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Abstract  

Amylin is a pancreatic β-cell hormone that acts as a satiating signal to inhibit food intake by 

binding to amylin receptors (AMY) and activating a specific neuronal population in the area 

postrema (AP). AMY are heterodimers that include a calcitonin receptor (CTR) subunit 

(CTRa or CTRb) and a member of the receptor activity modifying proteins (RAMPs). Here, 

we used single cell qPCR to assess co-expression of AMY subunits in AP neurons from rats 

that were injected with amylin or vehicle. Because amylin interacts synergistically with the 

adipokine leptin to reduce body weight, we also assessed the co-expression of AMY and the 

leptin receptor isoform LepRb in amylin-activated AP neurons.  Single cells were collected 

from Wistar rats and from transgenic Fos-GFP rats that express green-fluorescent protein 

(GFP) under the control of the Fos promoter. We found that the mRNAs of CTRa and 

RAMP1, RAMP2 and RAMP3 were all co-expressed in single AP-neurons. Moreover, most 

of CTRa+ cells co-expressed more than one of the RAMPs. Amylin down-regulated RAMP1 

and RAMP3 but not CTR mRNAs in AMY positive neurons, suggesting a possible negative 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

feedback mechanism of amylin at its own  primary receptors. Interestingly, amylin up-

regulated RAMP2 mRNA. We also found that a high percentage of single cells that co-

expressed all components of a functional AMY expressed LepRb mRNA. Thus, single AP-

cells express both AMY and LepRb that form a population of first-order neurons and that 

presumably can be directly activated by amylin and at least in part also by leptin. 

 

Introduction  

Amylin, also known as islet amyloid polypeptide, is co-secreted with insulin by pancreatic β-

cells in response to nutrient stimuli (Lutz, 2010). Amylin reduces food intake and body 

weight (Lutz et al., 2001; Roth et al., 2012) and may also act as adiposity signal to control 

energy expenditure (Wielinga et al., 2007; Zhang et al., 2011). Circulating amylin acts 

centrally to control energy balance by primarily activating neurons of the area postrema 

(AP), a circumventicular organ located in the hindbrain (Riediger et al., 2001; Riediger et al., 

2004; Lutz, 2009; Potes & Lutz, 2010; Potes et al., 2012).  

 

A functional amylin receptor (AMY) results from a heterodimer of the calcitonin receptor 

(CTR) with one member of the receptor activity modifying proteins (RAMPs) (Christopoulos 

et al., 1999). The rat CTR exists in two different isoforms, CTRa and CTRb, but the exact 

functional relevance of action mediated by either isoform is not yet fully understood. In situ 

hybridization studies that mapped the localization of CTRa/b and RAMPs suggested that only 

CTRa is present in the AP of rodents (Ueda et al., 2001; Barth et al., 2004). Three members 

of the RAMP family have been identified (McLatchie et al., 1998; Sexton et al., 2001): 

RAMP1, RAMP2 and RAMP3. They are associated in the endoplasmic reticulum and are co-

trafficked to the cell surface in order to form stable complexes that act as chaperons to form 

different receptors with selective ligand specificity. The dimerization of RAMP1, RAMP2 
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and RAMP3 with CTRa generates AMY1, AMY2 and AMY3, respectively (Alexander et al., 

2013).  

The presence of CTR and RAMPs has been shown in different brain areas (Sexton et al., 

1994; Christopoulos et al., 1995; Skofitsch et al., 1995; Becskei et al., 2004; Mietlicki-Baase 

et al., 2013). However, none of these studies tested the co-localization of the AMY 

components at the single cell level; the latter is necessary to study the physiological relevance 

of CTR and RAMPs in vivo.  

 

Amylin is also known to synergistically interact with leptin to decrease body weight and food 

intake (Roth et al., 2008; Trevaskis et al., 2010). Leptin exerts its effects by binding to the b 

isoform of the leptin receptor (LepRb), and the ventromedial nucleus of the hypothalamus 

(VMH) may be the site mediating the amylin-leptin interaction (Trevaskis et al., 2010; Turek 

et al., 2010; Le Foll et al., 2015). Other brain areas, such as the AP (Roth et al., 2008; 

Trevaskis et al., 2010) or the VTA may also play a role (Mietlicki-Baase et al., 2015); 

however a population of first-order neurons receptive to both amylin and leptin has yet to be 

reported (Turek et al., 2010). Evidence of single neurons expressing both hormone receptors 

is lacking. 

 

To establish that all components of the AMY are present in single AP cells and to investigate 

whether AP neurons co-express AMY and leptin receptors, we examined the mRNA 

expression of CTRa and RAMPs in single AP cells, and of the LepRb in AMY-positive 

neurons.  
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Materials and methods 

 

Animals and tissue collection 

Male Wistar rats (Janvier, Le Genest Saint Isle, France; Experiment 1 – 2; 200-225 g) and 

male and female Fos-GFP rats (NIDA/NIH, Baltimore, USA; Experiments 3-5; 250-320 g) 

were single-housed in a temperature controlled environment (21±1°C) on an artificial 

12h/12h light/dark cycle. Rats had ad libitum access to water and standard chow, except 

during fasting periods as described below. All procedures involving animals and their care 

were approved by the Veterinary Office of the Canton Zurich, Switzerland, and in accordance 

with the EU Directive 2010/63/EU on the protection of animals used for scientific purposes. 

