSV). The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.7b00291. (CSV)

[^1]: ${ }^{a}$ All tested compounds are full agonists at the $\mathrm{hA}_{1}, \mathrm{hA}_{2} \mathrm{~A}$, and $\mathrm{hA}_{2} \mathrm{~B}$ receptor (efficacy 290% unless stated otherwise). All tested compounds are antagonists at the hA3 receptor. pag, partial agonist (\% efficacy).
 ${ }^{b}$ Data from Petrelli et al. ${ }^{7}$

