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Abstract We present the use of a novel spatio-temporal model-checker to detect
problems in the data and operation of a collective adaptive system. Data cor-
rectness is important to ensure operational correctness in systems which adapt
in response to data. We illustrate the theory with several concrete examples, ad-
dressing both the detection of errors in vehicle location data for buses in the city
of Edinburgh and the undesirable phenomenon of “clumping” which occurs when
there is not enough separation between subsequent buses serving the same route.
Vehicle location data is visualised symbolically on a street map, and categories
of problems identified by the spatial part of the model-checker are rendered by
highlighting the symbols for vehicles or other objects that satisfy a property of in-
terest. Behavioural correctness makes use of both the spatial and temporal aspects
of the model-checker to determine from a series of observations of vehicle locations
whether the system is failing to meet the expected quality of service demanded by
system regulators.
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1 Introduction

Users, operators and regulators of managed services want to have systems which
behave correctly across a wide range of conditions. Operational correctness is mon-
itored by regulators and it is the responsibility of system operators to try to ensure
that system operation lies within allowable bounds as often as possible in practice.
A typical example of operational correctness is to guarantee sufficient separation
in time between subsequent buses in so-called “frequent” bus services that do not
follow a fixed time table.

Adaptive systems depend crucially on real-time data collection subsystems
which allow them to reflect on their operation, detect problems in their service, and
report these problems. These data collection systems are often built from physical
components such as sensors and receivers which have limits to their engineering,
meaning that they sometimes deliver inaccurate measurement data.

In a small-scale supervised system where the measurement data is interpreted
by a human before any action is taken, erroneous data might not be very problem-
atic because the data can be checked before any action is taken as a consequence.
In a collective adaptive system however, the demands of scale and responsive adap-
tivity may mean that there is no human oversight of the data before action is taken
as a consequence of the data received.

Physical components can only deliver accurate information up to their physi-
cal limits, and size and weight considerations often severely curtail the amount of
processing which can be done on an embedded device. These practicalities mean
that the responsibility for dealing with erroneous data lies with the system itself,
and that it must make efforts to automate the process of data checking and clean-
ing before acting in response to data received. The task of achieving operational
correctness comes after the task of achieving data correctness. In this paper we
address examples of both, exploiting novel purely spatial and combined spatio-
temporal model-checking techniques.

Knowing where the system assets are located is often of critical importance
for correct functionality. In a modern public transport system many aspects of
well-regulated operation depend on accurate fleet management, supported by an
automatic vehicle location (AVL) system. AVL data drives other systems such
as bus arrival prediction systems and allows operators to produce quantitative
measures of service quality.

In this paper, we use spatio-temporal model checking to discover problems
related to spatial and operational aspects of a collective adaptive system1. We
chose bus networks as a prototypical example of a collective adaptive system in
which analysis is strictly tied to geographical features (see for instance [20] for an
example of how collective adaptive behaviour may be exploited in bus networks).
Specifically, we assess correctness of geographic data that may come from agents

1 A collective adaptive system consists of multiple cooperating components with decen-
tralised control – these may be human or non-human — and adapts itself to unexpected
problems arising from the environment in which it operates.
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in the system. GPS data received from buses is related to a map, in the form of a
digital image, that is meant to incorporate all the information that may be relevant
to data correctness. The relevance of specific features (e.g., size of streets and
crossings, morphological considerations such as bend angles, position of buildings
or squares, pedestrian areas, rivers, etc.) may only be known at analysis time,
therefore making it difficult to use abstractions of a map, such as the graph of
streets and crossings, that may “abstract too much” and omit useful information.
In our approach, instead, analysis is designed through declarative logical means,
that make explicit use, on a case-by-case basis, of the visual features of the map
that are needed.

We consider both purely spatial aspects, namely, data correctness, and spatio-
temporal issues, related to the behaviour of buses in the network. The spatial
verification problem we consider is that of determining whether or not the AVL
data received about vehicles in the fleet indicates an error condition. We show
how to identify such problems in the data by the means of a recently developed
spatial model-checker [14]. Using a formal language (namely, the Spatial Logic of
Closure Spaces SLCS, featuring Boolean and spatial operators), requirements on
spatial data can be mathematically formalised, and the model-checker can verify
data correctness in a fully automated way. The use of logic formulas makes the ap-
proach declarative, in that subtle aspects of the analysis can be changed by editing
the (very short) formulas, without needing to modify analysis algorithms. Depend-
ing on the intended result, the methods presented here could either be used for
on-line or off-line data processing. In on-line data processing the smart infrastruc-
ture within the system would attempt to classify problems in real-time, alerting
operators to problems as they occur. In off-line data processing the infrastructure
would attempt to classify problems with the benefit of hindsight, providing plau-
sible retrospective explanations for events so that the service operators can review
their service and provide reports for service regulators, and use the insights gained
to improve the service at the next offering (for example, the following day).

Taking different sections from the data allows one to address different spatial
model-checking problems. We could choose to project an instantaneous snapshot
of the current location of all of the buses in the fleet (a “satellite view”, allowing
one to see all buses at one time). Alternatively we could choose to project the
journey of a particular bus in the fleet as a function of time (a “passenger view”,
allowing one to see one bus at all times).

The satellite view allows one to raise issues about congestion and adjacency;
the passenger view allows one to ask questions about journeys and routes. In this
paper we will use single satellite views when we are investigating data correctness
(“Is this bus really so far off-route?”) and sequences of successive satellite views
when we are investigating operational correctness (“Is this bus catching up with
the one in front?”).

Besides the purely spatial aspects, we also illustrate the use of model-checking
to detect operational problems of the bus network. We use the spatio-temporal
model-checker developed in [13], extending the spatial model checker of [14,15]
with temporal features. The temporal fragment is developed as a variant of the
well-known Computation Tree Logic (CTL). To exemplify the descriptive capabil-
ities of such spatio-temporal logics, we show how spatio-temporal model checking
can be used to assess and validate possibly non-deterministic policies for mitigat-
ing operational problems in adaptive systems. In particular, we use as an example
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the problem of clumping (also called bunching, convoying, or platooning) on a bus
route.