 

Drugs 

Amylin (Bachem AG, Bubendorf, Switzerland; catalogue number: H-9475.1000) was 

reconstituted with sterile 0.9% NaCl. 

 

Experimental design 

Rat injections and sample preparation: For all experiments, rats were fasted for twelve hours 

and injected i.p. with vehicle or amylin (20 μg/kg for Wistar and 50 μg/kg for Fos-GFP rats) 

at dark onset. Ninety minutes after drug administration, rats were anesthetized with isoflurane 

and decapitated.  

 

Experiment 1: Brains from Wistar rats (n=4) were promptly processed under a light 

microscope. The AP was surgically removed from the brainstem and then the subfornical 

organ (Takahashi et al., 1997) and the hypothalamus were dissected. All the tissues were 

placed immediately in TRI Reagent® (Sigma-Aldrich) and processed for RT-PCR, as 

described below. 
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Experiment 2-5: Brains were rapidly isolated, snap-frozen in cold-isopentane and embedded 

in Tissue-Tek® OCT™ (Sakura Finetek) compound just prior to sectioning. Coronal sections 

were cut at 10-μm thickness on a cryostat (Leica, Germany) through the entire AP and 

affixed on pre-cleaned, Superfrost glass slides (Thermo Scientific, Waltham, MA USA). The 

sections were immediately placed in a slide box on dry ice until completion of sectioning. 

The slide box was rinsed with RNase Away (Molecular BioProduct, Mexico) prior to usage 

to prevent RNA degradation. Samples were then stored at -80 °C until laser capture 

microdissection (LCM) procedure.  

 

In Experiment 2, Wistar rats (n=4 per group) were treated with amylin (20 μg/kg; i.p.) and 

single neurons (n=8-10 cells per rat) were identified with the cresyl violet staining as 

previously described (Kadar et al., 2009). CTRa, RAMP1 and RAMP3 have been extensively 

described to be present in the rat AP (Becskei et al., 2004), thus generating AMY1 and AMY3 

as the primary amylin receptors in this brain nucleus. RAMP2 mainly contributes to the 

generation of AMY2 by coupling with CTRb (Tilakaratne et al., 2000). Because CTRb is not 

expressed in the rat AP (Ueda et al., 2001; Barth et al., 2004), we mainly focused on the 

analysis of RAMP1 and RAMP3 in combination with CTRa. 

 

 In Experiment 3-5, Fos-GFP transgenic males and females rats (n=4 rats/treatment/gender) 

were treated with vehicle or amylin (50 μg/kg; i.p.). Fos-GFP rats express the green-

fluorescence-protein (GFP) under the Fos promoter in strongly activated neurons (Cifani et 

al., 2012), therefore no additional immunohistochemical procedure was required to visualize 

Fos-GFP-activated neurons. Amylin-stimulated cells (n=9-10 cells/per rat) were readily 

detectable under the eGFP filter (490-560 nm).  
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RT-PCR  

RNA was extracted according to the manufacturer’s instructions (TRI Reagent®; Sigma-

Aldrich) and then purified following the cleanup protocol of RNeasy® Mini kit (Quiagen, 

Germany), including the DNase step. The concentration and the integrity of RNA were 

measured using a nanodrop system (NanoDrop 1000 Spectrophotometer, Thermo Scientific). 

cDNA was generated from the extracted RNA using the Terto cDNA synthesis kit (Bioline, 

Switzerland).  

The primer pairs for rat CTRa/b were previously reported (Mori et al., 2006) and primers for 

rat GAPDH were manually designed using Primer 3 web version 3.0.0. The primer sequences 

for rat CTRa/b were, forward: 5’-TGGTTGAGGTTGTGCCCAATGGA-3’, and reverse: 5’-

TCCATGGGTTTGCCTCATCTTGGTC-3’. This primer pair was able to differentiate the two 

isoform of CTR, giving a 392 bp product for CTRa and a 503 bp product for CTRb 

(Accession L14617 and L13040). For rat GAPDH, forward: 5’-

GCCAGCCTCGTCTCATAGACA-3’ and reverse: 5’-GTGCGATACGGCCCAATC-3’ 

(Accession NM_017008.4).  RT-PCR conditions were the following: initial denaturation of 3 

min at 95°C, followed by 35 cycles alternation of 15 s at 95 °C, 15 s at 60 °C and a final 

extension step of 20 s at 72°C. RT-PCR amplification products were separated by 2% 

agarose gel electrophoresis (BioRad 3000 Xi). 

