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LIE ALGEBRAS OF CONSERVATION LAWS OF

VARIATIONAL PARTIAL DIFFERENTIAL EQUATIONS

EMANUELE FIORANI, SANDRA GERMANI AND ANDREA SPIRO

Abstract. We establish a version of the first Noether Theorem, ac-
cording to which the (equivalence classes of) conserved quantities of
given Euler-Lagrange equations in several independent variables are in
one-to-one correspondence with the (equivalence classes of) vector fields
satisfying an appropriate pair of geometric conditions, namely: (a) they
preserve the class of vector fields tangent to holonomic submanifolds
of a jet space; (b) they leave invariant the action, from which the
Euler-Lagrange equations are derived, modulo terms identically vanish-
ing along holonomic submanifolds. Such correspondence between sym-
metries and conservation laws is built on an explicit linear map Φα from
the vector fields satisfying (a) and (b) into the conserved differential
operators, and not into their divergences as it occurs in other proofs of
Noether Theorem. This map Φα is not new: it is the map determined
by contracting symmetries with a form of Poincaré-Cartan type α and
it is essentially the same considered for instance in a paper by Kuper-
shmidt. There it was shown that Φα determines a bijection between
symmetries and conservation laws in a special form. Here we show that,
if appropriate regularity assumptions are satisfied, any conservation law
is equivalent to one that belongs to the image of Φα, proving that the

corresponding induced map Φ̃α between equivalence classes of symme-
tries and equivalence classes of conservation laws is actually a bijection.
All results are given coordinate-free formulations and rely just on basic
differential geometric properties of finite-dimensional manifolds.

1. Introduction

In a previous paper ([6]) it was established a new version of the cele-
brated Noether Theorem on the bijection between (equivalence classes of)
conservation laws and (equivalence classes of) symmetries of Euler-Lagrange
equations for the case of functions of one independent variable.

The main purpose of that paper was to give a self-contained proof of
Noether Theorem, in a coordinate free formulation and relying only on stan-
dard differential geometric properties of finite-dimensional manifolds. An
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outcome of this approach was the realization of the fact that Noether’s corre-
spondence between conservation laws and symmetries can be actually deter-
mined by a linear map that goes directly from the Lie algebra of infinitesimal
symmetries into the vector space of constants of motions, and not into the
space of their differentials as it occurs in other proofs of Noether Theorem.
Such linear map is very simple: it is the map Φα that sends an infinitesimal
symmetry X into the function f := ıXα, where α is a fixed 1-form, de-
termined by the Lagrangian that gives the Euler-Lagrange equations. This
α is a generalisation of the Poincaré-Cartan 1-form αH := pidq

i − Hdt of
Hamiltonian Mechanics.

We have to stress the fact that Φα is not new: for instance, it essentially
coincides with the correspondence between symmetries and a special class
of conservation laws, established by Kupershmidt in [9], Thm. II.5.1, for
Lagrangians and Euler-Lagrange equations of arbitrary order and for field
theories with an arbitrary number of independent variables. We emphasise
that the main result in [6] asserts that any conserved quantity is, up to the
addition of a trivially conserved quantity, equivalent to one contained in the
image of the mapping Φα. This means that the induced correspondence

Φ̃α between equivalence classes of symmetries and equivalence classes of
conserved quantities is actually a bijection. Kupershmidt, in contrast, only
shows that the conserved currents in a particular form, that is those obtained
by a particular contraction of a vector field with a form of Poincare-Cartan
type, is contained in the image of the mapping Φα.

In this paper we extend the geometric construction of [6] to the general
case of conservation laws and Euler-Lagrange equations for functions of m
independent variables. All notions and arguments considered in [6] are di-
rectly extended to such general setting. Differences occur only in few points
and are due only to the presence of a higher number of independent vari-
ables. Actually, during the preparation of this paper, we realised that in [6]
the first and third author gave an incorrect claim, which is here removed.
A detailed erratum for [6] is given in the appendix.

As in the previous paper, Noether’s correspondence between symmetries
and conservation laws is established by means of a linear map Φα, which
transforms the elements X of the Lie algebra of infinitesimal symmetries
into the conserved (m−1)-forms η = ıXα, where α is a fixed m-form, called
of Poincaré-Cartan type. Here, with the expression “conserved (m − 1)-
form” we mean an (m − 1)-form with components that constitute a vector
valued differential operator with a divergence that vanishes on the solutions
to the Euler-Lagrange equations. As mentioned above, this linear map Φα

is essentially the same considered in [9], Ch. II.5 and, as in [6], our main
Theorem 4.9 shows that, under appropriate regularity conditions, any con-
served quantity is, up to the addition of a trivially conserved (m− 1)-form,
equivalent to one contained in the image of the mapping Φα. Due to this,

we get that the induced map Φ̃α between equivalence classes of symmetries
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and equivalence classes of conserved quantities is a true bijection, improving
in this way Kupershmidt’s result in full generality.

In order to make as much as possible clear and explicit all aspects of
innovation of our results, in §2 we overview Olver’s version of Noether The-
orem, which, at the best of our knowledge, is the most general and complete
variant of this theorem (see [16, 17, 8, 18]). We then outline our results,
pointing out differences and similarities with Olver’s and other variants of
Noether Theorem, as for instance those given in [13, 10, 3].

Structure of the paper. After section §2, where the reader can find an
outline of all contents of this paper, in §3 we introduce the main ingredients
of our approach, namely the notions of holonomic forms, variational classes
and variational principles for actions defined by variational classes. In §4,
we prove the first and second part of Noether Theorem: in the first, we
show that, by contraction with a fixed m-form of Poincaré-Cartan type, any
I-symmetry is associated with a conserved (m − 1)-form; in the second,
we prove that, under appropriate regularity conditions, this correspondence
can be reversed. In §5, an explicit example of an m-form of Poincaré-Cartan
type is given. In Appendix, the above mentioned erratum for [6] is given.

Acknowledgements. We are grateful to Franco Cardin and Juha Pohjan-
pelto for very useful discussions on various aspects of this paper.

2. An outline of the results and comparisons with previous
versions of the Noether Theorem

2.1. A short overview of Olver’s version of Noether Theorem.
Consider a system of partial differential equations of order k of class C∞

Fν

(
xi, yj ,

∂yj

∂xℓ
, . . . ,

∂kyj

∂xℓ1 . . . ∂xℓk

)
= 0 , ν = 1, . . . , N , (2.1)

for n unknown functions yj(xi) of m independent variables xi, 1 ≤ i ≤ m.
An m-tuple of smooth differential operators of order r

P = (P 1, . . . , Pm) , P ℓ = P ℓ

(
xi, yj,

∂yj

∂xℓ
, . . . ,

∂ryj

∂xℓ1 . . . ∂xℓr

)

is said to satisfy a conservation law for (2.1) if the equation

Div

(
P

(
xi, yj(xs),

∂yj

∂xℓ

∣∣∣∣
(xs)

, . . . ,
∂ryj

∂xℓ1 . . . ∂xℓr

∣∣∣∣
(xs)

))
= 0 (2.2)

is identically satisfied whenever yj(xs) is a solution to (2.1). If the m-tuple
P is identically vanishing on all solutions of (2.1), the conservation law is
called trivial of the first kind. If (2.2) holds for all smooth maps yj(xs) (not
just for the solutions to (2.1)), the conservation law is called trivial of the
second kind. We shortly call trivial conservation law any sum of such two
types of conservation laws.
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Given a non-negative integer s, the prolongation of (2.1) to order k + s
is the p.d.e.’s system that is determined by the equations in (2.1) together
with their derivatives up to order s. It is therefore a system

F (s)
ν

(
xi, yj ,

∂yj

∂xℓ
, . . . , . . . ,

∂ryj

∂xℓ1 . . . ∂xℓr
, . . .

∂k+syj

∂xℓ1 . . . ∂xℓk+s

)
= 0 , (2.3)

where now ν runs from 1 up to an appropriate integer Nk+s ≥ Nk := N ,
which depends on the order s of the prolongation.

Now, it is possible to show that if the map F (r+1−k)=(F
(r+1−k)
ν )1≤ν≤Nr+1

locally satisfies an appropriate constant rank condition, then for any (r+1)-
th order differential operator of the form Div(P ), which appear in a conser-
vation law (2.2), there locally exists a set of differential operators of order
(r + 1)

Qν = Qν

(
xi, yj ,

∂yj

∂xℓ
, . . . ,

∂ryj

∂xℓ1 . . . ∂xℓr

)
, 1 ≤ ν ≤ Nr+1 ,

such that (see [16], formula (4.27))

Div(P ) =

Nr+1−k∑

ρ=1

QνF (r+1−k)
ν . (2.4)

The operators Qν are determined by the operator Div(P ) up to addition of
a differential operator that vanishes identically on all solutions to (2.1).

Assume now that (2.1) is a system of Euler-Lagrange equations, that is
a system of equations that characterises the stationary points, within the
class of local variations with fixed boundary values, of a functional

I =

∫

U
L

(
xi, yj ,

∂yj

∂xℓ
, . . . ,

∂k
′
yj

∂xℓ1 . . . ∂xℓk′

)
dx1 ∧ . . . ∧ dxm (2.5)

for some smooth L, usually called Lagrangian (or Lagrangian density). Note
that a Lagrangian L can be also considered as a smooth real valued function
on the infinite jet space J∞(Rm;Rn).

We now recall that there is a special class of vector fields on J∞(Rm;Rn),
called variational symmetries of L, whose associated 1-parameter groups of
(local) diffeomorphisms satisfy the following conditions (see [16], Ch. 5):

a) they leave invariant the set of maps

j∞(σ) : U ⊂ R
m −→ J∞(Rm;Rn) ,

given by the jets j∞x (σ) of C∞ local maps σ : U ⊂ R
m → R

n;
b) they transform L into other Lagrangians L′ that differs from L by

terms that give trivial contributions to the Euler-Lagrange equa-
tions.

A vector field of this kind is called trivial variational symmetry if it vanishes
on the jets j∞x (σ) of the solutions σ : U ⊂ R

m → R
n to the Euler-Lagrange

equations (2.1). Two variational symmetries are said to be equivalent if
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they differ by a trivial one. It is known that any equivalence class contains
a subclass of elements vQ in special form, each of them uniquely determined
by a special n-tuple of differential operators Q = (Q1, . . . Qn). Any such
element is called variational symmetry in evolutionary form.