On bus routes with frequent service, the most relevant metric is not adher-
ence to a pre-defined timetable, but rather maintaining a reasonable separation
(known as headway) between different buses passing by each stop. This is needed
to maintain a good distribution of passengers across buses and to provide passen-
gers with a predictable service. Clumping is the phenomenon where two or more
buses serving the same route get very close to each other. The problem is caused
by a negative feedback loop (as first explained by Newell and Potts in [34]) where
buses running late find ever more people waiting at the bus stop, causing further
delay, and buses following such late buses encounter few passengers and no delays,
causing them to catch up with the bus in front. Clumping may therefore occur
independently of traffic conditions. Clumping is the most frequent cause of user
dissatisfaction in frequent bus services [20]. Formal specification of the headway
requirement may be interpreted in different ways. We discuss how such different
interpretations correspond to different spatio-temporal logic formulas, that can be
machine-checked against models of the bus network.

Finally, we provide some preliminary ideas on how spatio-temporal model-
checking may be used to analyse and validate the effect of policies aimed at cor-
recting operational problems, illustrating this on an example of bus clumping. Bus
clumping, and more general issues related to headway and slack time of buses, are
the subject of an active research field; see for instance [29,28,20,19,37,44,38].
Promising results are obtained by bus holding strategies such as those described
in [29,28,20]. Such strategies can be implemented by letting buses wait for some
additional time, with a duration that depends on the headway, at pre-defined con-
trol points in order to maintain a constant headway between subsequent buses.
These strategies have been shown to be able to self-regulate the headway of buses
also in the presence of perturbations in the system (e.g. buses breaking down and
needing to stop for repairs, changing traffic conditions, or temporary changes in
bus routes) [29,28,20]. In our example, we derive a branching time spatio-temporal
model from a single series of snapshots of bus positions projected onto a city map,
that takes into account the possibility of buses waiting a short fixed period of time
along their path for one or more times. By augmenting an existing GPS trace, fea-
turing clumping, with choice points where a given bus may be requested to wait
for a short amount of time, the model checker is then used to analyse the effects of
clumping mitigation strategies. The idea is that a more elaborate approach along
these lines could provide us with an alternative framework for validation of some
bus holding strategies in the context of actual traces of bus movement obtained
in real cities. Our method could be exploited further, e.g. in order to compute
the minimal waiting time needed to guarantee that no incorrect execution traces
exist, or in order to compute probabilities by exploiting statistical model-checking
techniques. This is left as possible future work.

This paper is organised as follows. In Section 2 we address pure spatial model-
checking, without the temporal dimension, providing an informal introduction
and examples. Section 3 presents the various categories of data issues and how
they are visualised on a street map. Section 4 illustrates how these data issues
can be identified exploiting spatial model-checking on a portion of a city map. In
Section 5 we extend spatial model-checking with a temporal dimension introducing
a spatio-temporal logic. Section 6 addresses some bus operational issues concerning
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the problem of clumping, both in time and in space. In Section 7 we show how
to use spatio-temporal model-checking to assess the effect of correction strategies
to alleviate clumping. We conclude the paper by an overview of related work in
Section 8 and conclusions and outlook on future work in Section 9.

2 Spatial model-checking

In its original conception, model-checking [3] is a technique that was developed
for the formal verification of properties of distributed and concurrent systems. It
takes a formal model of the system and a property of interest, usually expressed
as a temporal logic formula (see for instance [6,23,17]), and then checks, in an au-
tomatic way, whether the model satisfies the property. Properties of the temporal
evolution of a system are considered, but properties of (physical) space typically
are not. In recent work [14,15] by some of the co-authors of this paper, a spatial
model-checking approach has been developed. This technique builds on spatial log-
ics, that is, topological interpretations of modal logics [41], dating back to Tarski.

Of particular interest to us is a spatial surrounded operator – inspired by the
temporal weak until operator – that first appeared for topological spaces in [1]. In
[14], the operator has been studied together with a model-checking algorithm in
the more general setting of closure spaces. The spatial variant of the connective
can be used to define conditional reachability properties in a spatial setting. The
logical operators have been lifted to closure spaces, so that they can also be used on
discrete, graph-based structures, which include digital images, and various kinds
of geographic maps. In this paper, we consider specific graphs, namely digital
images, seen as regular grids, where the nodes are the points in the image and
where edges connect each node to the adjacent nodes in the north, south, east and
west direction.

In [14], an efficient proof-of-concept model-checker for the Spatial Logic of Clo-
sure Spaces (SLCS) has been implemented. The tool is able to interpret spatial
logic formulas on general finite graphs (more precisely on quasi discrete closure
spaces). In the special case in which such graphs are regular grids representing dig-
ital images a graphical understanding of the meaning of formulas can be provided,
and thus an immediate form of counterexample visualisation. Points that satisfy
a particular formula can be visualised by a colour of choice on an image. In this
paper, we use the spatial model-checker for some very pragmatic purposes that
are concerned with the automatic identification of potential errors in AVL data.
The approach we follow is to project the AVL data, including the exact position
of the vehicles, on an existing digital map of the relevant geographical area. We
then use the spatial model-checker to identify and highlight regions of interest on
this map.

The spatial logic consists of a very small number of basic operators that, in
turn, are used to define a number of useful derived operators. Among the basic
operators are the standard Boolean constants (true >, false ⊥) and connectives
(negation ¬, disjunction ∨ and conjunction ∧), the near operator N and the
surrounded operator S . The near operator has its origin in the closure operator of
topological spatial logics. More precisely, models of the logic are closure spaces. A
closure space is a pair (X, C), consisting of a set of points X and a function C, from
2X to 2X , such that, for all sets A,B ⊆ X we have: C(∅) = ∅, A ⊆ C(A) and C(A∪
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B) = C(A)∪C(B). Note that the closure operator is not required to be idempotent;
the class of closure spaces whose closure operator is idempotent coincides with
topological spaces (via the so-called Kuratowski definition of topological spaces).
Topological spaces are therefore a proper subclass of closure spaces.