 

Laser capture microdissection (LCM) 

Slides containing AP sections, collected from Wistar rats and from vehicle-treated Fos-GFP 

animals, were Nissl-stained to allow cell identification. Slides were removed from -80 °C and 

thawed at 4°C for 2 minutes; sections where stained in 0.1% cresyl violet acetate (Sigma-

Aldrich) solution dissolved in 70% ethanol for 5 minutes on ice. The excess stain was drained 

on filter paper. Sections were then dehydrated once in 96% EtOH and once in 100% EtOH, 
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30 seconds each, on ice, and finally dried in a fume hood for 2 minutes at room temperature 

before being processed under the LCM microscope (Arcturus X MDS, Life Technologies; 

Carlsbad, California). As described above, no additional immunohistochemical procedure 

was required to identify Fos-GFP-positive cells in Fos-GFP transgenic rats. Brains slices 

were observed under the microscope and the AP was localized based on morphology 

(Bregma -13.68 to -14.28 mm;  Paxinos & Watson, 2007).  

In Wistar rats and in vehicle-treated Fos-GFP rats, single cells were visualized with the Nissl 

staining and they were randomly selected and individually collected in caps (CapSure® HS 

LCM caps, Arcturus Bioscience). In amylin-treated transgenic rats, single Fos-GFP positive 

cells were identified under the eGFP filter and collected in individual caps. Total RNA was 

extracted and isolated, including a DNase step, using the vendor’s protocol (PicoPure™ RNA 

isolation kit, Arcturus) and subsequently stored at -80 °C.  

 

 

Quantitative PCR (qPCR) 

RNA extracted from each individual cell was amplified using Ribo-SPIA technology 

(Ovation One-Direct System, PART NO. 3500, NuGEN; San Carlos, California); cDNA was 

subsequently purified using Agencourt RNAClean XP beads. A post-SPIA modification 

process was run to complete the process and to generate sense-target cDNA, according to the 

manufacturer’s instructions. Single-cell qPCR was performed using the 7500 Fast system 

(Applied Biosystem/Life Technologies) with QuantiTect® SYBR® green PCR kit 

(QUIAGEN). Rat GAPDH was used as housekeeping gene. To avoid the possibility of 

amplifying contaminating DNA, intron-spanning primer pairs for rat CTRa, RAMP1 and 

RAMP3 were designed with Primer 3 web version 4.0.0. The primer sequences were the 

following; for rat GAPDH, forward: 5’-AGACAGCCGCATCTTCTTGT-3’ and reverse: 5’-
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CTTGCCGTGCGTAGAGTCAT -3’ (Accession: NM_017008.4), for rat CTRa, forward: 5’-

TTTCCAGGGATTCTTTGTCG-3’ and reverse: 5’-TTCGTTGCTGACTGGAG-

3’(Accession: NM_001034015.1), for rat RAMP1, forward: 5’-

GGCAAACAAGATTGGCTGTT-3’ and reverse: 5’-AATGGGGAGCACAATGGAAG-3’ 

(Accession: NM_031645.1); for rat RAMP2, primer pairs were previously reported (Qi et al., 

2003), forward: 5’-TGAGGACAGCCTTCTGTCAA-3’ and reverse: 5’-

CATCGCCGTCTTTACTCCTC-3’ (Accession: NM_031646.1). For rat RAMP3, forward: 

5’-AGGTCATCTGGAAGGTGTGG-3’ and reverse: 5’-AATGGGGAGCACAATGGAAG-3’ 

(Accession: NM_02100.2). The intron-spanning primer pairs for rat LepRb were designed 

with IDT (Integrated DNA Technologies); forward: 5’-GGTTGGATGGACTAGGGTATTG-

3’ and reverse: 5’-CAGAATTCAGGCCCTCTCATAG-3’ (Accession: NM_012596.1). 

200 ng of cDNA were subjected to an initial heat activation at 95°C for 15 minutes, followed 

by 40 cycles of alternating between 94°C for 15 s then 60°C for 30 s, and final extension at 

72°C for 30 s. The relative transcriptional levels of CTRa, RAMP1,RAMP2,  RAMP3 and 

LepRb mRNA were calculated using the comparative ΔΔCt method that generates relative 

CTRa, RAMP1 and RAMP3 mRNA levels adjusted for the GAPDH endogenous control 

mRNA. Each sample was run in duplicate. 

 

Statistical Analysis 

CTRa-positive cells versus CTRa-negative cells (n=4 rats/8-10 cells per rat) and the related 

presence or absence of RAMPs, respectively, were analyzed with Chi-square test 

(Experiment 2). Relative mRNA expression levels were assessed by unpaired Student’s t-test 

(Experiment 4; n=4 rats/9-10 cells per rat; Experiment 5; n=4 rats/8-10 cells per rat) by using 

GraphPad Software version 5.0 (San Diego, CA, USA). 
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Results 

Experiment 1: Only the CTRa isoform is expressed in native rat AP tissue 

Confirming previous studies (Hilton et al., 1995; Barth et al., 2004), we observed that only 

the CTRa isoform is expressed in native rat AP tissue (Figure 1). The subfornical organ and 

hypothalamus were used as positive controls, with both brain regions expressing CTRa and 

CTRb isoforms (Becskei et al., 2004; Mori et al., 2006). 

