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Abstract. I present a Hamiltonian model and a computational method suitable to
evaluate structural and thermodynamic properties of helical molecules embedded in crowded
environments which may confine the space available to the base pair fluctuations. It is shown
that, for the specific case of a short DNA fragment in a nanochannel, the molecule is markedly
over-twisted and stretched by narrowing the width of the channel.

The stability properties of ds-DNA are important in a number of molecular biology techniques
(e.g., polymerase chain reaction) and nanotechnological devices (e.g., DNA-based sensors) in
which short synthetic DNA’s are used as a recognition element by virtue of the peculiar Watson-
Crick base pairing, allowing for selective hybridization with a target sequence. The helix
stability is also key to single molecule denaturation experiments, recently used in combination
with nanochannel arrays, which confine and stretch the DNA molecule to be analyzed. The
DNA properties are strongly affected in confined conditions as those which occur in vivo in
the crowded environments of cells where macro-molecules i) reduce the free volume for base
pair fluctuations thus suppressing the melting entropy, ii) interfere with the dynamics of DNA
looping thus affecting the speed of gene activation or repression. While considerable amount of
experimental work has been carried out over the last decades to investigate the relation among
macro-molecular crowding, DNA dynamics and its biological functioning, much less theoretical
studies have been produced so far on DNA in confining conditions. Here I focus on the interplay
between DNA structure and environment analyzing how helical conformation and molecule size
can be modified passing through a nanochannel of variable width.

1. Model

The study is based on a coarse grained Hamiltonian model which describes the helical molecule
at the level of the base pair (bp) [1, 2, 3, 4, 5, 6, 7, 8]. In a simple ladder model, the point-like
bases are arranged at a fixed rise distance d along the complementary strands (Fig. 1(a)). The

two mates of the i− th bp are assumed to fluctuate by x
(1,2)
i around their equilibrium positions

and the relative distance between the mates is denoted by ri which is measured with respect
to the bare helix diameter R0. While the ladder model offers a convenient description of the
DNA molecule close to the melting transition, a more realistic mesoscopic representation of the
double helix is attained by the 3D model in Fig. 1(b) which I have developed over the last
years [9] to account for the structural and thermodynamical properties of short double stranded
fragments. Essentially the model assumes that adjacent bps along the molecule backbone,
described respectively by the above defined radial distances ri, ri−1, can be twisted by the angle
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Figure 1. (Color online) Schematic of (a) a ladder model and (b) a 3D model with radial and
angular degrees of freedom for a helical molecule with point-like base pairs.

θi and bent by φi with respect to each other. This permits to introduce fluctuational effects in
the model as the stacking distance between adjacent blue dots in Fig. 1(b), AB ≡ di,i−1, is a
function both of the radial and angular variables.

The quantitative analysis of the model relies on a mesoscopic Hamiltonian which contains the
main forces stabilizing the molecule i.e., 1) the hydrogen bonds between complementary bases,
described by an effective one particle potential V1[ri] with repulsive core and 2) the intra-strand
stacking potential between adjacent bps along the molecule axis, described by a two particles
potential V2[ri, ri−1, φi, θi] [10]. The model potential parameters are taken in the usual range
[11, 12] so as to fit available thermodynamic and elastic data.

The equilibrium statistics of the system is obtained by a computational method based on the
finite temperature path integral method [13] whose application to DNA has been elucitated in
several papers [14, 15, 16]. Basically the base pair fluctuations ri are treated as imaginary time
dependent paths ri(τ) with τ ∈ [0, β] and β = (kBT )

−1. kB is the Boltzmann constant and T
is the temperature. By virtue of the space-time mapping technique, the partition function ZN

is given by an integral over closed paths, ri(0) = ri(β). As a consequence, the paths ri(τ) can

be expanded in a Fourier series, ri(τ) = (r0)i +
∑

∞

m=1

[

(am)i cos(
2mπ
β τ) + (bm)i sin(

2mπ
β τ)

]

,

whose coefficients yield, for any base pair, a set of possible fluctuations statistically contributing
to ZN . The code includes in the computation only those combinations of Fourier coefficients
yielding radial fluctuations which are physically consistent with the constraints imposed by the
model potential. Explicitly, for the chain in Fig. 1(b) made of N bps of reduced mass µ, ZN

reads:

ZN =

∮

Dr1 exp[−Aa[r1]]
N
∏

i=2

∫ φM

−φM

dφi

∫ θM

−θM

dθi

∮

Dri exp[−Ab[ri, ri−1, φi, θi]] ,

Aa[r1] =

∫ β

0
dτ

[µ

2
ṙ1(τ)

2 + V1[r1(τ)]
]

,

Ab[ri, ri−1, φi, θi] =

∫ β

0
dτ

[µ

2
ṙi(τ)

2 + V1[ri(τ)] + V2[ri(τ), ri−1(τ), φi, θi]
]

. (1)
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Aa[r1] is treated separately as the first base pair has no preceding neighbour along the stack.
φM = π/2 and θM = π/4 are the bending and twisting integration cutoffs, respectively.