In our logic, the near operator is denoted by N . The formula N φ is satisfied by
a point x in space if x satisfies φ or it is a direct neighbour of a point satisfying φ.
The surrounded operator S is a spatial version of the temporal weak until operator
(also called “unless” in the literature). A point x in space satisfies the formula φS ψ
whenever it is included in an area A consisting of points satisfying formula φ and
there is “no way out” from A unless passing through points in an area B that
satisfies ψ, see Figure 1. Finally, we assume a set of basic propositions, which in
our specific case identify the colour of a pixel in the digital map2.

B B

B G G B

B G G B

B B

Fig. 1: The green nodes satisfy green surrounded by blue ((G)S (B))

We will use a few derived operators (see Figure 2) in the properties shown
in the next section. The first derived operator is the spatial reachability operator
φRψ. It is defined in terms of the surrounded operator as φRψ , ¬((¬ψ)S (¬φ))
and, abstracting from some details, it identifies those points from which ψ can be
reached passing only by points satisfying φ. Further examples of derived operators
can be found in [15]. In this paper, we use: the “touch” operator φT ψ , φ∧ ((φ∨
ψ)Rψ) denoting all the points laying in an area, say A, such that each point in
A directly touches either one point satisfying ψ or another point in A, and all
points in A further satisfying φ; the “everywhere” operator Eφ , φS ⊥, that,
when the considered space is connected (this is the case of images), is a “global”
assertion, either denoting all points of the space, when all points satisfy φ, or no
point otherwise; the “somewhere” operator Fφ , ¬E¬φ, which denotes all points
of the space, when there is at least one point satisfying φ, and no point otherwise.

We briefly recall the formal semantics of SLCS that was first presented in [14]
using slightly different notation.

Definition 1 Given a (finite or countable) set of atomic propositions P , and a
valuation function V : P → 2X , satisfaction is defined in a SLCS model M =

2 Note that in general any kind of basic propositions may be chosen. For example they may
be values representing concentrations of chemical substances or probabilities as shown in the
various case studies presented in [13,16].
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Fig. 2: Example of the interpretation of spatial formulas (left: original model; right:
superimposed results of interpretation). The green (G) nodes (on the right) satisfy
the closure of the blue (B) ones (shown in the picture on the left), and the orange
(O) nodes (on the right) satisfy the formula (R) T (Y ) applied to the left figure,
reaching yellow (Y) nodes only from and via red (R) ones. All the nodes in both
figures satisfy E (¬(K)), as there is no node satisfying K, whereas all the nodes
on the left, and no node on the right, satisfy F (B).

((X, C),V) at point x ∈ X as follows:

M, x |= >
M, x |= p ∈ P ⇐⇒ x ∈ V(p)
M, x |= ¬Φ ⇐⇒M, x 6|= Φ
M, x |= Φ ∨ Ψ ⇐⇒M, x |= Φ or M, x |= Ψ
M, x |= N Φ ⇐⇒ x ∈ C({y ∈ X|M, y |= Φ})
M, x |= Φ S Ψ ⇐⇒ ∃A ⊆ X.x ∈ A ∧ ∀y ∈ A.M, y |= Φ∧

∧∀z ∈ B+(A).M, z |= Ψ

In the above definition B+ denotes the closure boundary which is defined as
B+(A) = C(A) \A.

Roughly speaking, the model-checker takes as input a finite model, and a for-
mula φ, and returns all the points of the given closure space that satisfy φ. The
function that computes the satisfaction set is defined inductively on the structure
of φ following a bottom-up approach. The original part of the algorithm concerns
the surrounded operator φS ψ. The algorithm performs a backwards search from
the set of nodes that do not satisfy φ or ψ but that can be reached in one step
from such nodes. The algorithm terminates in O(k · (|X| + |R|)), where k is the
number of operators in the formula, |X| the number of nodes and |R| the number
of edges in the graph [14,15].
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3 Categories of data issues in the case study

In this section we introduce the features of the digital image representing a city
map and see the effect of the spatial properties which we evaluate on such maps.
Figure 3 explains our conventions for representing buses, bus stops and the progress
in time through observations on the map.

We use an OpenStreetMap representation for the map from which
the names of streets have been removed for clarity. Main streets are
pink, side streets are white.

Buses are represented by blue squares on the map in a range of
shades of blue. Bus stops are represented by orange squares.

Errors in GPS data show up as bus observations which are not on
any road.

In this example, the colour of a bus darkens slightly from one ob-
servation to the next. In this case the observation nearer to the bus
stop has a later timestamp than the observation which is further
away from the bus stop.

Diverted buses are seen as being on side streets which are off the
main bus route.

Unexpected changes in position are significant. If a later time-
stamped observation shows the bus less further along its route then
this usually indicates a data error because buses rarely reverse along
a road.

Fig. 3: Representations of buses, roads and bus stops on maps

We have several categories of data issues to distinguish:

– Plausible: The bus is positioned on a road and it is a road where we would
expect to see a bus. Nothing about this data point seems problematic; adaptive
behaviour based on this data observation would seem to be acting on good data.

– Implausible: This data point seems suspicious; the bus is positioned in an area
of the city where we would not normally expect to see a bus (such as in a field,
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or a wood, or a pond). Unsupervised adaptive behaviour based on this data
would be inadvisable.

– Possible: This data point has a bus positioned on a road but it is a side street
when we were expecting to see the bus on a main road. The data is not implau-
sible but it indicates that an unexpected event has perhaps occurred (a road
closure, a traffic accident, or a diversion caused for another reason). Adaptive
behaviour based on this data observation might be appropriate here.