 

Experiment 2: Randomly collected cells from the AP of amylin treated rats present a 

complex neuronal landscape. Most of CTRa+ cells are RAMP1+ and RAMP3+ whereas 

most of CTRa- cells are also RAMP1- and RAMP3-. 

The rapid Nissl staining procedure before LCM enabled the identification of individual cells 

in the AP sections of amylin-treated Wistar rats (Figure 2a). Cells were randomly selected 

and individually collected by LCM (Figure 2a inset). A presence/absence assay was 

performed; GAPDH was used as endogenous control and the analyzed neuronal population 

was divided into CTRa+ and CTRa- cells, respectively. The resulting neuronal landscape 

showed a complex scenario (Figure 2b). Almost 40% of the collected neurons were CTRa+ 

cells; importantly, all CTRa+ cells co-expressed CTRa and RAMP1 (3%), CTRa and 

RAMP3 (10%) or CTRa and both RAMP1 and RAMP3 (25%). 62% of the randomly 

collected cells were CTRa negative. Moreover, most of the CTRa- cells were also RAMP1- 

and RAMP3- (53%); only 9% of CTRa- cells showed either RAMP1 (6%) or RAMP3 (3%) 

expression. Hence, RAMP1 and RAMP3 mRNAs were preferentially expressed in CTRa+ 

versus CTRa- cells (Chi-square test (30.13,3), P < 0.0001). The key finding of this study was 

that CTRa+ cells co-expressed RAMP1 and/or RAMP3 transcript, which are the necessary 

subunits required for a specific and functional AMY1 or AMY3. 
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Experiment 3: CTRa, RAMP1 and RAMP3 mRNAs are all co-expressed in the same single 

amylin-activated AP neurons of Fos-GFP rats. 

Results from the second experiment clearly showed that in the neuronal population defined as 

CTRa+, single cells co-expressed RAMP1, RAMP3 or both RAMP1 and RAMP3 mRNAs in 

addition to CTRa. We reasoned that only this pool of cells expressed a biologically functional 

AMY1 or AMY3 and, therefore, can be activated by amylin. To test this hypothesis, we 

combined the use of Fos-GFP transgenic rats and single-cell qPCR to better characterize the 

transcripts of CTRa, RAMP1 and RAMP3 in amylin-activated individual neurons. 

Transgenic rats were treated with vehicle or amylin (Figure 3a and 3d, respectively). In the 

control group, single cells were visualized with Nissl staining and randomly collected. 

Results obtained from the randomly collected single cells treated with vehicle replicated the 

scenario of Experiment 2; we confirmed that CTRa- cells are also normally RAMP1- and 

RAMP3- (50% of all cells investigated in male and 33% in female rats respectively), whereas 

CTRa+ cells are also RAMP1+, RAMP3+ or both RAMP1+ and RAMP3+ (see Figure 3b 

and 3c for the detailed distribution in male and female rats, respectively). Amylin treatment 

induced strong Fos-GFP expression in the AP (Figure 3d), allowing the specific collection of 

single amylin-activated neurons. In male rats, 64% of the cell population showed co-

expression of CTRa, RAMP1 and RAMP3 in the same single neuron; 9% of the collected 

single neurons co-expressed CTRa with either RAMP1 (1%) or RAMP3 (8%). Only 27% of 

the neuronal population expressed one of the RAMPs but not the CTR (see Figure 3e for 

details). Results obtained from female transgenic rats displayed a pattern similar to the males. 

In the amylin-treated female rats, the entire population of amylin-responsive cells showed co-

expression with CTRa and RAMPs; 70% of the collected single cells were CTRa+, RAMP1+ 

and RAMP3+ while the remaining 30% showed co-expression of CTRa with either 

RAMP1(10%) or RAMP3 (20%) (Figure 3f).  
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Experiment 4: Amylin down-regulated RAMP1 and RAMP3 transcripts in single AP 

neurons whereas RAMP2 mRNA is up-regulated. 

To provide an absolute quantification of the expression levels of the mRNAs of CTRa and 

RAMPs, we selected all the CTRa+ cells and compared the relative expression of RAMP1, 

RAMP2 and RAMP3 in control-treated and amylin-treated Fos-GFP transgenic rats. RAMP2 

mRNA was also included in this experiment to test specifically if identified CTRa+ cells also 

express RAMP2, in addition to RAMP1 and RAMP3.  

Our findings demonstrate that while CTRa expression seems to be un-affected by acute 

amylin treatment (CTRa; t79 = 0.3573, P = 0.3573;), RAMP1 and RAMP3 mRNAs were 

down-regulated in amylin-activated single neurons (RAMP1; t62 = 5.409, P < 0.0001; 

RAMP3; t67 = 6.640, P < 0.0001; Figure 4b and 4d). Interestingly, amylin up-regulated 

RAMP2 mRNA in single AP cells (RAMP2; t34 =3.832; P < 0.0001, Figure 4c). See table 1 

for CT values. 