Olver’s proof of Noether Theorem is crucially based on the following

Theorem 2.1. Let L be a Lagrangian of order k′ and Fν = 0, 1 ≤ ν ≤ n, its
associated system of Euler-Lagrange equations of order k = 2k′+1. Suppose

also that for any r its prolonged p.d.e. system F (r−k) = (F
(r−k)
ν ) = 0 satisfies

appropriate constant rank conditions.
Then a given (locally defined) m-tuple of smooth differential operators

P = (P 1, . . . , Pm) of order r satisfies a conservation law for the Euler-
Lagrange equations Fν = 0 if and only if it is equivalent (i.e. it differs by

an m-tuple satisfying a trivial conservation law) to an m-tuple P̃ , whose

divergence Div P̃ has the form

Div P̃ =

n∑

ρ=1

QρFρ (2.6)

where Q = (Q1, . . . , Qn) is the n-tuple associated with a variational symme-
try vQ of L in evolutionary form.

We remark that the constant rank condition on F (r−k) is needed just in
the proof of the “only if” part and that, for any Euler-Lagrange equation,
a variational symmetry always determine a conservation law.

From this result the following general version of Noether Theorem follows.

Noether Theorem. If L is a Lagrangian having prolongations of the asso-
ciated Euler-Lagrange equations satisfying appropriate conditions on ranks,
local solvability and existence of non-characteristic directions (more pre-
cisely, they are normal and totally nondegenerate systems; see [16] for defi-
nitions), then there exists a one-to-one correspondence between

a) conservation laws for the Euler-Lagrange equations of L, determined
up to additions of trivial conservation laws;

b) variational symmetries of L, determined up to additions of trivial
variational symmetries.

This version of Noether Theorem is based on the map between symmetries
and conservation laws determined by (2.6). Note that such map goes from
the space of variational symmetries in evolutionary form to the space of
divergences, not into the space of the conserved m-tuples P = (P i).

2.2. An outline of our approach.

2.2.1. Holonomic submanifolds and holonomic distributions on jet spaces.
Consider a bundle π : E −→M over an m-dimensional oriented manifold

M . Since all our discussions are of purely local nature, for simplicity, from
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now on we assume that M = R
m, oriented by the standard volume form

ω = dx1 ∧ . . . ∧ dxm.
For a given k-th order jet space πk : Jk(E) → R

m, any (local) section
σ : U ⊂ R

m −→ E is uniquely associated with the submanifold (jkσ)(U)
of Jk(E), given by their k-th order jets jkx(σ), x ∈ U . These submanifolds
are usually called holonomic ([5]) and can be characterised as the only
m-dimensional submanifolds of Jk(E) with:

a) maximal rank projections onto M ;
b) all tangent spaces are contained in the vector spaces of a special

distribution D ⊂ TJk(E).

Being related with the holonomic sections, we call such D the holonomic
distribution of Jk(E). Note that in other places such distribution is called
differently, as for instance canonical differential system ([21, 22]) or Cartan
distribution ([7, 3]).

A (locally defined) r-form λ on Jk(E) is called holonomic if

a) either 0 ≤ r ≤ m and λ vanishes when it is evaluated on r vector
fields in D or

b) r ≥ m+ 1 and λ vanishes when it is evaluated on at least m vector
fields in D.

If we set s := min{r,m}, we may also say that an r-form λ is holonomic
if and only if its restriction to an m-dimensional holonomic submanifold
vanishes identically when it is evaluated on at least s vector fields that are
tangent to such submanifold.

2.2.2. Lagrangians and actions.
We now observe that any functional on the class of sections of π : E → R

m

of the form I =
∫
U L(j

k
x(σ))dx

1∧ . . .∧dxm can be considered as a functional

on the class of (oriented) holonomic submanifolds of Jk(E), defined by

I
∣∣
jkσ(U)

:=

∫

jk(σ)(U)
αL , αL := Ldx1 ∧ . . . ∧ dxm . (2.7)

Here we use the notation
∫
S
αL to indicate the integral of the restriction of

αL to the tangent space of S.

The following fact is a crucial ingredient of our construction (see §3.3): in
the class of fixed boundary variations a holonomic submanifold jk(σ)(U) is
a stationary point for I if and only if it is a stationary point for any other
functional I ′ =

∫
jk(σ)(U)(αL + λ + dµ) with λ and µ holonomic. Due to

this, we say that two m-forms α, α′ on Jk(E) are variationally equivalent
if α − α′ = λ + dµ for some λ and µ holonomic and we observe that a
variational principle for (2.7) can be considered as uniquely associated with
the variational equivalence class [αL] of αL.
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2.2.3. Conserved quantities as differential forms.
Consider an m-tuple of smooth r-th order differential operators P =

(P 1, . . . , Pm) and the associated (m− 1)-form on Jr(E)

ηP =
m∑

j=1

(−1)m−1P jdx1 ∧ . . .̂
j
. . . ∧ dxm . (2.8)

Given a section σ : U → E, one can check that DivP |jkσ(U) = 0 if and only

if the restriction dηP |T (jkσ(U)) of the differential dηP to the tangent space of

jrσ(U) ⊂ Jr(E) is identically equal to 0. Further, one has (see §4.1):

(1) dηP |T (jrσ(U)) = 0 if and only if dη′|T (jrσ(U)) = 0 for any (m−1)-form
η′ = ηP + µ+ dν with µ, ν holonomic;

(2) the integrals of ηP and η′ = ηP + µ + dν on any closed (m − 1)-
dimensional submanifold of a holonomic submanifold are equal.

This motivates the following definitions. We say that two (m − 1)-forms
η, η′ on Jr(E) are variationally equivalent if η − η′ = µ + dν for some
holonomic forms µ, ν. Moreover, given an m-tuple of r-th order differential
operators P = (P i), we call variational class of P the equivalence class [ηP ]
of (m− 1)-forms on Jr(E) that are variationally equivalent to ηP .

By (1) and (2), P satisfies a conservation law for a differential system if
and only if the differential of an (m− 1)-form η in the variational class [ηP ]
vanishes identically when restricted to the tangent spaces of the holonomic
submanifolds associated with solutions.

2.2.4. Infinitesimal I-symmetries and Noether Theorem.
Let L be a smooth Lagrangian on Jk(E) and I the functional (2.7) on

holonomic submanifolds. We call weak (infinitesimal) symmetry for I or,
shortly, weak I-symmetry any vector field on Jk(E) that generates a 1-
parameter group of (local) diffeomorphisms which

(1) preserve the holonomic distribution D or, more precisely, a slightly
weaker condition, namely they map a special subset of the vector
fields in D into vector fields in D (see details in Definition 4.2), and

(2) map an element α ∈ [αL] into m-forms of the same variational class.

Using coordinates, one can check that the vector fields on J∞(Rm,Rn) sat-
isfying (1) and (2) coincide with the vector fields that Olver calls vari-
ational symmetries. Hence our weak I-symmetries can be considered as
finite-dimensional versions (defined in a coordinate free language) of Olver’s
variational symmetries. We also have to mention that even the vector fields
that are called Noether symmetries in [3] are related with our weak I-
symmetries. In fact, using coordinates, one can check that they locally
coincide with Olver’s variational symmetries in evolutionary form. Hence,
they correspond to a special subclass of our weak I-symmetries.

Our main result is the following (Theorems 4.7 and 4.9).
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Theorem 2.2. Let L : Jk(E) → R be a smooth Lagrangian that depends
only on jets components of order k′ satisfying the inequality 2k′ + 2 ≤

[
k
2

]
.

Then there exists an m-form α in the variational class of αL = Ldx1 ∧ . . .∧
dxm with the following properties.

i) For any (weak) I-symmetry X on Jk(E), the (m−1)-form η = ıXα
is associated with an m-tuple P = (P i) of k-th order differential
operators satisfying a conservation law for the Euler-Lagrange equa-
tions of L.

ii) Let ko ≤
[
k
2

]
−1 and W ⊂ Jk(E) be an open subset of the domain of α

where the Euler-Lagrange equations E(L) = 0 of L have a prolonged
system with appropriate conditions on ranks and on the family of jets
of its solutions. For any m-tuple of ko-th order differential operators
P = (P i) on W, satisfying a conservation law for E(L) = 0, there
exists a weak I-symmetry X such that

ıXα = ηP + zP ′

where ηP is defined in (2.8) and zP ′ is an (m−1)-form corresponding
to an m-tuple P ′ = (P ′i) satisfying a trivial conservation law.

As we mentioned in the Introduction, the m-form α is called of Poincaré-
Cartan type (see 4.5 for details) and it corresponds to the form SΩ defined
by Kupershmidt in [9], §II.3. The proof of Prop. A2 in [19] (see also [4],
Thm.1.3.11) provides an algorithm to determine an m-form of Poincaré-
Cartan type for any given Lagrangian.

2.3. Comparisons with previous versions of Noether Theorem.

The above Theorem 2.2 yields the existence of a one-to-one correspon-
dence between equivalence classes of weak I-symmetries and equivalence
classes of conservation laws, exactly as it is implied by Olver’s Theorem 2.1
or other versions of Noether Theorem (see e.g. [3], §5.4.1). On the other
hand, in our approach such correspondence is determined by means of a
very simple linear map, namely the contraction map X 7→ ıXα with an
m-form α of Poincare-Cartan type. This gives a direct way to go from the
weak I-symmetries of k-th order into conserved m-tuples P of ko-th order
operators, not into the space of divergence operators as it occurs in Olver’s
and other versions of Noether Theorem. Further, this map is surjective, in
the sense that any conserved m-tuple P is, modulo addition of m-tuples
satisfying trivial conservation laws, is in the image of the above described
linear map.

Another result of our approach is the unveiling of the importance of a
distinguished relation between the Poincaré-Cartan 1-form of Hamiltonian
Mechanics and conservation laws, a relation that generalises to all smooth
systems of ordinary and partial differential equations of variational origin.
We also point out that all notions considered in our construction are ex-
pressed in terms of standard differential geometric objects. The proofs use
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only basic properties of differential forms on finite-dimensional manifolds, as
for instance Stokes’ Theorem and Homotopy Formula. This paves the way
to direct extensions of Noether Theorem to many other interesting settings,
as e.g. to supergeometric contexts. We plan to undertake this task in future
papers.