– Problematic: This data point shows a bus on the expected route but it is less far
along the route than previously reported. It is likely that either this data point
is putting the bus behind its current position, or the previous data point put
it ahead of its current position (or, possibly, the bus is reversing). Adaptive
behaviour based on this data should be delayed until the uncertainty about
which point is incorrect is resolved.

4 Identifying data issues using model-checking

The model-checker has been used to analyse a coloured digital image, representing
a portion of the map of the city of Edinburgh, augmented with squares filled in
special colours, denoting particular kinds of entities, as described in Section 3.
Logic formulas are used in this example to detect problems in the data. We also
show how to detect other features of interest of bus positions, and of roads. We
shall now describe the formulas we use more in detail; these are interpreted on
the model depicted in Figure 4. The red circles, as well as the yellow balloon with
text, have been superimposed on the images and are not part of input or output
of the tool (this is done for readability, also in Sections 6-7).

Atomic predicates, when working on images, are actually colour ranges. Be-
cause of this, we can analyse an image directly, without the need for additional
meta-data. For this example, we selected 14 data points to represent buses3, rep-
resented by different blue squares. The shade of blue depends upon the time at
which the bus was in the given position. The shade ranges from light to dark,
where lighter shades precede darker ones in time. Then, using atomic predicates
on colours and colour ranges, we defined various basic formulas, among which: for-
mula bus representing all the bus positions (using a colour range); formulas pos1,
. . . , pos14, representing the separate bus positions; formulas identifying streets
(street) and main streets (mainStreet).

The spatial model-checker accepts an image as input and produces a trans-
formed image, where the points that satisfy the formula of interest are coloured in
a user-defined colour. In the current example, the model presented to the model-
checker is the map image with reported bus positions marked (using blue squares)
and the positions of bus stops marked (using orange squares). For example, posi-
tions of diverted buses can be repainted in red and positions of off-road buses can
be repainted in violet.

In the following examples, we use the concrete input syntax of the SLCS model-
checker topochecker (described in more detail in Section 5), where the logical
symbols >, ⊥, ¬, ∧, ∨, N , S are denoted by TT, FF, !, &, |, N, and S, respectively.

3 In this paper, the points have been selected artificially, in order to present a clear working
example, but use of the spatial model-checker does not differ when dealing directly with the
vehicle location data supplied by Lothian Buses.
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Fig. 4: Input model. Blue squares are
bus positions; their order in time is
described by the increasing darkness.
Orange squares are the bus stops.

Fig. 5: Positions close to a stop are
repainted in red, the areas of the road
surrounding all bus positions are re-
painted in yellow.

Fig. 6: Diverted positions (neither off
road, nor on a main street) are re-
painted in red, off-road positions are
repainted in violet.

Fig. 7: Positions that are found to
be out of order (i.e., not between the
previous and next position) are re-
painted in red.

Spatial features of data points In Figure 5 we show the result of identifying a
portion of the main street for each position (depicted in yellow); this is done using
the formula:

Let streetPortion(b) =

mainStreet & (N^3 b)

& ( ! (N^5 (bus & (!b))))

where b is instantiated to pos1, . . . , pos14, and N^k, for k a natural number, is
the nested application of the near operator (also called dilation in the context of
computational imaging). The formula dilates b by three pixels, and avoids points
too close to other buses, in order to minimise possible overlaps. In the same figure,
in red, we colour positions that are close to a bus stop. This uses the formula
close(bus,stop), where close is defined as follows:

Let close(a,b) = a & (N^30(b))

Thus, the formula intersects the points where the bus has passed with the points
reachable from a stop by 30 pixels.
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Implausible points Data points that are not positioned on a street are implausible.
This is described by the formula:

Let busOutOfStreet =

bus & (! (bus S street))

The formula characterises points that are part of any of the regions denoting bus
positions, and are not surrounded by a street. Points satisfying this formula (thus,
not plausible) are repainted in violet to produce the spatial model-checking result
shown in Figure 6.

Possible points Diverted bus positions are represented by the formula:

Let divertedBus = bus S smallStreet

and are then repainted in red to produce the result shown in Figure 6.

Problematic points Our spatial logic is expressive enough to define properties re-
lated to the order of positions of the same bus at different times on a given road. We
analyse the bus positions. For each position, we detect its immediately neighbour-
ing positions, in order to check that these correspond to a preceding and following
position, respectively. If this is not the case, the position is misplaced, even though
it may still be on the main street. In Figure 7, such misplaced bus positions are
painted in red. The formal specification of this property is complicated by the fact
that the underlying graph of an image is not directed, thus it is not completely
straightforward to specify precedence relations between points. The most impor-
tant step is the definition of predicate consecutivePos(p1,p2), given below. The
definition uses the reachability predicate a R b, written as reach(a,b).

Let consecutivePos(p1,p2) = p1 S

reach((streetPortion(p1) | mainStreet | streetPortion(p2)) &

(!(streetPortion(bus & (!(p1 | p2))))),

streetPortion(p2))

The definition of consecutivePos uses the predicate streetPortion to identify the
region of points in p1, surrounded by the area from which streetPortion(p2) can
be reached, passing by the main street, including the areas surrounding p1 and p2,
avoiding the areas surrounding other buses. Formula streetPortion(p) is defined
in order to denote an area at least as wide as the main street, depending upon the
map considered. By the definition of streetPortion, no next bus positions can be
reached following only points belonging to the main street. Using consecutivePos,
predicate wrongOrderPos is defined as follows:

Let wrongOrderPos(p1,p2,p3) =

(p2 S mainStreet) &

(!(consecutivePos(p2,p1) &

consecutivePos(p2,p3)))

Given three positions p1, p2, p3, position p2 is selected only if it is not strictly be-
tween p1 and p3. The three positions are instantiated to all the strictly consecutive
triplets between pos1 and pos14 in order to identify out-of-order positions.