 

To evaluate the co-expression of RAMP2 mRNA relatively to RAMP1 and RAMP3, a 

presence/absence analysis was performed in all CTRa+ cells. In vehicle-treated animals, 70% 

of single CTRa+ AP-neurons expressed RAMP2+ in addition to RAMP1 (2%), RAMP3 

(13%) or both RAMP1 and 3 (55%; Figure 5a); none of the CTRa+ cells expressed only 

RAMP2.  The RAMP2 mRNA distribution was relatively similar in amylin-treated animals 

(see Figure 5b for details). These findings provide additional information on the distribution 

of RAMP2 mRNA relatively to the other RAMPs.  
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Experiment 5: 30% of amylin-treated single AP neurons that co-expressed all the 

necessary components to form a functional AMY also co-expressed LepRb mRNA. 

The presence of LepRb mRNA was investigated in the rats from Experiment 3 in single cells 

that were found to express all the necessary components to form a functional AMY (CTRa+ 

and either individual or combined RAMPs was defined as AMY+). Single, AMY+ cells from 

both vehicle and amylin-treated groups were analyzed. Under vehicle conditions, 52% of 

single AMY+ cells also co-expressed LepRb mRNA (Figure 6a). In rats treated with amylin, 

30% of the AMY+ single cells also co-expressed LepRb (Figure 6b). Interestingly, the 

relative mRNA level of LepRb in AMY+ cells was significantly up-regulated by amylin 

treatment (t9 = 2.286, P < 0.05; Figure 6c; See Table 1 for CT values). 

 

 

Discussion 

CTR and the RAMPs generate receptors with high affinity for amylin (Christopoulos et al., 

1999), with the precise nature of these receptors depending on the CTR splice variant and the 

cellular background. In the present study we provide evidence that the mRNA for all 

components of the AMY complex is co-expressed in the same single neurons in the rat AP, 

suggesting intracellular interactions between these subunits to mediate amylin signaling in 

the brain. This is the first demonstration in native tissue that single cells express all 

components of the functional AMY that allows them to be activated directly by amylin. We 

confirmed that only the CTRa isoform of the CTR is expressed in the AP, therefore the AMY 

complex in this brain nucleus results from a dimer of one or more RAMPs exclusively with 

CTRa (Barth et al., 2004; Becskei et al., 2004).  
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By applying the LCM technique, we were able to fully characterize the presence of functional 

AMY at the single cell level. Our results indeed support a scenario where in basal conditions 

AP neurons stochastically express zero, one, two, three or four components of the AMY. 

However, only the neurons that concurrently express CTRa and at least one of the RAMPs 

bear a functional AMY, and have therefore the full potential to be directly activated by 

amylin.  

Previous findings demonstrated that RAMP1, RAMP2 and RAMP3 all interact with CTRa 

and CTRb to generate functional AMY1-3 in vitro (McLatchie et al., 1998; Christopoulos et 

al., 1999; Hay et al., 2004). Different CTR/RAMPs complexes have distinct pharmacology, 

which may determine the rate of amylin binding to a specific AMY subtype.  AMY1 and 

AMY3 have high affinities for amylin and salmon calcitonin (sCT) and both have the 

potential to bind the calcitionin gene-related peptide (CGRP). However AMY1 has a 30-fold 

higher affinity for CGRP than AMY3 (Christopoulos et al., 1999), implying that CGRP is 

most likely to target AMY1 rather than AMY3. It is important to mention that in particular the 

ability of RAMP2 to form functional AMY2 is clearly dependent on the cellular background 

and on the receptor isoform (Tilakaratne et al., 2000). In fact, CTRb displayed greater 

capacity to dimerize with RAMP2 to generate a functional AMY2 than CTRa (Morfis et al., 

2008). Given that CTRb is not present in the AP, our work mainly focused on the 

characterization and co-expression of CTRa, RAMP1 and RAMP3. 

 

Our findings showed that in both male and female rats, the majority (over 60%) of the 

amylin-activated, Fos-GFP-positive single cells co-expressed CTRa, RAMP1 and RAMP3 

and a smaller percentage co-expressed CTRa and either RAMP1 or RAMP3. This suggests 

that amylin mainly activates cells that express mRNA for CTRa, RAMP1 and RAMP3. When 
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CTRa was co-expressed with only one of the RAMPs, the accessory subunit was 

preferentially RAMP3 (see Figure 3e and 3f for details), suggesting that AMY3 might be the 

primary AMY at the cellular level for AP mediated amylin actions. The preferential 

expression of CTRa with RAMP1 and/or RAMP3 in these activated cells also supports the 

idea that AMY1 and AMY3 are the most physiologically relevant receptors mediating amylin 

actions in the AP, and indicates that both subtypes can be present in individual AP-neuron. In 

Fos-GFP male animals, 27% of amylin-activated, Fos-GFP positive neurons were 

characterized as CTR- but expressed either RAMP1 (9%) or RAMP3 (18%); it is unlikely 

that these cells were directly activated by amylin but because they expressed GFP after 

amylin administration, they possibly represent second-order neurons.  