We conclude recalling that a direct correspondence between symmetries
and conserved quantities was also established by Lychagin for the Euler-
Lagrange equations that are in the class of Monge-Ampère equations. This
is a large and important family of non-linear second order differential equa-
tions on real functions f : U ⊂ R

m → R of m independent variables (see
[13, 10] and references therein). They are equations usually denoted by
∆ω(f) = 0 and they are equivalent to the vanishing of some fixed k-form
ω on J1(E), E = R × R

m, on the holonomic submanifold j1(f)(U) of the
unknown function f : U ⊂ R

m → R. In the cases in which ∆ω(f) = 0 co-
incides with an Euler-Lagrange equation, Lychagin constructed an explicit
linear map from the class of symmetries of the equation into the class of
conserved quantities, which establishes the bijection of Noether Theorem
([13], Thm. 4.4). We expect that Lychagin’s map coincides with our map
X 7→ ıXα for an appropriate choice of anm-form α of Poincaré-Cartan type.

We observe that Lychagin’s map can be constructed for all Monge-Ampère
equations of divergence type, not only for those of variational origin. We
expect that a deeper understanding of the relation between m-forms of
Poincaré-Cartan type and Lychagin’s map would lead to interesting gen-
eralisations of Noether Theorem.

3. A differential-geometric presentation of variational
principles

3.1. Notational remarks.
In what follows, we consider only partial differential equations on C∞

maps from open subsets of Rm, oriented by the standard volume form dx1∧
. . . ∧ dxm, into a fixed n-dimensional manifold M . Since any such map
f : U ⊂ R

m −→M is uniquely determined by the associated (local) section
of the trivial bundle π : E = R

m ×M −→ R
m

σ(f)(x1, . . . , xm) := (x1, . . . , xm, f(x1, . . . , xm)) ,

we always consider a system of partial differential equations as a set of
differential equations on the smooth sections of the bundle E.

Given an integer k ≥ 1 and a smooth section σ : U ⊂ R
m −→ E =

R
m×M , we denote by jkp (σ) for the k-th order jet of σ at p ∈ U . The space

of all k-jets is denoted by Jk(E). For any 1 ≤ ℓ ≤ k, we set

πkℓ : Jk(E) −→ Jℓ(E) , πkℓ (j
k
p (σ)) := jℓp(σ)
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and we denote by πk0 : Jk(E) −→ E and πk−1 : Jk(E) −→ R
m the natural

projections onto E and R
m, i.e. the maps

πk0 (j
k
p (σ)) := σ(p) and πk−1(j

k
p (σ)) := p , respectively .

Given a section σ : U ⊂ R
m −→ E, we call k-th order lift of σ the map

σ(k) : U ⊂ R
m −→ Jk(E) , σ(k)(p) := jkp (σ) .

Finally, given a system of coordinates ξ = (yi) : W ⊂ M −→ R
n on an

open set W ⊂M , we denote by ξ̂ the associated coordinates

ξ̂ : Rm ×W −→ R
n+m , ξ̂(p, q) := (x1(p), . . . , xm(p), y1(q), . . . , yn(q)) ,

where the xi’s are the standard coordinates of R
m. The coordinates

ξ̂ = (xi, yj) are called associated with the coordinates ξ = (yi). Any set of
coordinates constructed in this fashion is called set of adapted coordinates.

For a given set of adapted coordinates (xi, yj), we may consider the nat-
urally associated set of coordinates

ξ̂(k) =
(
xi, yj , (yjI)|I|=1,...,k

)
: U ⊂ Jk(E) −→ R

m+n+N ,

N := n

k∑

ℓ=1

(
m+ ℓ− 1

ℓ

)
, (3.1)

defined for any u = jkp (σ) in U = (πk0 )
−1(Rm ×W) as follows:

a) the coordinates xi(u), 1 ≤ i ≤ m, are the standard coordinates of
p = πk−1(u) ∈ R

m;

b) the coordinates yj(u), 1 ≤ i ≤ n, are the last n coordinates of the
set of adapted coordinates of (p, s(p)) = πk0 (u) ∈ R

m ×M ;

c) the coordinates yjI(u), with 1 ≤ j ≤ m and I = (I1, . . . , Im) multi-
index of order |I| :=

∑m
j=1 Ij with 1 ≤ |I| ≤ k, are the values of the

partial derivatives

yjI(u) :=
∂|I|σj

∂xI

∣∣∣∣∣
(x1(p),...,xm(p))

of a section σ in the equivalence class u = jkp (σ).

The coordinates ξ̂(k) are called adapted coordinates on Jk(E) associated with
the coordinates ξ = (yi).

3.2. Holonomic p-forms and variational classes.

Definition 3.1. The holonomic submanifolds of Jk(E) (see e.g. [5]) are the
submanifolds S ⊂ Jk(E) for which there exists a section σ : U ⊂ R

m −→ E

such that S = { u ∈ Jk(E) : u = σ(k)(x) , x ∈ U }.
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We call holonomic distribution of Jk(E) the distribution D ⊂ TJk(E)
generated at any u ∈ Jk(E) by the vectors that are tangent to holonomic
submanifolds, i.e.,

Du = Span
{
v ∈ TuJ

kE : v = σ
(k)
∗ (w) for some w ∈ TpR

m

and some σ such that jkp (σ) = u
}
.

The vectors in D and the vector fields with values in D are called holonomic
(see §2 for other names often used for the distribution D).

Let ξ̂(k) = (xi, yj , yjI) be a set of adapted coordinates on some open set

U ⊂ Jk(E) and fix a jet ū = jkp (σ̄) with coordinates ξ̂(k)(ū) = (xi, yj , yjI).

The vectors v ∈ TūJ
k(E) having the form v = σ

(k)
∗ (w) for some w =

wi ∂
∂xi

∣∣
p
∈ TpR

m and some section σ with jkp (σ) = ū, are

v = wi


 ∂

∂xi

∣∣∣∣
(xi,yj ,y

j
I
)

+
∑

0≤|I|≤k−1

yjI+1i

∂

∂yjI

∣∣∣∣∣
(xi,yj ,y

j
I
)

+

+
∑

|J |=k

∂|J |+1σj

∂xJ+1i

∣∣∣∣∣
x

∂

∂yjJ

∣∣∣∣∣
(xi,yj ,y

j
I
)


 . (3.2)

(here, given J = (J1, . . . , Jm), we set J + 1i := (J1, . . . , Ji + 1, . . . Jm)).

Since the values ∂|J|+1σj

∂xJ+1i

∣∣∣
x
, |J | = k, may vary arbitrarily by making differ-

ent choices for σ in the k-th order jet ū = jkp (σ), we have that Du ⊂ TuJ
k(E)

is generated by the linearly independent vectors

d

dxi

∣∣∣∣
(xi,yj ,y

j
I
)

:=


 ∂

∂xi
+

∑

0≤|I|≤k−1

yjI+1i

∂

∂yjI



∣∣∣∣∣∣
(xi,yj ,y

j
I
)

and
∂

∂yjJ

∣∣∣∣∣
(xi,yj ,y

j
I
)

with |J | = k . (3.3)

The notion of holonomic distribution leads to the following.

Definition 3.2. A (local) p-form λ of Jk(E) is called holonomic if it satisfies
one of the following conditions:

a) p ≤ m and for any p-tuple (X1, . . . ,Xp) of holonomic vector fields,
one has λ(X1, . . . ,Xp) = 0;

b) p > m and for any m-tuple (X1, . . . ,Xm) of holonomic vector fields,
one has λ(X1, . . . ,Xm, ⋆, . . . , ⋆) = 0.

If α, α′ are p-forms on the same open subset U ⊂ Jk(E), we call them
variationally equivalent if there exist a holonomic p-form λ and a holonomic
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(p− 1)-form µ such that

α′ = α+ λ+ dµ .

For a fixed U ⊂ Jk(E), the variational equivalence is an equivalence relation
on the set of p-forms on U . The equivalence class of α is called variational
class of α and is denoted by [α].

Finally, we say that a p-form α is proper if ıV α = 0 for any vector field V
that is vertical with respect to the projection πkk−1∗ : TJ

k(E) → TJk−1(E).

The role played by holonomic forms and variational classes in our ap-
proach has been shortly described in §2. See §3.3 below for further details.

The explicit expressions in coordinates of holonomic q-forms is quite help-
ful to get a better understanding of these objects. To write them down, we
first need to impose the following order on the set of indices:

a) the multiindices are subjected to the lexicographic order, namely
given J = (J1, . . . , Jm) and J ′ = (J ′

1, . . . , J
′
m), we say that J < J ′ if

and only if |J | < |J ′| or |J | = |J ′| and there exists ℓ ≤ m such that
ji = j′i for i = 1, . . . , ℓ− 1 and jℓ < j′ℓ;

b) given two pairs (j, J) and (j′, J ′) with 1 ≤ j, j′ ≤ n and J , J ′

multiindices, we write (j, J) < (j′, J ′) to indicate that either J < J ′

or J = J ′ and j < j′.

Consider now the collection of 1-forms

dxi for 1 ≤ i ≤ m ,

ωj
J := dyjJ −

∑m
ℓ=1 y

j
J+1ℓ

dxℓ for 1 ≤ j ≤ n , 0 ≤ |J | ≤ k − 1 ,

ψj
L := dyjL for 1 ≤ j ≤ n , |L| = k .

(3.4)

This collection of 1-forms gives a basis for T ∗
uJ

k(E) at any u, so that any
q-form α can be written as a linear combination of wedge products of such
1-forms and it can be written as

∑

ℓ+r+s=q
i1<...<iℓ

(j1,J1)<...<(jr ,Jr)
(k1,L1)<...<(ks,Ls)
0≤|Js|≤k−1 , |Lj |=k

α
J1...Jr|L1...Ls

i1...iℓ|j1...jr|k1...ks
dxi1∧. . .∧dxiℓ∧ωj1

J1
∧. . .∧ωjr

Jr
∧ψk1

L1
∧. . .∧ψks

Ls
.

(3.5)

From this expression and the definition of ψj
J , we see that α is proper if and

only if it is of the form

α =
∑

ℓ+r=q
i1<...<iℓ

(j1,J1)<...<(jr ,Jr)
0≤|Js|≤k−1 ,

α J1...Jr
i1...iℓ|j1...jr

dxi1 ∧ . . . ∧ dxiℓ ∧ ωj1
J1

∧ . . . ∧ ωjr
Jr
. (3.6)
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On the other hand, α is holonomic if and only if it is determined by an
expression (3.5) satisfying one of these conditions:

a’) q < m and all coefficients of terms with ℓ+s = q (hence, with r = 0)
are equal to 0;

b’) q ≥ m and all coefficients of terms with ℓ + s ≥ m (hence, with
r ≤ q −m) are equal to 0.