Although the above examples show that purely spatial logic can be used to
deal with some (albeit limited) spatio-temporal properties, in general it is more
convenient (and expressive) to use a dedicated spatio-temporal logic. How this
works is illustrated in the next section.
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5 Spatio-temporal model checking

Spatio-temporal logics may be defined by permitting mutually recursive nesting
of spatial and temporal operators. Several combinations are possible, depending
on the chosen spatial and temporal fragments, and the permitted combinations of
the two. A great deal of possibilities are explored in [31], for spatial logics based
on topological spaces. One such structure was explored in [13,26], in the setting
of closure spaces. The current implementation is provided by the open source
spatio-temporal model checker4 topochecker, that can verify formulas written in
the spatio-temporal logic of closure spaces STLCS. Such logical language enhances
SLCS with temporal operators, in the spirit of the branching-time temporal logic
CTL (Computation Tree Logic) [17].

In this section we provide a lightweight informal introduction to spatio-temporal
model checking; we refer the interested reader to [13] for further technical details.
Like SLCS, this spatio-temporal logic is developed in the setting of closure spaces.
In addition to the already discussed spatial operators, STLCS features the CTL
path quantifiers A (“for all paths”) and E (“there exists a path”). As in CTL,
such quantifiers must necessarily be followed by one of the path-specific temporal
operators XΦ (“next”), FΦ (“eventually”), GΦ (“globally”), Φ1UΦ2 (“until”), where
Φ, Φ1 and Φ2 are STLCS formulas. For a further introduction to and more details
on CTL and CTL model checking, the reader may consult [3].

A model M of the STLCS logic is composed of a Kripke structure (S, T ) and
a closure space (X, C). More precisely: S is a non-empty set of states; T is an
accessibility relation on states, which is required to be left-total, that is, for each
s in S there is s′ in S with (s, s′) ∈ T ; X is a set of points; C is a closure operator
(see Section 2). Every state s has an associated valuation Vs, making ((X, C),Vs)
a closure model according to Definition 6 of [14]. An equivalent interpretation is
that the valuation function has type S × X → 2P , where P is the set of atomic
propositions, thus, the valuation of atomic propositions depends both on states
and points of the space. The evaluation contexts are of the form M, s, x |= Φ,
where Φ is a STLCS formula, s is a state of a Kripke structure, and x is a point in
space X. In both notations, the intuition is that there is a set of possible worlds,
i.e. the states in S, and a spatial structure represented by a closure space. At
each possible world there is a different valuation of atomic propositions, inducing
a different “snapshot” of the spatial situation which “evolves” over time. This
is made clear along a temporal path. A path in the Kripke structure denotes a
sequence of snapshots of the considered space, indexed by instants of time; see
Figure 8 for a pictorial illustration.

Let us proceed with a few examples. Consider the STLCS formula EG (green

S blue). This formula is satisfied in a point x in the graph, associated to the initial
state s0, if there exists a (possible) evolution of the system, starting from s0, in
which point x is always, i.e. in every state in the path, green and surrounded
by blue (‘green S blue’ in the terminology of Section 2). Note that the model-
checker will return (or colour) all the points x that satisfy the formula. A further,
nested, example is the STLCS formula E F (green S (A X blue)). This formula
is satisfied in a point x in the graph associated to the initial state s0, if there is a

4 See http://topochecker.isti.cnr.it/, and https://github.com/vincenzoml/
topochecker; an earlier prototype is available at https://github.com/cherosene/ctl_logic.
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Fig. 8: In spatio-temporal models, a temporal path is a sequence of snapshots
that are induced by the time-dependent valuation of the atomic propositions.

(possible) evolution of the system, starting from s0, in which point x is eventually
green and surrounded by points y that, for every possible evolution of the system
from then on, will be blue in the next step.

We briefly recall the formal semantics of STLCS that was first presented in [13].

Definition 2 Satisfaction is defined in a STLCS modelM = ((X, C), (S,R),Vs∈S)
at point x ∈ X and state s ∈ S as follows:

M, x, s |= >
M, x, s |= p ⇐⇒ x ∈ Vs(p)
M, x, s |= ¬Φ ⇐⇒M, x, s 6|= Φ
M, x, s |= Φ ∨ Ψ ⇐⇒M, x, s |= Φ or M, x, s |= Ψ
M, x, s |= N Φ ⇐⇒ x ∈ C({y ∈ X|M, y, s |= Φ})
M, x, s |= Φ S Ψ ⇐⇒ ∃A ⊆ X.x ∈ A ∧ ∀y ∈ A.M, y, s |= Φ∧

∧∀z ∈ B+(A).M, z, s |= Ψ
M, x, s |= Aϕ ⇐⇒ ∀σ ∈ Ps.M, x, σ |= ϕ
M, x, s |= Eϕ ⇐⇒ ∃σ ∈ Ps.M, x, σ |= ϕ

M, x, σ |= XΦ ⇐⇒M, x, σ(1) |= Φ
M, x, σ |= ΦUΨ ⇐⇒ ∃n.M, x, σ(n) |= Ψ and ∀n′ ∈ [0, n).M, x, σ(n′) |= Φ

In this definition B+ denotes the closure boundary, as in Def. 1, and σ denotes
a path, starting at index 0, that is, σ(n) denotes the (n+1)-th element of σ. A
path in the Kripke structure is a sequence of spatial models (in the sense of [14])
indexed by instants of time and Ps denotes the set of paths starting from state s.