The congruent results obtained in males and females suggest that the sex of the rat does not 

seem to be an important factor influencing the genetic expression of the components of the 

AMY. However, sex hormones may still influence the relative expression of the AMY 

components. Estradiol strongly upregulates mRNA levels of RAMP3 in rat uterus (Watanabe 

et al., 2006) but it has not been tested whether estradiol may have similar effects in the brain. 

Interestingly, our previous work indicates that estradiol-treated ovariectomized rats 

demonstrate enhanced suppression of eating after acute amylin (Asarian et al., 2011), 

suggesting that amylin sensitivity fluctuates over the course of the estrous cycle, which could 

in part be the result of estrogen-induced changes in RAMPs expression. 

 

We also provide evidence that RAMP2 mRNA is co-expressed with both RAMP1 and 

RAMP3 transcripts in over 50% of single AP-cells; this highlights the possibility of co-

expression of all the three RAMPs along with CTRa in individual AP-neurons. However, 

none of the individually collected AP-neurons co-expressed CTRa and only RAMP2 mRNA; 
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either one or both RAMP1 and RAMP3 transcripts were co-expressed with RAMP2 in single 

CTRa+ AP-cells. These results further support the notion that amylin acts predominantly via 

AMY1,3 in the AP, rather than AMY2. 

Whether these different AMY have different physiological relevance is difficult to answer at 

present; further studies are required to investigate the contribution of AP-neurons carrying 

single versus multiple RAMPs, in addition to the CTRa (i.e; CTRa/RAMP1, CTRa/RAMP3, 

CTRa/RAMP1/RAMP3 or CTRa/RAMP1/RAMP2/RAMP3 amylin receptors) to the binding 

and physiological effect of amylin. Our current work does not discern whether different 

variations of the AMY complex might contribute to the discrete physiological actions of 

amylin, such as the control of eating, the increase in energy expenditure, the slowing of 

gastric empting or the inhibition of glucagon secretion, all of which seem to be AP-mediated 

effects (Lutz, 2012; Hay et al., 2015). Knockout or knockdown models of either one or more 

RAMPs would be an interesting experimental approach to answer such questions. 

 

Our results also indicate that amylin has the potential to modify individual components of its 

own receptors. The relative quantification of the mRNA levels revealed that expression of 

RAMPs but not of CTRa was differentially regulated by amylin. The mRNA of the primary 

contributors necessary to form the functional AMY1,3 (RAMP1 and RAMP3) was 

consistently and significantly down-regulated by amylin while CTRa mRNA seemed to be 

unaffected. In contrast to RAMP1 and RAMP3, RAMP2 mRNA was up-regulated after 

amylin administration. The functional consequences of the latter effect are unknown at 

present. RAMP2 transcript level could be elevated to allow the dimerization with the 

calcitonin-like receptor (CLR) in the rat AP, and therefore generate an adrenomedullin-

responsive receptor over an AMY2. However, this was not the purpose of our study.  
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The functional relevance of reduced RAMP1 and RAMP3 expression following amylin 

treatment is also currently unknown, but could be related to changes in amylin sensitivity. 

Interestingly, supporting evidence has shown that when amylin was infused chronically at 

high doses (i.e. 50 μg/kg/d), its eating inhibitory effect was stronger in the first few days of 

infusion compared to later time points (Lutz et al., 2001), suggesting a decrease in amylin 

action. However, our recent work showed that when rats are chronically treated with more 

physiological doses of amylin (5-10 μg/kg/d), the animals’ responsiveness to acute amylin 

injections was maintained over time (Boyle et al., 2011). Based on these data, we therefore 

hypothesize that amylin, especially when administered at supraphysiological concentrations, 

acts on its own primary receptors (AMY1,3) to modulate RAMP1 and RAMP3 mRNAs via a 

potential negative feedback regulation mechanism. RAMP1 and RAMP3 may therefore act as 

the dynamic and regulatory component of the functional AMY1,3 in single AP-neurons, while 

CTRa may preferentially play a structural role as the core AMY subunit. 

 

A number of studies have shown that amylin increases leptin sensitivity in leptin- resistant 

animals (Trevaskis et al., 2010). Leptin exerts its eating and weight lowering effects 

primarily by binding to the LepRb. The LepRb mediated effects on energy balance seem to 

rely on a wide network of brain areas, including the VMH and the arcuate nucleus of the 

hypothalamus, but possibly also regions in the brainstem, such as the nucleus of the solitary 

tract (NTS) which is also rich in LepRb (Myers et al., 2009). Even though the VMH has been 

proposed to mediate the interactions between leptin and amylin (Trevaskis et al., 2010), the 

involvement of the caudal brainstem, and specifically the AP, has not been fully examined. 