Consequently a proper q-form α is holonomic if and only if it admits one of
the following expressions:

a”) q < m and

α =
∑

ℓ+r=q
1≤r≤q

∑

i1<...<iℓ
(j1,J1)<...<(jr,Jr)

0≤|Js|≤k−1 ,

α J1...Jr
i1...iℓ|j1...jr

dxi1 ∧ . . . ∧ dxiℓ ∧ ωj1
J1

∧ . . . ∧ ωjr
Jr

;

b”) q ≥ m and

α =
∑

ℓ+r=q
q−m+1≤r≤q

∑

i1<...<iℓ
(j1,J1)<...<(jr,Jr)

0≤|Js|≤k−1 ,

α J1...Jr
i1...iℓ|j1...jr

dxi1 ∧ . . . ∧ dxiℓ ∧ ωj1
J1

∧ . . . ∧ ωjr
Jr
.

These formulae are quite useful to quickly check several properties of holo-
nomic forms. For instance, one can directly see that the differential dα of a
holonomic form α needs not be holonomic.

3.3. Variational classes, Lagrangians and source forms.
We now consider variational principles for functionals of the form

IL(σ) =

∫

U

(
L ◦ σ(k)

)
(x1, . . . , xm)dx1 ∧ . . . ∧ dxm , (3.7)

determined by a smooth Lagrangian L : Jk(E) −→ R. As it was explained
in [19] (see also [4, 6]), the functionals (3.7) can be considered as special
cases of a slightly larger class of functionals, which we now recall.

Definition 3.3. Let [α] be a variational class of m-forms in Jk(E). We call
action determined by [α] the functional on sections σ : U ⊂ R

m −→ E on
regions U with piecewise smooth boundary ∂U , defined by

I[α](σ) :=

∫

σ(k)(U)
α . (3.8)

Here, we use the notation
∫
σ(k)(U) α to indicate the integral of an m-form

α in the variational class [α], restricted to the points and to the tangent

vectors of the oriented m-dimensional submanifold σ(k)(U) of Jk(E).

We stress the fact that, by the very definition of variational classes, the
integral

∫
σ(k)(U) α is independent on the choice of the representative α in [α]

and it is therefore well defined. Indeed, if α, α′ are variational equivalent,
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i.e. α′ = α+ λ+ dµ for some holonomic m-form λ and holonomic (m− 1)-
form µ, by Stokes’ Theorem and the fact that the vectors that are tangent
to σ(k)(U) are holonomic,

∫

σ(k)(U)
α′ =

∫

σ(k)(U)
α+

∫

σ(k)(U)
λ+

∫

∂σ(k)(U)
µ =

∫

σ(k)(U)
α .

Furthermore, any functional of the form (3.7) can be considered as an action
of the form (3.8). Indeed, if L : Jk(E) −→ R is a function of class C∞ and
if we set αL := Lπk−1

∗(dx1 ∧ . . . ∧ dxm), we see that for any section σ

I[αL](σ) =

∫

σ(k)(U)
αL =

∫

U
(L ◦ σ(k))dx1 ∧ . . . ∧ dxm = IL(σ) .

Conversely, any action having the form (3.8) can be locally identified with
a functional of the form (3.7). To see this, let α be an m-form on Jk(E)

and consider the pull-back α̃ := (πk+1
k )∗(α) on Jk+1(E). Being α̃ proper, its

expression in adapted coordinates ξ̂(k) = (xi, yj , yjI) has the form (see (3.6)):

α̃ = α0dx
1 ∧ . . . ∧ dxm+

+

m−1∑

ℓ=1

( ∑

i1<...<iℓ
(j1,J1)<...<(jm−ℓ,Jm−ℓ)

0≤|Js|≤k−1 ,

α
J1...Jm−ℓ

i1...iℓ|j1...jm−ℓ
dxi1∧ . . .∧dxiℓ∧ωj1

J1
∧ . . .∧ω

jm−ℓ

Jm−ℓ

)
.

(3.9)

We now observe that here all terms except the first one are holonomic. Hence
[α̃] = [α0dx

1 ∧ . . . ∧ dxm]. This means that the values of I[α] on sections
with values in the domain W of the adapted coordinates coincide with those
given by the functional (3.7) with L := α0|W .

These remarks show that the class of functionals introduced with Defini-
tion 3.3 is a natural extension of the class of usual actions (3.7).

We conclude introducing the following convenient terminology . Let β̃ be

a (locally defined) p-form on a jet space Jk(E). We say that β̃ is of order

r if we can write β̃ = (πkr )
∗β for some (locally defined) p-form β on Jr(E),

0 ≤ r ≤ k. According to this definition, any p-form β on a jet space Jr(E)
can be naturally identified with a p-form of order r on any other jet space
Jk(E) with k ≥ r+1. Further, note that if a p-form β′ on Jk(E) is of order
0 ≤ r ≤ k − 1, then it is proper.

Due to this it is possible to identify any (not necessarily proper) p-form
on a jet space Jr(E) with a proper p-form (of order r) on a jet space Jk(E)
with k ≥ r + 1. This shows that, in many arguments, there is no loss of
generality if one reduces to consider only proper q-forms.
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3.4. Variational Principles and Euler-Lagrange equations.
We now consider variational principles for the actions defined in Definition

3.3. As the reader will shortly see, our presentation is designed to derive
from a given variational principle the same Euler-Lagrange equations that
one obtains from Lagrangians in usual settings.

Consider a section σ : U −→ E and a regular m-dimensional region D in
U ⊂ R

m. With the expression “regular region” we mean a connected open
subset D ⊂ U , whose closure D is an m-dimensional oriented manifold with
corners (see e.g. [11] for the definition).

A smooth map F : D× (−ε, ε) −→ E is called variation of σ|D with fixed
k-th order boundary if it satisfies the following conditions:

a) the maps F (s) := F (·, s) : D −→ E, s ∈ (−ε, ε), are such that

F (0) = σ and, for any s, the map F (s) is smoothly extendible to D;
b) for any s ∈ (−ǫ, ǫ), the k-order lift (F (s))(k) := jk(F (s)) of the exten-

sion F (s) : D → E satisfies the boundary condition (F (s))(k)
∣∣
∂D

=

σ(k)
∣∣
∂D

.

Definition 3.4. Let [α] be a variational class of m-forms on Jk(E) and
σ : U ⊂ R

m −→ E a section. We say that σ satisfies the variational
principle of I[α] if for any regular region D ⊂ U and any variation F of σ|D
with fixed k-th order boundary, one has

d
(
I[α](F

(s))
)

ds

∣∣∣∣∣
s=0

=
d

ds

( ∫

jk(F (s))(D)
α
)∣∣∣∣

s=0

= 0 . (3.10)

We now want to show that the sections that satisfy such variational prin-
ciple are precisely the solutions to the usual Euler-Lagrange equations of
classical setting. For this, we first need to reformulate (3.10) into an equiv-
alent condition involving a special kind of vector fields.

Let σ : U −→ E be a section, D ⊂ U a regular region andW : σ(k)(D) −→

TJk(E)|σ(k)(D) a vector field defined only at the points of σ(k)(D). We say

that W is a k-th order variational field if there exists a smooth variation
F : D × (−ε, ε) −→ E of σ with fixed k-th order boundary such that

W = F
(k)
∗

(
∂

∂s

∣∣∣∣
(x,0)

)
, F (k)(x, s) := jkx(F (·, s)) . (3.11)

We remark that, by the property (b) of the variations with fixed k-th order
boundary, any variational vector field W is such that

W |σ(k)(∂D) = 0 . (3.12)

Proposition 3.5. A section σ : U −→ E satisfies the variational principle
of I[α] if and only if ∫

σ(k)(D)
ıW dα = 0 (3.13)
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for any regular region D ⊂ U and any k-th order variational field W on
σ(k)(D).

Proof. Let W be the variational field (3.11) determined by a smooth vari-
ation F with fixed k-th order boundary. By Stokes’ Theorem for manifolds
with corners (see e.g. [12]) and by (3.12), for any m-form α on Jk(E) and
any h ∈ (−ε, ε)∫

(F (h))(k)(D)
α−

∫

(F (0))(k)(D)
α =

∫

D×{h}
F (k)∗(α)−

∫

D×{0}
F (k)∗(α) =

=

∫

∂(D×(0,h))
F (k)∗(α) =

∫

D×(0,h)
F (k)∗(dα) .

Hence,

d
(
I[α](F

(s))
)

ds

∣∣∣∣∣
s=0

= lim
h→0

1

h

(∫

(F (h))(k)(D)
α−

∫

(F (0))(k)(D)
α

)
=

= lim
h→0

1

h

∫

D×(0,h)
F (k)∗(dα) =

∫

D

σ(k)∗
(
(−1)mıW dα

)
=

= (−1)m
∫

σ(k)(D)
ıW dα .

From this the claim follows.

In absence of an effective characterisation of the variational vector fields,
condition (3.13) does not seem to correspond to any system of partial differ-
ential equations for σ. On the other hand, we have to stress that if σ satisfies
(3.13) for a given choice of variational vector field W , it also satisfies the
equality

∫
σ(k)(D) ıWβ = 0 for any (m+1)-form β which is variationally equiv-

alent to dα. Indeed, if β = dα + λ + dµ for some holonomic λ and µ, by
Stokes’ Theorem, holonomicity and (3.12), we have∫

σ(k)(D)
ıWdα =

∫

σ(k)(D)
ıWβ −

∫

σ(k)(D)
ıW dµ =

=

∫

σ(k)(D)
ıWβ −

∫

σ(k)(D)
LWµ+

∫

σ(k)(D)
d(ıWµ) =

=

∫

σ(k)(D)
ıWβ −

∫

σ(k)(D)
LWµ+

∫

σ(k)(∂D)
ıWµ =

=

∫

σ(k)(D)
ıWβ −

∫

σ(k)(D)
LWµ .

(3.14)

Here, LWµ is to be understood as the Lie derivative of µ along some smooth
extension of W on a neighbourhood of σ(k)(D). By definition of W , we may
always assume that such local extension has a local flow ΦW

t , which is the lift

to Jk(E) of a fiber preserving flow ΦW̃
t on E, generated by a local vector field

W̃ of E that projects trivially on R
m. Under this assumption, the local flow

ΦW
t maps holonomic sections into holonomic sections, hence it preserves the
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holonomic distribution D. This yields that the Lie derivatives of holonomic
forms byW are holonomic and that

∫
σ(k)(D) ıW dα =

∫
σ(k)(D) ıWβ, as claimed.