Spatio-temporal model checking is performed using a variant of the classical
CTL labelling algorithm [17,3], augmented with the algorithm in [14] for the spa-
tial fragment. In the implementation the temporal component of a model is a
Kripke structure, represented by a graph. The latter uses the plain text graph
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description language dot for graph representation5. The underlying spatial struc-
ture is fixed for all states. It can be either a graph, or a regular grid implicitly
defined when the valuation of atomic propositions is given by digital images (as
done in this paper). In the first case, the graph is defined using the dot notation,
and the valuation of atomic propositions, depending upon states and points of the
space, is provided separately, using a comma-separated values file. When digital
images are used, for each state, a digital image is provided for each state in the
Kripke structure. Images must have the same size, and the corresponding grid
is taken as the reference closure space (X, C). (Recall that grids are graphs, and
therefore instances of closure spaces, see [14] for further details.) Colours of the
points of the picture for each state s determine the valuation function Vs. The
model checker receives as input also a list of logic formulas to be verified, with a
colour labelling each formula.The output of the model checking algorithm is the
model ((X, C), (S,R),V ′

s) where the closure space (X, C) and the Kripke structure
(S,R) are the same as the input ones, whereas V ′

s(x) = Vs(x) if x does not sat-
isfy any formula in the list, otherwise it is the colour assigned in the list to the
formula it satisfies (when formulas overlap in image-based models, the colour of
the last formula is used). Using spatial models based on images makes interactive
exploration of the model checking results possible. More precisely, one can use the
graphviz toolkit to visualize the graph corresponding to the Kripke frame given
as input, in such a way that clicking on a state visualizes the image associated to
it in the model checker output. This feature proved to be useful in understanding
the results of our case study (see Section 7). Furthermore, with reference to the
same section, we mention that in the implementation of the model checker, states
are numbered, and the output of the model checking can be accessed by these
numbers (more precisely, in the implementation, to each state s, a coloured image
is associated in the output of the model checker, corresponding to the projection
Vs of the valuation function).

Several derived operators can be defined starting from the basic ones whose
semantics is given in Definition 2. Among these, we recall the path operators F
(“eventually”) and G (“globally”). For example we have M, x, s |= AFφ whenever
for all paths σ in Ps there is i with M, x, σ(i) |= φ; similarly, for the AG variant,
replace “there is i”, with “for all i”.

6 Bus operational issues: analysing headway

An instance of a short headway problem is illustrated in Figure 9 using a series
of successive “satellite view” images of the bus data (from the top-right corner to
the bottom-left corner of the picture).

In the literature various proposals exist that aim at dynamically maintaining
an acceptable headway in bus systems (see for example some recent work [29,42,
20,19] and references therein). A particular class of such proposals is based on
bus holding strategies. These are self-adaptive strategies where buses are put on
hold for a short period of time. This can be at predefined control points, such
as at the end-points of a route, or this can be at the bus stops themselves. The

5 Further information on the dot notation and the graphviz toolkit can be found at
http://www.graphviz.org/Documentation.php.
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Fig. 9: Because of delays caused by boarding passengers the headway between
buses is successively eroded over time until the buses are essentially working as a
conglomerate.

waiting time is usually established by a function that depends on the backward
headway, that is, the headway between the current bus and the bus behind, or the
forward headway, namely, the headway between the current bus and the bus in
front (see [42]), or both. Perhaps the most obvious measure of headway is chainage,
the distance by road between two vehicles. However, because buses change speed
on different parts of the route, this is not the best metric to use. One usually
wishes to address time-related problems with the service (passengers waiting for
too long a time between buses; and there not being enough time between buses
for passengers to arrive at a bus stop). For this reason, the bus holding strategies
discussed above rather focus on the temporal separation between buses. In order
to express such notions of headway, one should take into account both spatial and
temporal aspects; their interplay may have rather subtle aspects to consider, and
require careful formalisation.

Using spatio-temporal logic, clumping of buses can be detected, both in a sys-
tem trace (e.g., a GPS trace obtained at run-time), and in more complex branching
models, that are used in Section 7. Consider a single bus route, served by k buses.
At each instant of time, the state of the system is completely described by a tuple
of k GPS positions; therefore, a system trace is a finite sequence of such tuples.
As already discussed, there may be several different ways to formalise the notion
of clumping. We describe two possible variants, with the idea in mind to check
for clumpings that happen at a bus stop (clumping could happen anywhere, but
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// buses are shades of red:
Let bus1 = [red == 155] & [green == 0] & [blue == 0];
Let bus2 = [red == 188] & [green == 0] & [blue == 0];
Let bus3 = [red == 221] & [green == 0] & [blue == 0];
Let bus = bus1 | bus2 | bus3;

//bus stop is dark blue:
Let busStop = [red == 55] & [green == 55] & [blue == 255];

Let close(x) = N^7 x;

Let busAtStop(x) = busStop & close(x);

Let busAfterBus(x) = busAtStop(x) & E X busAtStop(bus & !x);

Let closeToOtherBus(x) = (x & close(bus & !x));
Let conglomerate = busStop & close(closeToOtherBus(bus1)

| closeToOtherBus(bus2) | closeToOtherBus(bus3));

Let timeConglomerate = busAfterBus(bus1) | busAfterBus(bus2) | busAfterBus(bus3);

Check "0x00FF00" (E F timeConglomerate); // stops with conglomerate turned green

Fig. 10: Spatio-temporal formulas for conglomerates

it is significant from an user point of view only at bus stops). Figure 10 contains
the input of a model-checking session using three buses. Formulas bus1, bus2,
bus3 characterise different buses on the same route in different shades of red and
busStop denotes a bus stop indicated by a dark blue square. In this example,
shades of colours (of red in this case) are used to distinguish the different buses
serving the same route, so that each bus has a specific shade of the colour through
time. The formulas that we explain below are true at points of a bus stop whenever
clumping (i.e. formation of a conglomerate) is happening at that particular bus
stop.