Interestingly, the LepRb has also been found within the AP, even though in low abundance 

(Wada et al., 2014). Moreover, chronic amylin treatment in rats was shown to elevate both 

basal and leptin-induced activation of pSTAT3 in the AP (Roth et al., 2008), thus supporting 
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the idea that amylin might also interact with leptin at the level of the AP (Trevaskis et al., 

2010). Here, we showed that after acute amylin treatment, 30% of the single, Fos-GFP-

positive AP cells co-expressed the transcripts of LepRb and AMY. Moreover, amylin up-

regulated AP LepRb expression at the single cell level. Our results therefore suggest the 

presence of a first-order neuronal population in the AP that is responsive to both amylin and 

leptin. This idea is consistent with recent findings that amylin and leptin are able to excite the 

same neurons isolated from the rat AP, using a whole cell current clamp recording technique 

(Smith et al., 2015). Further, our observation that acute amylin treatment increased LepRb 

expression, provides a possible mechanism by which amylin enhances leptin sensitivity, as 

was previously speculated (Trevaskis et al., 2010). The specific contribution of AP neurons 

with the LepRb to leptin’s effects on eating and to the interaction between amylin and leptin 

will require additional investigation. 

 

The results from our current study provide the first concrete evidence that CTRa, RAMP1, 

RAMP2, RAMP3 and LepRb mRNAs, are all co-expressed in single, amylin-activated 

neurons of native rat AP. Our data report transcriptional changes at the mRNA level only. 

This limitation was mainly due to the lack of availability of commercial antibodies against 

the RAMPs and the LepRb; such studies would be important to show that the amylin receptor 

components are also co-expressed at the protein level. Our data support the possibility to 

have more than one AMY subtypes in the same amylin-activated AP-neuron. In addition, 

amylin has the potential to self-regulate its own receptors by modifying the transcriptional 

expression of the RAMPs. Finally, we showed that the LepRb mRNA is co-expressed along 

with CTRa and at least one of the RAMPs, in 30% of individual amylin-activated AP-

neurons. These data indicate that the AP may directly contribute to the interaction between 

amylin and leptin.  
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Table 1: CT values in single AP-neurons following vehicle or amylin treatment 
 

 Vehicle Amylin 

Target  
Average 

± S.E.M 
Minimum Maximum 

Average 

± S.E.M 
Minimum Maximum 

GAPDH 
27.88 ± 

0.55 
26.88 34.96 

27.30 ± 

0.03 
26.94 27.52 

CTR 
29.56 ± 

0.59 
28.14 37.30 

29.13 ± 

0.05 
28.79 29.49 

RAMP1 
30.23 ± 

0.44 
28.96 36.79 

32.03 ± 

0.13 
31.00 33.18 

RAMP2* 
33.32 ± 

0.39 
30.10 36.13 

31.69 ± 

0.95 
24.80 37.98 

RAMP3 
26.79 ± 

0.48 
25.77 32.95 

29.12 ± 

0.05 
28.65 29.68 

LepR 
32.30 ± 

0.73 
30.40 37.01 

27.58 ± 

0.41 
26.12 30.35 

 

*RAMP2 was analyzed in a separate experiment in which GAPDH values were: vehicle 

31.74 ± 0.93 (min 24.27; max 36.82); amylin 29.33 ± 1.00 (min 24.27; max 36.82) 
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Figure legend 

 

Figure 1  

RT-PCR describing the distribution of CTR isoforms in different brain nuclei. Agarose gel 

electrophoresis of CTRa (392bp), CTRb (503 bp) PCR products from rat area postrema (AP), 

subfornical organ (SFO) and hypothalamus (HYP). GADPH (207 bp) was used as the 

reference gene and run in different lanes. Only the CTRa is detected in the rat AP. 

 

Figure 2  

Distribution of CTR, RAMP1 and RAMP3 mRNAs in single cell of amylin-treated rats. (a) 

Nissl staining of rat AP at 20x. Representative image showing the LCM laser (blue cross) in 

the act of collecting a single neuron (red circle with number 1). The green circle represents 

the ultraviolet laser cutting spot. Scale bar in inset represents 12.5 μm. (b) In randomly 

picked individual neurons (n=8-10 cells per rat) from the AP of amylin-treated (20 μg/kg) 

male Wistar rats (n=4), 38% of individual neurons are CTRa+: 25% of them co-express 

CTRa and both RAMP1 and RAMP3; 3% co-expressed CTRa and only RAMP1 or CTRa 

and only RAMP3 (10%). The remaining 62% of the randomly collected single cells are 

CTRa-; most of the CTRa- cells are also RAMP1- and RAMP3- (53%); 6% of all cells are 

CTRa-, RAMP1+ and RAMP3- and 3% of all cells are CTRa-, RAMP1- and RAMP3+.  