This fact motivates the importance of some special representatives of [dα],
called source forms and which are now about to define. For this we need to
introduce a preliminary notion (see e.g. [19, 4]): A proper q-form β on a jet
space Jk(E), k ≥ 1, is called homogeneous if there are non-negative integers
ℓ, r such that ℓ + r = q and so that, for any set {X1, . . . ,Xq} of q vector
fields that contains either more than ℓ holonomic vector fields or more than
r vector fields projecting trivially on R

m, one has

β(X1, . . . ,Xq) = 0 .

If β is homogeneous and satisfies the above condition for the integers ℓ and r,
we call the pair (ℓ, r) the bi-degree of β. It can be checked that the bidegree
of a non-trivial proper homogeneous q-form β is uniquely associated with β.

Definition 3.6. A source form on Jk(E) is any (locally defined) (m + 1)-
form β which is proper, homogeneous of bi-degree (m, 1) and such that

β(X1, . . . ,Xm, V ) = 0 (3.15)

for any holonomic vector fields Xi and any πk0 -vertical vector field V (i.e.,
such that πk0∗(V ) = 0).

For a better understanding of source forms, it is convenient to see what
are the coordinate expressions of these (m+1)-forms in a system of adapted

coordinates ξ̂(k) = (xi, yj, yjI). One can directly check that an (m+ 1)-form
β is a source form if and only if it has the form

β =

n∑

j=1

βjdx
1 ∧ · · · ∧ dxm ∧ dyj =

n∑

j=1

βjdx
1 ∧ · · · ∧ dxm ∧ ωj

0 (3.16)

at all points where the coordinates are defined. We also remark that by
Prop. A.2 in [19] (see also [20, 4, 6]) given an m-form α = Ldx1 ∧ . . .∧ dxm

determined by a Lagrangian L of order r, the variational class [dα] on a jet
space Jk(E) with k ≥ 2r contains exactly one source form β. Locally, such
source form is given by the coordinate expression (3.16) in which the com-
ponents βj are determined by applying the classical Euler-Lagrange operator
to L. In particular, when r = 1 and k = 2, the explicit expressions of the
components βj are

βj := −
∂L

∂yj
+

m∑

ℓ=1

d

dxℓ

(
∂L

∂yjℓ

)
(3.17)

(for properties of higher order Lagrangians and Euler-Lagrange operators,
see e.g. [2], §II.B).

We are now able to show that a section satisfies a variational principle for
I[α] if and only if it satisfies the corresponding Euler-Lagrange equations.
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Theorem 3.7. Let α = Ldx1 ∧ . . . ∧ dxm be an m-form of order r on a
jet space Jk(E) with k ≥ 2r and β the unique source form in [dα]. Then
σ : U → E satisfies the variational principle of I[α] if and only if, for any

u ∈ σ(k)(U) and v ∈ TuJ
k(E)|U ,

ıvβ
∣∣
u
(X1, . . . ,Xm) = 0 for any choice of vectors Xi ∈ Tu

(
σ(k)(U)

)
.

(3.18)

Proof. By Proposition 3.5 and the remark after (3.14), a section σ : U → E
satisfies the variational principle if and only if

∫

σ(k)(D)
ıWβ = 0 (3.19)

for any regular domain D ⊂ U and any k-th order variational field W . If
D is sufficiently small, so that σ(k)(D) is included in the domain of a set of

adapted coordinates ξ(k) = (xi, yj , yjI), we may write

W =W j ∂

∂yj
+

k∑

|I|=1

W j
I

∂

∂yjI
and ıWβ = (W iβi)dx

1 ∧ . . . ∧ dxm . (3.20)

We also observe that, for any given choice of maps f i : σ(k)(D) → R,
i = 1, . . . , n, that vanish identically on a neighbourhood of ∂D, one can
construct a smooth variation F with fixed boundary up to order k, whose
associated variational field W has coordinate components given by

W i|σ(k)(p) = f i|σ(k)(p) for any p ∈ D .

This and (3.20) yield that (3.19) is satisfied for any regular domain D and
any choice of W if and only if the restrictions βi|σ(k)(U) are identically van-

ishing. This means that σ is a solution if and only if the m-form

ıWβ = (−1)mW iβidx
1 ∧ . . . ∧ dxm

is identically vanishing on σ(k)(U) for any choice of a vector field W =

W j ∂
∂yj

+
∑k

|I|=1W
j
I

∂

∂y
j
I

at the points of σ(k)(U) (and not just for vector

fields W of variational type). The claim follows.

From this proof and the remarks before (3.17), we directly see that when-
ever the action I[α] is determined by a Lagrangian density L, condition (3.18)
holds if and only if the section σ satisfies the usual system of Euler-Lagrange
equations determined by L, as claimed.

4. A new proof of the Noether Theorem

4.1. Conservation laws for a system of variational p.d.e.’s.
We call p-form-valued differential operator of order k a smooth map η :

Jk(E) −→ ΛpT ∗
R
m which makes the following diagram commute (here,

π : ΛpT ∗
R
m −→ R

m is the standard projection)
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Jk(E)

❅
❅
❅❅❘

R
m

η
✲ ΛpT ∗

R
m

�
�

��✠
ππk,−1

Any such map has necessarily the form (2.8) for some appropriate m-
tuple P = (P j) of smooth maps P j : Jk(E) → R. We call P the m-tuple
of differential operators associated with η. Note also that, for any section
σ : U −→ E defined on an open set U ⊂ R

m, the map η|σ(k) := η ◦ σ(k) :
U −→ ΛpT ∗

R
m is a smooth p-form on U ⊂ R

m.

Consider an (m−1)-valued differential operator η : Jk(E) −→ Λm−1T ∗
R
n

and a variational class [α] of m-forms on Jk(E). We say that η satisfies a
conservation law for I[α] if for any section σ : U −→ E that satisfies the
variational principle of I[α], one has

∫

∂D

η|σ(k) = 0 (4.1)

on all boundaries ∂D of regular regions D in the domain U of σ. One can
directly check that this holds if and only if the associated m-tuple P = (P j)
satisfies (2.2) for all solutions of the variational principle.

We now want to express condition (4.1) in terms of variational classes.
Let η̃ be the (m− 1)-form on Jk(E) defined by

η̃
∣∣
u
:= (πk−1)

∗η(u) for any u ∈ Jk(E) . (4.2)

By construction, for any section σ : U −→ E and any regular domainD ⊂ U ,
∫

∂D

η|σ(k) =

∫

σ(k)(∂D)
η̃ .

Further, for any (m− 1)-form η̃′, which is in the same variational class of η̃
(i.e. η̃′ = η̃ + λ+ dµ for some λ, µ holonomic), we have
∫

σ(k)(∂D)
η̃′ =

∫

σ(k)(∂D)
η̃ +

∫

σ(k)(∂D)
λ+

∫

σ(k)(D)
d2µ

λ is holon.
=

∫

σ(k)(∂D)
η̃.

This shows that (4.1) can be actually identified with an integral that de-
pends only of the variational class of (4.2). Conversely, given an arbitrary
(m− 1)-form η̃′ on Jk(E) and an open set U ⊂ R

m for which one can deter-
mine adapted coordinates on W := Jk(E|U ), one can directly determine an
(m − 1)-form-valued differential operator η : Jk(E|U ) −→ Λm−1T ∗

R
n such

that the (m− 1)-form (4.2) and the restriction η̃′|(πk
−1)

−1(U) are in the same

variational class. These observations motivate the following

Definition 4.1. Let α and η be anm-form and an (m−1)-form, respectively,
on Jk(E). We say that the variational class [η] satisfies a conservation law
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for the action I[α] if for any section σ : U −→ E that satisfies the variational

principle of I[α], one has
∫
σ(k)(∂D) η = 0 for any regular domain D ⊂ U .

By previous remarks, the conservation laws satisfied by (m − 1)-form-
valued differential operators determine conservation laws satisfied by varia-
tional classes of (m− 1)-forms. At a local level, the converse is also true.

4.2. I-Symmetries.
As announced in §2.2.4, our version of Noether Theorem is based on the

following notions of “symmetry”.

Definition 4.2. Let X and α be a vector field and an m-form, respectively,
defined on an open subset U of Jk(E).

a) X is an infinitesimal symmetry of the holonomic distribution D
(shortly, D-symmetry) if for all holonomic vector field Y on U , the
Lie derivative LXY is a holonomic vector field.

b) X is a weak D-symmetry if, for any holonomic vector field Y on U
and any u ∈ U , there exists a neighbourhood U ′ ⊂ U of u and a
holonomic vector field Y ′ on U ′ such that 1) πkk−1∗(Y

′) = 0 and 2)
the Lie derivative LX(Y − Y ′) is holonomic.

c) X is an infinitesimal (weak) symmetry for I[α] (shortly, (weak) I-
symmetry) if it is a (weak) D-symmetry and LXα is holonomic for
some proper α ∈ [α].

The notion of D-symmetry is the direct generalisation of the correspond-
ing definition considered in [6]. There, the discussion was limited to the
case of jet spaces of maps of one independent variable, but most of their
properties remain true in our more general situation. We briefly recall the
main properties of D-symmetries and refer to [6] for other details.

1) If a vector field X on an open subset U ⊂ Jk(E) is a D-symmetry,
then its local flow is a 1-parameter family of local diffeomorphisms
mapping any holonomic submanifold σ(k)(U) into another subman-
ifold, which is also locally holonomic, i.e. of the form σ′(k)(U ′) for
some other section σ′ : U ′ → E.

2) If X is a D-symmetry and λ is a holonomic p-form, then the local
flow ΦX

t of X is such that all local p-forms ΦX
t

∗(λ), t ∈ (−ε, ε) ⊂ R,
are holonomic. Hence, also the Lie derivative LXλ is holonomic.

3) If α, α′ are in the same variational class (i.e. α − α′ = λ + dµ,
with λ, µ holonomic), then LXα is holonomic if and only if LXα

′ is
holonomic.

The class of weak D-symmetries is new and it naturally includes all D-
symmetries. This weaker version of the D-symmetries is needed to remove
an incorrect claim of [6] (see Appendix). We remark that if one works on the
infinite order jet space J∞(E) instead of the finite order jet space Jk(E),
the notions of D-symmetry and weak D-symmetry coincide.
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4.3. Differential equations that characterise D-symmetries and in-
finitesimal symmetries of an action.