1. A spatial conglomerate happens when two buses serving the same route, at
some point in time, are spatially close to each other, and also close to a bus
stop. This event is described by the formula conglomerate. Points satisfying
this formula are those that are close to a bus, which is in turn close to another
bus. Formula closeToOtherBus, which is parametrised by the chosen bus, is
responsible for checking that a bus is close to another one. The notion of “close-
ness” is defined by formula close, using nested applications of the basic closure
operator of the logic (the number of nested applications has been determined
by trial and error in this example, but it can easily be related to real-world
distances).

2. A spatio-temporal conglomerate happens when two buses serving the same
route pass by the same stop in a short amount of time. This case is subtler
than the previous one, as it does not necessary imply that the (spatial) distance
between two subsequent buses becomes too small. One way to describe such
event is by the formula timeConglomerate, which features a combination of
spatial operators (used to detect that a bus is close to a stop) and temporal
operators (used to identify the spatio-temporal conglomerate). For instance,
consider the formula busAfterBus1. This formula is true on points that are:
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i) part of a bus stop, and close to bus1, because busAtStop must be true for
bus1; ii) such that, in one6 time step, these will be part of a bus stop, and close
to either bus2 or bus3. Note that the use of spatial and temporal connectives
in the same formula permits one to refer to the colour of points at a specific
time, and at subsequent time instants. However, we remark that complexity
of model checking spatio-temporal conglomerates in this way is proportional
to the number of considered buses. In Section 7 we will thus use a slightly
more elaborated notion of spatio-temporal clumping, which does not require
to instantiate a sub-formula for each bus.

Once established what is the kind of clumping one is interested in, one may
use temporal operators to detect points where, for example, clumping will happen
at some point in the future. Figure 11 is obtained with topochecker, starting
from the positions of three buses serving the same route. Figures 11a-11e are
obtained by mapping bus coordinates over a base map. Buses are represented by
squares of different shades of red. The dark blue square is a bus stop. Figure 11f
shows the output of the model checker in the initial state when checking the
formula E F timeConglomerate. Indeed, Figure 11f is the same as Figure 11a,
except for the colour of one bus stop, whose points are coloured green as the result
of the model checking procedure indicating that clumping happens at that stop,
eventually in the future.

As the model-checker is a simple prototype, we do not provide accurate per-
formance information. We just remark that execution time is in the order of a few
seconds on a standard laptop for this example, in which over one million points
(approximate size of the image) are examined several times (proportional to the
number of sub-formulas of the formula to be verified).

7 Analysing the effect of bus holding strategies for operational issues

Several bus holding strategies suggested in the literature issue wait instructions
to buses to rebalance the headway between them. The additional waiting period
usually depends on the forward or backward headway (or both) of a bus at one
or more control points selected along the route (see for example [29,42]). Other
strategies suggest a maximal speed limit that is continuously updated and com-
municated to the driver based on GPS positioning data of preceding and following
buses. Although the performance of these strategies have been studied in detail
both from a theoretical point of view and by means of simulations, it is much
harder to foresee whether a particular strategy might work in a real situation.
Some tests in real cities have been performed as well (see for example [28]) but
these may be very costly and time consuming to perform. In the following we
describe a method by which spatio-temporal model checking could contribute to
analyse the effects of bus holding strategies in real cities by analysing models ob-
tained from a transformation of linear traces of actual AVL data of buses on a
given route.

We consider a simplified scenario of a richly-instrumented real-time-informed
system where data cleaning has been applied as described in Section 4 to result in

6 More than one time step can be required. This can be achieved by repeated nesting of
applications of E X operators. We did not do so for the sake of clarity in Figure 11.
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(a) Initial state (b) Second state

(c) Bus 1 passes by the stop (d) Bus 2 passes by the stop

(e) Final state (f) Result from the model-checker. Points
of the initial state that will be involved in
a time conglomerate are coloured

Fig. 11: Spatio-temporal conglomerate.

a plausible set of observations of bus positions. In this scenario, either driven by
the central authority of the bus system, or by an autonomous, adaptive response,
buses could intervene when short headway problems are detected by waiting for
a predefined amount of time to lengthen the headway. This intervention may not
necessarily solve the problem, but it improves it, and it is always possible to let a
bus wait again later if necessary. Differently from the strategies in the literature,
we do not let the waiting time depend on the headway of preceding or follow-
ing buses. However, multiple wait instructions can be issued, which is similar to
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waiting for a longer time interval. Because the wait instructions are issued in re-
sponse to a detection of the shortening of the forward headway, the strategy is also
(self)-adaptive to some extent. The simplified approach we assume is quite per-
missive on when and where wait instructions are sent. As such, it only serves the
purpose of exemplifying how to use spatio-temporal model checking for assessing
the impact of a mitigation strategy; studying more elaborate holding strategies is
left to future research. Note, however, that our analysis methodology for policies
does not depend on the chosen policy, and our simplified strategy is used merely
for exemplification purposes. More complex strategies could be checked as well.
The complexity of the model transformation applied to the traces depends upon
the features that are observed (e.g., distance between buses, headway, number of
passengers, delay, etc.).

Note that the spatio-temporal model checker can be used both to detect clump-
ing in a system trace, as we have seen, or to analyse a branching model where at
each state, non-deterministically, there may be several possible steps to different
future states. Such non-deterministic models represent in a concise way a great
number of possible system behaviours or scenarios, depending on the choices that
may be made at each execution step. The possibility of issuing wait instructions
to specific buses, or not doing so, introduces non-deterministic choice points.

We designed and implemented an experiment, demonstrating how, starting
from real-world GPS traces of a bus network, one can generate a branching spatio-
temporal model that mimics the effect of possibly non-deterministic policies aimed
at modifying the system behaviour, analyse complex spatio-temporal properties by
means of the spatio-temporal model checker, and interactively inspect the results,
as we explained in Section 5, by looking at the behaviour of the system, represented
as a tree of possible states, and at maps with super-imposed bus positions and
bus stops, coloured according to the results of model checking several properties.
The model generator that we implemented, and the model checker, constitute a
tool-chain which is able to accept as input a set of GPS traces and produce as
output a spatio-temporal model, coloured according to the Boolean valuation of
user-defined spatio-temporal formulas. We used the tool-chain on real data and
examined the results of some relevant formulas.