RAMP1 and RAMP3 transcripts are preferentially expressed in CTRa positive vs CTRa 

negative neurons; Chi-square test, *** P < 0.001. 
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Figure 3 

Analysis of single cells captured from vehicle and amylin-treated Fos-GFP rats. AP sections 

of Fos-GFP rats. (a) In vehicle-treated male rats (n=4 per group/per gender), (b) the 

randomly collected single-cells (n=9-10 cells per rat) show a mixed distribution: 30% of the 

single cells were CTRa+/RAMPs+; specifically 10% was CTRa+/RAMP1+/RAMP3+, 17% 

was CTRa+/RAMP1+/RAMP3- and 3% was CTRa+/RAMP1-/RAMP3+. In the remaining 

cell population, 50% of the neurons were CTRa-/RAMP1-/RAMP3-, 11% were CTRa-

/RAMP1+/RAMP3- and 9% were CTRa-/RAMP1-/RAMP3+. (c) In Fos-GFP female rats, 

the results in the vehicle-treated group was consistent with what was shown in males; 50% of 

the collected single cells were CTRa+/RAMPs+; in particular, 17% was 

CTRa+/RAMP1+/RAMP3+, 27% was CTRa+/RAMP1+/RAMP3- and 6% was 

CTRa+/RAMP1-/RAMP3+. The remaining cell population was characterized as CTRa- : 

33% being CTRa-/RAMP1-/RAMP3-, 10% being CTRa-/RAMP1+/RAMP3- and 7% being 

CTRa-/RAMP1-/RAMP3+. (d) Amylin-induced Fos expression in AP neurons. The inset 

shows examples of single amylin-Fos-GFP activated cells (Scale bar represents 10 μm). 

The green circle represents the ultraviolet cutting spot. (e) In c-fos-GFP male rats, the 73% of 

neurons that showed Fos-GFP expression after amylin injection (50 μg/kg) were CTRa+. 

Most of CTRa+ cells (64%) co-expressed the mRNA of CTRa, RAMP1 and RAMP3, 1% 

was CTRa+/RAMP1+/RAMP3- and 8% was defined as of CTRa+/RAMP1-/RAMP3+. The 

remaining neuronal population was characterized as CTR-/RAMP1+/RAMP3- (9%) and 

CTR-/RAMP1-/RAMP3+ (18%). (f) In amylin-treated Fos-GFP female rats, all Fos-GFP 

activated neurons were CTRa+/RAMPs+; 70% of the population co-expressed CTRa, 

RAMP1 and RAMP3 in the same single cell; the remaining 30%, co-expressed CTRa and 

RAMP1 (10%) or CTRa and RAMP3 (20%). 
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Figure 4 

Effect of amylin on the transcriptional expression of CTRa, RAMP1, RAMP2 and RAMP3 

mRNAs in AP-single-cells. In Fos-GFP females rats (n=4 per group), AP single neurons 

(n=9-10 cells per rat), that showed co-expression of CTRa and RAMPs in both vehicle-

treated and amylin-treated animals were analysed by qPCR. mRNA expression is shown as 

fold change; rat GAPDH was used as housekeeping gene to normalize the data. (a) CTRa 

mRNA levels were unaffected by the experimental condition, whereas (b) RAMP1 and (d) 

RAMP3 transcripts were significantly down-regulated in amylin-treated animals compared to 

control-treated rats (RAMP1, ***P < 0.001; RAMP3, ***P <0.001). Amylin up-regulated (c) 

RAMP2 mRNA compared to control (RAMP2, ***P < 0.001); Data shown as mean±SEM. 

 

 

Figure 5 

Distribution of RAMP2 mRNA respectively to the other RAMPs. All the selected cells were 

CTRa+. (a) In vehicle Fos-GFP females rats (n=4 per group), the collected AP single neurons 

(n=9-10 cells per rat), were mainly characterized as RAMP2+, being 

RAMP1+/RAMP2+/RAMP3+ (55%), RAMP1-/RAMP2+/RAMP3+ (13%), 

RAMP1+/RAMP2+/RAMP3- (2%) and 30% being RAMP1+/RAMP2-/RAMP3+). (b) 

RAMP2 mRNA distribution in amylin-treated animals was the following: 

RAMP1+/RAMP2+/RAMP3+ (53%), RAMP1-/RAMP2+/RAMP3+ (5%); RAMP1-

/RAMP2-/RAMP3+ (12%) and RAMP1+/RAMP2-/RAMP3+ (30%). 
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Figure 6 

Distribution of LepRb mRNA in single  AP-neurons bearing a functional AMY. Single cells 

(n=4 rat per group; 9-10 cells per rat) that were positive for all components of the functional 

AMY (AMY+) were analysed for the presence or absence of LepRb mRNA. (a) In vehicle-

treated rats, 52% of the single-cells co-expressed AMY and LepR mRNAs; whereas 48% of 

single neurons were found negative for the presence of LepRb. (b) In amylin-treated rats, 

30% of the Fos positive single-cells that were AMY+ also co-expressed LepRb mRNA. The 

remaining 70% of the cell population was described as AMY+ and LepRb-. (c) Quantitative 

analysis of LepRb mRNA levels; GAPDH was used as housekeeping gene and mRNA 

expression is shown as fold change. LepRb transcript levels were significantly up-regulated 

in AMY+ cells from amylin-treated compared to vehicle treated rats (*P < 0.05). Data shown 

as mean ± SEM. 
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