Proposition 4.3. Let X and α be a vector field and anm-form, respectively,

on an open subset U ′ ⊂ Jk(E) and assume that ξ̂(k) = (xi, yj , yjJ) are adapted
coordinates on U ⊂ U ′. Then:

(1) A necessary condition for X|U to be a D-symmetry is that it satisfies
the differential equations

ωi
I

(
LX

d

dxj

)
= 0 (4.3)

for all 1 ≤ j ≤ m, 1 ≤ i ≤ n and 0 ≤ |I| ≤ k − 1. Conversely, if X
satisfies the above system of differential equations, then it is a weak
D-symmetry.

(2) A necessary condition for X|U to be an infinitesimal symmetry for
I[α] (considered as functional on the sections of E|πk

0 (U)) is that for

some αo ∈ [α|U ] it satisfies the system of differential equations (4.3)
together with the differential equations

(LXαo)

(
d

dxi1
, . . . ,

d

dxim−r
,
∂

∂yj1J1

, . . . ,
∂

∂yjrJr

)
= 0 (4.4)

for all 0 ≤ r ≤ m − 1, 1 ≤ ih ≤ m, 1 ≤ jℓ ≤ n and |Jℓ| = k.
Conversely, if X satisfies the systems (4.3) and (4.4) for some αo ∈
[α|U ], then X|U is a infinitesimal weak symmetry for I[α].

Proof. (1) Recall that D|U is generated by the vector fields d
dxi , 1 ≤ i ≤ m,

and the vector fields ∂

∂y
j
J

, 1 ≤ j ≤ n, |J | = k. It therefore consists of the

intersections of the kernels of the 1-forms ωi
I , 0 ≤ |I| ≤ k−1, 1 ≤ i ≤ n, at all

points u ∈ U . Hence X|D is a D-symmetry only if (4.3) holds. Conversely,
assume that X satisfies the system of differential equations (4.3) and let Y
be a holonomic vector field, i.e.

Y = Y j d

dxj
+

∑

1≤j≤n,|J |=k

Y i
J

∂

∂yiJ
.

Then, Y ′ :=
∑

1≤j≤n,|J |=k Y
i
J

∂
∂yi

J

is a holonomic vector field such that: a)

πkk−1∗(Y
′) = 0; b) ωi

I (LX(Y − Y ′)) = 0 for any 1 ≤ i ≤ m and 1 ≤ |I| ≤
k − 1. This means that LX(Y − Y ′) is holonomic and proves that X is a
weak D-symmetry.

(2) From (1) and definition of infinitesimal symmetry for I[α], it follows
that the systems (4.3) and (4.4) are necessary conditions for X to be a
D-symmetry. The converse claim is a consequence of definitions and (1).
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4.4. Explicit expressions for weak D-symmetries.

Let ξ̂(k) = (xj , yi, yiJ) be a system of adapted coordinates on an open

subset U ⊂ Jk(E). For a given smooth map

v = (v1
B , . . . ,v

m
B ,v1, . . . ,vn) : U ⊂ Jk(E) −→ R

m+n ,

let us denote by Xv the vector field

Xv := vj
B

∂

∂xj
+ vi ∂

∂yi
+

∑

1≤i≤n,1≤|J |≤k

vi
J

∂

∂yiJ
, (4.5)

where we follow the standard Einstein convention on summation over re-
peated indices and, for any multiindex J = (J1, . . . , Jm) with 1 ≤ |J | ≤ k,
we set

vi
J :=

(
d

dx1

)J1

. . .

(
d

dxm

)Jm (
vi − yi1rv

r
B

)
+ yiJ+1rv

r
B
. (4.6)

(in this formula, we assume yiJ := 0 when |J | = k + 1). This yields that

Xv = vj
B

d

dxj
+
(
vi − yi1rv

r
B

) ∂

∂yi
+

+
∑

1≤|J |≤k

(
d

dx1

)J1

. . .

(
d

dxm

)Jm(
vi − yi1rv

r
B

) ∂

∂yiJ
. (4.7)

We may now prove the following

Proposition 4.4. Given a set of adapted coordinates ξ̂(k) = (xj , yi, yiJ) on

an open subset U ⊂ Jk(E), the vector fields Xv defined in (4.5) are exactly
the vector fields that satisfy the system of differential equations (4.3). In
particular, all of them are weak D-symmetries.

Proof. Let X = Xj
B

∂

∂xj
+Xi ∂

∂yi
+

∑

1≤i≤n,1≤|J |≤k

Xi
J

∂

∂yiJ
. Since

LX
d

dxj
= −

dXr
B

dxj
∂

∂xr
+

∑

0≤|J |≤k−1

(
Xi

J+1j −
dXi

J

dxj

)
∂

∂yiJ
−
∑

|J |=k

dXi
J

dxj
∂

∂yiJ
,

the system (4.3) is equivalent to

0 = ωi
I

(
LX

d

dxj

)
= Xi

I+1j −
dXi

I

dxj
+ yiI+1r

dXr
B

dxj
(4.8)

for all 1 ≤ i ≤ n and 0 ≤ |I| ≤ k − 1. This means that if X is a solution to
(4.3), then the components Xi

J with 1 ≤ |J | ≤ k are uniquely determined by
an inductive process from the components Xr

B and Xj . If we set vr
B := Xr

B

and vj := Xj, a straightforward check shows that X = Xv. The last claim
follows from Proposition 4.3.
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4.5. The Noether Theorem.

Definition 4.5. We say that an m-form α on an open set U ⊂ Jk(E) is of
Poincaré-Cartan type if its differential dα is equal to a source form up to
addition of an holonomic (m+ 1)-form.

The main motivation for this terminology comes from the fact that the
well-known Poincaré-Cartan form α = pidq

i−Hdt of Hamiltonian Mechanics
is a 1-form of Poincaré-Cartan type according to the above definition (see
[6] for details; see also [2], Ch. 5B, for other generalisations of the Poincaré-
Cartan 1-form). We also remark that if αL is an m-form on U ⊂ Jk(E) with
adapted coordinate expression αL = Ldx1∧ . . .∧dxm for some Lagrangian L
of order r ≤

[
k
2

]
, then for any u ∈ U there exists a neighbourhood U ′ ⊂ U of u

such that the variational class [αL|U ′ ] contains at last one 1-form of Poincaré-
Cartan type. To see this, one needs only to consider a system of adapted
coordinates on a neighbourhood U ′ of u and the source form β ∈ [dα|U ′ ] in
(3.16), which has components determined by the Euler-Lagrange operator
applied to L. Then β = dαL|U ′+dµ+λ = d(αL|U ′+µ)+λ for some holonomic
µ and λ and α := αL|U ′ +µ is the required m-form of Poincaré-Cartan type
in [αL|U ′ ].

We finally observe that the previous argument shows that if L is a La-
grangian of order r and k > 2r, the variational class [αL|U ′ ] contains an m-
form which is not only of Poincaré-Cartan type, but also of order ko ≤ k−1.
This additional condition is quite useful and it will be often required in the
following.

The notion of m-forms of Poincaré-Cartan type leads to the following
characterisation of weak I-symmetries. As in Proposition 4.4, we consider

a fixed adapted coordinates ξ̂(k) = (xj , yi, yi(a)) on an open set U ⊂ Jk(E).

Proposition 4.6. Let α be an m-form of Poincaré-Cartan type of order
ko ≤ k − 1 and X a weak D-symmetry on U ⊂ Jk(E) satisfying the system
(4.3). Then X is such that LXα is holonomic (thus, an infinitesimal weak
symmetry for I[α]) if and only if it satisfies the following system of linear
differential equation for some source form β ∈ [dα|U ]:

LXα

(
d

dxi1
, . . . ,

d

dxir
,
∂

∂yj1J1

, . . . ,
∂

∂y
jm−r

Jm−r

)
=

= d(ıXα)

(
d

dxi1
, . . . ,

d

dxir
,
∂

∂yj1J1

, . . . ,
∂

∂y
jm−r

Jm−r

)
= 0, (4.9)

d(ıXα)

(
d

dx1
, . . . ,

d

dxm

)
= −β

(
X,

d

dx1
, . . . ,

d

dxm

)
(4.10)

for all 1 ≤ r ≤ m − 1 and all choices of indices and multiindices with
1 ≤ ih ≤ m, 1 ≤ jℓ ≤ r and |Jℓ| = k.
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Proof. Let λ be the holonomic (m+1)-form λ := dα−β. From definitions,
for any 0 ≤ r ≤ m, 1 ≤ iℓ ≤ m, 1 ≤ jh ≤ n, |Jh| = k, we have

λ

(
d

dxi1
, . . . ,

d

dxir
,
∂

∂yj1J1

, . . . ,
∂

∂y
jm−r

Jm−r

, ⋆

)
= 0 , ı ∂

∂y
j1
J1

β = 0 .

From this and Proposition 4.3 (2), it follows that the weak D-symmetry X
is an infinitesimal symmetry for I[α] if and only if (4.9) and (4.10) hold.

We can now state and prove the Noether Theorem in its two parts, direct
and inverse.

Theorem 4.7 (Noether Theorem – first part). Let α be an m-form of
Poincaré-Cartan type on Jk(E). If X is a (weak) infinitesimal symmetry
for I[α] on an open set U ⊂ Jk(E) with LXα holonomic, then the variational

class of the (m − 1)-form η(X) := ıXα satisfies a conservation law for the
action I[α].

Proof. Since α is of Poincaré-Cartan type, there is a holonomic (m + 1)-
form λ such that β = dα+ λ is a source form. Hence, if LXα is holonomic,
then for any section σ : V ⊂ R

m −→ U ⊂ E and any regular domain D ⊂ V
∫

σ(k)(∂D)
η(X) =

∫

σ(k)(D)
d(ıXα) =

=

∫

σ(k)(D)
LXα−

∫

σ(k)(D)
ıXdα

LXα and λ holon.
= −

∫

σ(k)(D)
ıXβ . (4.11)

Since
∫
σ(k)(D) ıXβ = 0 for any solution σ of the variational principle, [η(X)]

satisfies a conservation law.

Now, before getting into the second part of Noether Theorem, we need to
introduce an appropriate definition of regularity for Euler-Lagrange equa-
tions.