∮

Dri is the integration measure over the above defined Fourier coefficients:

∮

Dri ≡
1

√
2λcl

∫ Λ0

T

−Λ0

T

d(r0)i

∞
∏

m=1

(mπ

λcl

)2
∫ ΛT

−ΛT

d(am)i

∫ ΛT

−ΛT

d(bm)i , (2)

with λcl being the classical thermal wavelength. The cutoffs Λ0
T and ΛT are determined

for computational purposes using a fundamental property of the path integration method, i.e.,
∮

Dri normalizes the kinetic action:

∮

Dri exp
[

−
∫ β

0
dτ

µ

2
ṙi(τ)

2
]

= 1 . (3)

Hence, using the path Fourier expansion, from Eqs. (2), (3), one gets: Λ0
T = λcl/

√
2 and

ΛT = Uλcl/mπ3/2 with U being a dimensionless parameter. Setting U = 12, we attain
numerical convergence in the computation of Eq. (1) and include large amplitude base pair
fluctuations.

In general, the outlined computational method proves suitable to describe the effects on a
single DNA molecule brought about by a crowders distribution which is expected to confine the
phase space available to the base pair fluctuations. Such effects can be simulated by replacing
U by a site dependent cutoff, U → U − C(i), where C(i) is the function accounting for the
confinement caused by the specific crowders surrounding the helical fragment. In the case of
a nano-channel, the DNA molecule passing through the device is uniformly confined, i.e., for
all base pairs in the chain, the fluctuations should shrunk by the same amount. Then, we
incorporate such conditions within our model by assuming a site independent C(i) = γU ,
where γ ∈ (0, 1) is a tunable parameter whose strength is inversely proportional to the channel
width.

2. Results

The model is applied to compute the DNA size and shape in thermal equilibrium with the
confining environment. The statistical mechanics of the system is worked out by performing
the ensemble averages for the molecule physical properties via Eqs. (1), (2) for any choice of γ.
While the model generally assumes an helical molecular shape, the specific twist conformation
of the fragment for the state of thermodynamic equilibrium is a priori unknown. Then, the
idea inspiring our code is that of taking the number of base pairs per helix turn (i.e., the helical
repeat h) as an input value and, for such value, calculating the free energy F = −β−1 lnZN .

More precisely, the code samples a broad range of J-values for h around the experimental
hexp = 10.4 value, albeit estimated for kilo-base long DNA, and for the j − th value in such
range (j= 1,...,J), a iterative procedure yields the ensemble averaged twist angles < θi > for all
base pairs in the chain. Once < θN > is obtained, one gets the j − th helical repeat averaged
over the statistical ensemble of Eq. (1): < h >j= 2πN/< θN >. As the procedure is repeated
for any initial hj , one derives a set of J average twist conformations. Among the latter, the
value (< h >j∗) that corresponds to the state of thermodynamic equilibrium is finally selected
by minimizing F . For any twist conformation defined by < h >j , the code can also deliver the
macroscopic average parameters providing a measure for the global DNA size [17]. In particular,
we focus hereafter on the end-to-end distance depicted in Fig. 1(b) and calculated its average

as: < Re−e >=

〈∣

∣

∣

∣

∑N
i=2 di,i−1

∣

∣

∣

∣

〉

.
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Figure 2. (Color online) Room temperature (a) average helical repeat and (b) average end to
end distance of a short fragment in a nano-channel versus the confinement strength.

The results for < h >j∗ and the associated < Re−e > are displayed in Fig. 2 as a function
of Γ ≡ U(1 − γ). The simulation is for a short homogeneous fragment with N = 11, at room
temperature. It is found that the molecule is substantially stable (or even slightly untwisted for
small γ’s) whereas, once the confinement becomes sizable (Γ < 5), the helix markedly over-twists
and consistently shows a significant increase of < Re−e >. The latter is elongated to values even
larger than 15Å in the regime in which all base pairs are strongly confined. Then, the model and
the computational method can quantitatively estimate the stretching of a DNA chain in a nano-
channel and also account for the peculiar interplay between helix overtwisting and stretching
observed in the different context of force-extension experiments on single molecules [18]. The
method can be further extended to deal with crowders distributions operating non uniform
confinements of heterogeneous fragments with larger N at various T .
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