Let [α] be a variational class of m-forms on an open subset of Jk(E) and
assume that β = βiω

i
0∧dx

1∧ . . .∧dxm is a source form on some open subset
W ⊂ Jk(E). Assume also that β is of order kβ ≤ k − 1 (we may always
reduce to this case by pulling back β on some jet space of higher order) and
consider the differentials dβi of the components βi of β. By assumptions,
these differentials are equal to

dβi =

m∑

j=1

∂βi
∂xj

dxj +
∑

1≤j≤n
0≤|I|≤k−1

∂βi

∂yjI
dyjI =

m∑

j=1

dβi
dxj

dxj +
∑

1≤j≤n
0≤|I|≤k−1

∂βi

∂yjI
ωj
I .

Due to this, for any section σ : U → E whose k-th order lift σ(k) takes values
in W, we have

d
(
βi(σ

(k)(x1, . . . , xm))
)
= dβi

(
σ
(k)
∗

(
∂

∂xj

))
=

m∑

j=1

dβi
dxj

∣∣∣∣
σ(k)(t)

dxj .
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Hence, σ is a solution of the Euler-Lagrange equations, i.e.

βi(σ
(k)(x1, . . . , xm)) = 0 , 1 ≤ i ≤ n , (4.12)

if and only if it is also a solution to the (expanded) system

βi(σ
(k)(x1, . . . , xm)) =

dβi
dxj

(σ(k)(x1, . . . , xm)) = 0 , 1 ≤ j ≤ m, 1 ≤ i ≤ n.

(4.13)
The system (4.13) is called first prolongation of (4.12). Note that if the
0-forms (= functions) βi are of order kβ (≤ k − 1), then, generically, the
functions that define (4.13) are 0-forms of order kβ + 1.

Iterating this argument (k′−kβ) times for some k′ ≤ k, we get that (4.12)
is equivalent to the expanded system

βi(σ
(k)(xℓ)) =

dβi
dxj1

(σ(k)(xℓ)) = . . . =

=

(
d

dxj1

(
d

dxj2
. . .

(
d

dx
jk′−kβ

(βi)

)
. . .

))
(σ(k)(xℓ)) = 0 (4.14)

for all 1 ≤ jh ≤ m and 1 ≤ i ≤ n. This new system is called full prolongation
of (4.12) up to order k′. Note that, generically, the 0-forms that give the
full prolongation up to order k′ are 0-forms of order k′.

Definition 4.8. For a given system of Euler-Lagrange equations (4.12) of

order kβ , let F
(k′)
β be the smooth map

F
(k′)
β : W ⊂ Jk(E) → R

N , F
(k′)
β :=

(
βi,

d|I|βi
dxI

)

1≤i≤m
1≤|I|≤k′−kβ

. (4.15)

Here, N = n
(
1 +

∑k′−kβ
r=1 (m+r−1

r )
)
and d|I|βi

dxI , I = (I1, . . . , Im), stands for

d|I|βi
dxI

:=
d

dx1
d

dx1
. . .

d

dx1︸ ︷︷ ︸
I1-times

d

dx2
d

dx2
. . .

d

dx2︸ ︷︷ ︸
I2-times

. . .
d

dxm
d

dxm
. . .

d

dxm︸ ︷︷ ︸
Im-times

βi .

Let Z
(k′)
β := { u ∈ W : F

(k′)
β (u) = 0 } ⊂ Jk(E). We say that the system of

Euler-Lagrange equations (4.12) is k′-regular on W if:

i) the k′-th order jets of the solutions of the Euler-Lagrange equations

constitute a dense subset of πkk′(Z
(k′)
β ) ⊂ Jk′(E) and

ii) the map F
(k′)
β is a submersion at all points of Z

(k′)
β .

We are now able to state and prove the second part of Noether Theorem.

Theorem 4.9 (Noether Theorem – second part). Let ko ≤
[
k
2

]
−1 and

α be an m-form of Poincaré-Cartan type on Jk(E) of order less than or equal
to ko − 1. Assume that there exists an open subset W ⊂ Jk(E) admitting

a system of adapted coordinates ξ̂(k) = (xj , yi, yiI), where the following non-
degeneracy conditions are satisfied:
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a) the source form in [dα|W ]

β = βidy
i ∧ dx1 ∧ . . . ∧ dxm = βiω

i
0 ∧ dx

1 ∧ . . . ∧ dxm

is of order kβ ≤ ko and the system of Euler-Lagrange equations
(4.12) is ko-regular on W;

b) α
(

d
dx1 , . . . ,

d
dxm

)∣∣
u
6= 0 at all u’s in W.

Then, if η is an (m− 1)-form on W of order less than or equal to ko − 1,
such that [η] satisfies a conservation law for I[α], there exists a neighbourhood

U of Z
(ko)
β = {u ∈ W : F

(ko)
β (u) = 0} on which there are

1) a weak I-symmetry X for I[α] with LXα holonomic and
2) an (m− 1)-form z that vanishes identically on any (m− 1)-tuple of

vectors in a tangent space of a holonomic submanifold σ(k)(V) of a
solution σ to the variational principle,

such that

η
∣∣
U
= ıXα+ z . (4.16)

Proof. By Propositions 4.4 and 4.6, it suffices to prove the existence of a

smooth R
m+n-valued map v = (vj

B ,v
i) : U → R

m+n on a neighbourhood U

of Z
(ko)
β and of an (m−1)-form z on U , such that: i) z(Y1, . . . , Ym)

∣∣
σ(k)(V)

= 0

for any choice of vector fields Yi tangent to submanifolds σ(k)(V) of solutions
σ of the Euler-Lagrange equations; ii) the following equations are satisfied

ıXv
α = η − z , (4.17)

β

(
Xv,

d

dx1
, . . . ,

d

dxm

)
=− dη

(
d

dx1
, . . . ,

d

dxm

)
+ dz

(
d

dx1
, . . . ,

d

dxm

)
,

(4.18)

LXv
α

(
d

dxj1
, . . . ,

d

dxjr
,
∂

∂yj1J1

, . . . ,
∂

∂y
jm−r

Jm−r

)
=

= d(ıXv
α)

(
d

dxj1
, . . . ,

d

dxjr
,
∂

∂yj1J1

, . . . ,
∂

∂y
jm−r

Jm−r

)
= 0 (4.19)

for all 1 ≤ r ≤ m− 1, 1 ≤ ih ≤ m, 1 ≤ jℓ ≤ r and |Jℓ| = k. Let us write α,
η, z and β as sums of homogeneous forms, that is as

α = α0dx
1 ∧ . . . ∧ dxm+ (4.20)

+
∑

0≤|I|≤k−1
1≤i≤n,1≤j≤m

αI
i|jω

i
I ∧ dx

1 ∧ . . . ̂
j
. . . ∧ dxm + λ(α)
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η =
∑

1≤j≤m

ηjdx
1 ∧ . . . ̂

j
. . . ∧ dxm + µ(η) (4.21)

z =
∑

1≤j≤m

zjdx
1 ∧ . . . ̂

j
. . . ∧ dxm + µ(z) (4.22)

β =
∑

1≤i≤n

βiω
i
0 ∧ dx

1 ∧ . . . ∧ dxm , (4.23)

where λ(α), µ(η), µ(z) are holonomic forms, given by the terms in α, η and
z, respectively, that are homogeneous of bidegree (ℓ, h) with ℓ ≤ m − 2.
We now observe that, for any vector field X, the (m − 1)-form ıXλ

(α) is
holonomic. Hence, the (m − 1)-form z has the prescribed properties if and

only if z′ := z+ ıXλ
(α)−µ(η) has those properties. This yields that the above

conditions are satisfied by z, α and η if and only if they are satisfied by z
′,

α′ = α−λ(α) and η′ = η−µ(η). Due to this, we may safely assume λ(α) = 0
and µ(η) = 0.

Consider now the function

g : W −→ R , g(u) := dη

(
d

dx1
, . . . ,

d

dxm

) ∣∣∣∣
u

.

We claim that g vanishes identically on Z
(ko)
β . Indeed, by assumption (a),

the ko-th order jets of solutions σ to the Euler-Lagrange equations form a

dense subset Z̃ of πkko(Z
(ko)
β ). In particular, for any ũ ∈ Z̃ and 1 ≤ i ≤ m,

we have that

d

dxi

∣∣∣∣
ũ

− σ
(ko)
∗

(
∂

∂xi

∣∣∣∣
p

)
∈ Span

{
∂

∂yjJ

∣∣∣∣∣
u

, |J | = ko

}
⊂ TũJ

ko(E) ,

for some solution σ with σ(ko)(p) = ũ. Since [η] satisfies a conservation law
and η is of order less than or equal to ko − 1 < ko, we get that for any jet

u ∈ (πkko)
−1(Z̃) ⊂ Z

(ko)
β

g(u) := dη

(
d

dx1
, . . . ,

d

dxm

) ∣∣∣∣
u

= dη

(
σ
(k)
∗

(
∂

∂x1

∣∣∣∣
p

)
, . . . , σ

(k)
∗

(
∂

∂xm

∣∣∣∣
p

))
= 0.

By continuity of g, we get g(u) = 0 for any u ∈ Z
(ko)
β .

Since we are also assuming that F
(ko)
β : W −→ R

N is a submersion at any

u ∈ Z
(ko)
β and that η is of order less than or equal to ko − 1, by standard

properties of submanifolds (see e.g., [14], Lemma 2.1 and [16], Prop. 2.10),

there exist an open neighbourhood U ⊂ W of Z
(ko)
β and some (non-uniquely

determined) smooth functions v̂j
I on U , with 1 ≤ j ≤ n, 0 ≤ |I| ≤ ko − kβ,
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such that

g = dη

(
d

dx1
, . . . ,

d

dxm

)
=

∑

0≤|I|≤ko−kβ
1≤j≤n

v̂j
I

d|I|βj
dxI

. (4.24)

Further, since the left-hand side of (4.24) is a function of the coordinates

(xi, yjI) with |I| ≤ ko, there is no loss of generality if we assume that all

functions v̂j
I depend only on the coordinates (xi, yjI) with |I| ≤ ko.

Now, if ko > kβ, let z
(1) be the (m− 1)-form on U defined by

z
(1) :=

∑

|I|=ko−kβ
1≤j≤n,1≤i≤m

(−1)i−1v̂j
I

d(ko−kβ−1)βj
dxI−1i

dx1 ∧ . . . ̂
i
. . . ∧ dxm . (4.25)

By construction, the integrals of the (m− 1)-form and of its exterior differ-
ential dz(1) along the holonomic submanifolds σ(k)(V) of solutions σ : V → E
of the variational principle are identically equal to 0. Indeed, this is a con-
sequence of the fact that, modulo holonomic terms, the components of z(1)

and of dz(1) are given by linear combinations of the components of the map

F
(ko)
β . Furthermore, we have

∑

|I|=ko−kβ
1≤j≤n

v̂j
I

dko−kβj
dxI

= dz(1)
(

d

dx1
, . . . ,

d

dxm

)
− g(1) with

g(1) :=
∑

|I|=ko−kβ
1≤j≤n,1≤i≤m

dv̂j
I

dxi
dko−kβ−1βj
dxI−1i

+
∑

1≤|J |≤ko−kβ−1

v̂j
Ic

J
iI−1i

d|J |βj
dxJ

,

where we used the notation cJiI−1i
to indicate the unique functions that

satisfy the identity

d|I|

dxI
=

d

dxi
d|I|−1

dxI−1i
+

∑

0≤|J |≤|I|−1

cJiI−1i

d|J |

dxJ
.

Combining this with (4.24), we get the existence of functions v̂′j
I on U , which

depend only on the coordinates (xi, yjI) with |I| ≤ ko + 1 and such that

d(η − z
(1))

(
d

dx1
, . . . ,

d

dxm

)
=

∑

0≤|I|≤ko−kβ−1
1≤j≤n

v̂′j
I

d|I|βj
dxI

. (4.26)

Iterating this construction, we obtain a sequence of (m− 1)-forms z(1), z(2),

. . . , z(ko−kβ) such that

d(η − z
(1) − . . .− z

(ko−kβ))

(
d

dx1
, . . . ,

d

dxm

)
=

n∑

i=1

v̂iβi , (4.27)
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for some appropriate smooth functions v̂i : U −→ R on an open neigh-

bourhood U of Z
(ko)
β , which depend only on the coordinates (xi, yjI) with

|I| ≤ 2ko − kβ ≤ 2ko. Note that, by construction of such (m− 1)-forms z(i),

their integrals along holonomic submanifolds σ(k)(V) of solutions σ : V → E
to the variational principle, are identically equal to 0.

Set z = z
(1) + . . . + z

(ko−kβ) and, for any i = 1, . . . ,m, denote by hi the
function

hi := ηi − zi −
∑

0≤J≤|k−ko−1|
1≤j≤n

z

(
∂

∂yjI
,
d

dx1
, . . .

î
. . .

d

dxm

)

where we denote by ηi and zi the coefficients of the (m − 1)-forms dx1 ∧

. . . ̂
i
. . . ∧ dxm in the expansions of η and z. Then, consider the (m+ n)-

tuple of functions v = (vi
B,v

j) defined by

vi
B
:=

1

α0


(−1)i+1

∑

0≤J≤|k−ko−1|
1≤j≤n

αJ
i|j

(
d

dx1

)J1

. . .

(
d

dxm

)Jm(
v̂i
)
+ (−1)ihi


 ,

vi := yi1rv
r
B
− v̂i .

One can directly check that the (m + n)-tuple v = (vi
B
,vj) satisfies the

equation

(−1)iα0v
i
B
+

∑

0≤J≤|k−ko−1|
1≤j≤n

αJ
i|j

(
d

dx1

)J1

. . .

(
d

dxm

)Jm(
vi − yi1rv

r
B

)
= hi .

(4.28)
From this, the expressions (4.20) - (4.23) together with the assumptions

λ(α) = µ(η) = 0 and the identity (4.27), one gets that Xv satisfies

ıXv
α = η|U − z , (4.29)

ıXv
β

(
d

dx1
, . . . ,

d

dxm

)
=
(
vi − yi1rv

r
B

)
βi = −

n∑

i=1

v̂iβi =

= d(−η|U + z)

(
d

dx1
, . . . ,

d

dxm

)
. (4.30)

Hence (4.17) and (4.18) hold. It remains to show that also equations (4.19)
are satisfied. To show this, we observe that from (4.29) and the construction
of the (m− 1)-form z, the (m− 1)-form ıXα is an m-form of order less than
or equal to 2ko − kβ . Hence d(ıXα) is an m-form of order less than or equal

to 2ko − kβ + 1 ≤ 2ko + 1. Since ko ≤
[
k
2

]
− 1, it follows that d(ıXα) is of

order less than or equal to k − 1 and that the contraction of d(ıXα) with
any vector field ∂

∂y
j
J

with |J | = k is 0. From this, (4.19) follows.
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5. An example of a form of Poincaré-Cartan type

Let E = R
1,3 be the space-time of Special Relativity and denote by

(x0, x1, x2, x3) and

η := ηijdx
i ⊗ dxj , with (ηij) =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




the standard coordinates and the standard flat metric of R1,3, respectively
(as usual, we follow the classical Einstein convention on summations). In
Special Relativity the electromagnetic field is represented by a closed 2-form
F = Fijdx

i ∧ dxj , that is a 2-form which can be locally written as

F = dA =

(
∂Aj

∂xi
−
∂Ai

∂xj

)
dxi ∧ dxj , (5.1)

for a 1-form A = A0dx
0 + A1dx

1 + A2dx
2 + A3dx

3, called 4-potential .
Since E = R

1,3 is contractible, we may assume that A is globally defined
and consider the Maxwell equations in the vacuum as partial differential
equations of second order on the 4-potential A. It is well known that these
equations are precisely the Euler-Lagrange equations for the Lagrangian

L : J1(T ∗E) −→ R , L(j1(A)) := −
1

16πc
|F|2η = −

1

16πc
ηiℓηjmFijFℓm,

(5.2)
where Fij are the coordinate components of F = dA, (ηij) = (ηℓm)−1 and c
is the physical constant given by the speed of light.

Let E := T ∗E and denote by ξ̂(2) = (xi, Am, Am,n, Am,nr) a (global) sys-
tem of adapted coordinates on the second order jet space J2(E) = J2(T ∗E).
If we denote by αL the 4-form on J2(E)

αL = L(xi, Am, Am,n)dx
0 ∧ dx1 ∧ dx2 ∧ dx3

with L defined in (5.2), we have that a 1-form A : E ≃ R
4 −→ T ∗E satisfies

Maxwell’s equations if and only if it satisfies the variational principle of the
action I[αL].

The proof of Prop. A2 in [19] (see also [4], Thm.1.3.11) gives an algorithm
to determine m-forms of Poincaré-Cartan type in a given variational class.
For the variational class [αL], such algorithm produces the 4-form

α = Ldx0∧. . .∧dx3+

3∑

h=0

(−1)h
∂L

∂Ak,h
dx0∧. . .

ĥ
. . .∧dx3∧(dAk −Ak,rdx

r)=

=

(
1

16πc
F khFkh

)
dx0∧. . .∧dx3−

3∑

h=0

(−1)h
1

4πc
F khdx0∧. . .

ĥ
. . .∧dx3∧dAk.

(5.3)
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One can directly check that the differential dα is a source form (modulo a
holonomic 5-form) whose components are precisely the terms of the Euler-
Lagrange equations of L.

As is well known, Maxwell equations are conformally invariant. This
corresponds to the fact that, for each k ≥ 1, and for each conformal Killing

vector fieldX of R1,3, the corresponding vector field X̂(k) on Jk(T ∗E), whose

local flows ΦX̂(k)

t ∈ Diffloc(J
k(T ∗E)) are the natural lifts of the local flows

ΦX
t ∈ Diffloc(E) of X, is an infinitesimal symmetry for the action I[α]. For

instance, each vector field ξ(j) :=
∂

∂xj , 0 ≤ j ≤ 3, generating the translations

in the directions of the xj-axis, is clearly a conformal Killing vector field and

its associated vector field ξ̂
(1)
(j) :=

∂
∂xj +Aj,k

∂
∂Ak

on J1(T ∗E) is an infinitesimal

symmetry for I[α]. One can directly check that (see e.g. [4])

ı
ξ̂
(1)
(j)

α = ıV(j)
dx0 ∧ . . . ∧ dx3 mod. holonomic 3-forms,

with V(j) =
1

4πc

(
FjℓFkmη

ℓm −
1

4
ηrℓηsmFrsFℓm

)
. (5.4)

Further, the components of ıV(j)
dx0∧ . . .∧dx3 coincide (up to sign) with the

components Tjr, 0 ≤ r ≤ 3, of the electromagnetic stress-energy tensor T .
Hence, from this and Theorem 4.7, one has an alternative derivation of the
following well-known property: the (equivalence classes of the) translational

symmetries ξ̂
(1)
(j) , 0 ≤ j ≤ 3, correspond via the Noether Theorem to the

(equivalence classes of) the conserved stress-energy currents Φ(j) := Tjs.
We now recall that in [1], Anco and Pohjanpelto classified all local conser-

vation laws of Maxwell equations. There the authors proved that, modulo
equivalences, any local conservation laws is a linear combination of some
special currents, constructed using conformal Killing vector fields and con-
formal Killing-Yano tensor fields. Using our proof of Theorem 4.9, one can
determine the infinitesimal symmetries, which correspond to all such con-
servation laws through a contraction with the form α of Poincaré-Cartan
type. From previous observations, it is reasonable to expect that such in-
finitesimal symmetries (and, consequently, most geometric properties of the
3-form (5.3)) are strongly related with the conformal Killing vector fields
and, more interesting, with the conformal Killing-Yano tensor fields of R1,3.
Making these relations explicit would very likely pave the way towards gen-
eralisations of various kind, quite useful for studying for instance Maxwell
equations in curved spaces.

Appendix A. Erratum to “Lie algebras of conservation laws of
variational ordinary differential equations”

The purpose of this short appendix is to remove an incorrect claim of
[6]. There, in Prop. 3.5, it is improperly stated that, when dimM ≥ 2,
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the D-symmetries coincide with the vector fields of the form X = Xv with
∂v/∂yi(k) = 0. The correct claim is that the former are only a subset of the

latter.

This does not effect the results of the paper, provided that one considers
weak D-symmetries (see Definition 4.2 above) in place of D-symmetries. We
remark that weak D-symmetries can be considered as truncations up to
order k of D-symmetries of J∞(E) and that there is no difference between
the two notions if one works on J∞(E) in place of Jk(E).

The correction imposes a few other minor adjustments, which one can
immediately determine by looking at the more general results of the present
paper. For instance, the hypothesis of Thm. 3.10 in [6] on the orders of
conservation laws and the 1-form of Poincaré-Cartan type should be modified
according to Theorem 4.9 of this paper, which includes and extends the
previous.
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