7.1 Model generator

We developed a model generator7 taking as input a list of GPS positions (in
the form of a comma separated values file) of several buses of the same route.
Each item in the list consists of a bus fleet number, a pair of GPS coordinates
(expressed in decimal degrees), and a time-stamp (year, month, day, hour, minute,
second). All the buses are operating on the same route. The GPS traces of the
buses are not assumed to be synchronous, that is, there is no pre-established
time interval at which the GPS positions of all buses on the route are collected,
but rather, the time-stamp of each bus position is independent from the others.
Furthermore, the model generator takes as input a list of bus stops, with their
GPS coordinates, a digital image of a portion of a world map (used as background

7 The source code, written in the programming language OCaml, is available as a free and
open source software in the source code repository of topochecker.
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State 40

Fig. 12: Branching spatio-temporal model generated by a bus holding strategy.
State 40 is detailed using the corresponding image; this state is analysed in one of
our examples in Section 7.

for the output, as described below), a textual description of the GPS coordinates
of its bounding box, and a set of parameters that affect model generation, namely
the time step length (in minutes), the start and end of the considered time window
(in minutes), the number of time steps during which a bus should rest in response
to a “wait” instruction, the maximum delay allowed for a bus (in minutes), and
three parameters related to clumping detection, namely a spatial and a temporal
distance, and a clumping duration expressed in time steps.

The output of the model generator is a synchronous branching spatio-temporal
model (see Figure 12) suitable for being loaded by topochecker. The model is syn-
chronous in the sense that a system state is computed for each “time step”, that
is, a user-defined time interval. The model is branching, since at each point in
time, a “clumping avoidance strategy” (described below) may instruct buses to
wait for a user-defined amount of time. In that case, choice points are introduced
in the temporal flow of the model, as waiting is considered a possible choice af-
fecting the possible future behaviours of the system. Model checking is thus used
to exhaustively explore all the possible behaviours.

The generated model consists of a tree representing all the system states, and,
for each state, a digital image (an example is reported in Figure 13) consisting
of the background (portion of world map) described above, with superimposed
the computed positions of all buses on the route, and the bus stops. Each bus
position is colour-coded by changing the RGB coordinates of its colour at each
state as follows. The blue component is fixed to one of three values which are not
present in any point in the background map (this permits one to pinpoint a bus
superimposed to the map). The three possible values of blue are used to indicate
the direction of the bus along the route; there are two values for the two possible
end-to-end directions, plus an “unknown” value, needed since in our experiment,
the direction of each bus is not included in the AVL data, therefore it needs to be
detected algorithmically, which is not always possible (e.g. when there is only one
data point, at the beginning or at the end of the model generation process). The
intensity of the red component is proportional to the bus identifier. The intensity of
the green component is proportional to the delay of the given bus in the generated
state. All buses start with no delay. Bus stops are painted in green.



Spatio-temporal Model-checking of Vehicular Movement 21

Map data copyright 2017 Google

Fig. 13: One state in the generated model. Buses are colour-coded according to
their direction, fleet number, and current delay. Bus stops are painted in green.

Remark 1 We note that, although data about the direction of buses serving each
stop is available, and the model generator can encode bus stops of each direction
differently, we did not use this feature in our experiment, as the bus stops cor-
responding to opposite directions are very close to each other in the considered
route, and using data about their direction would generate too much noise in this
particular case. Therefore, bus stops of the same location, related to opposite di-
rections, are intentionally painted in the same colour in our figures and cannot be
distinguished by the model checker.

7.2 Clumping avoidance strategy

We have chosen a simple behavioural strategy for clumping mitigation that detects
clumping at each instant of time using only past information about bus positions,
and instruct buses to wait – up to a maximum delay – when clumping is detected,
lasting a certain amount of time. Such a strategy, which could be easily imple-
mented even without centralised control, has obvious drawbacks (e.g., the whole
network can be delayed due to a single local phenomenon), but it serves well our
purpose to check feasibility of spatio-temporal analysis based on images, using
real-world data and a realistic behavioural model generation.

Getting into more detail, for each bus, the internal state of the model generator
includes the current delay, and the past positions occupied by the bus at each time
step, since the first time step in which information about that specific bus was
found in its GPS trace. For time steps in which more than one GPS position is
found in the input data, positions are averaged, whereas for time steps in which
no position is available, the previous position is used. Clumping is defined by
three parameters, namely a temporal distance t, expressed in time steps, a spatial
distance s, expressed in meters, and a clumping duration d, expressed in time steps.
We then define the asymmetric clumping relation c(b1, b2) where b1 and b2 are bus
identifiers. Relation c(b1, b2) holds whenever b1, following b2, is at a bus stop –
therefore able to wait for some time – and, for each time step x in the last d steps,
there is a time step y between x − t and x in which the spatial distance between
the position of b1 at x and the position of b2 at y is less than or equal to s. The role
of the parameter t is to define a maximum temporal interval between two buses
to consider them in a situation of clumping. If the situation is as described above,
this means b1 passed by “roughly the same” (parameter s) points as b2 in a “too
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short amount of time” (parameter t), for “too long” (parameter d). Therefore b1
should be delayed. For instance, taking d = 2, t = 5 and s = 500 meters, clumping
occurs for b1 if b1 passes by a point x (+/- 500 meters, i.e. s) within 5 time steps
(i.e. t) after b2 passed by x, and this happens again in the next time step for a
point x′ where b2 passed by and b1 reached x′ within 5 time steps after b2. If the
current delay of b1, plus the user-specified waiting time, is less than or equal to the
maximum allowed delay time for a bus (which is also user-defined), then a choice
point is generated, corresponding to the possibility of letting b1 wait; the future
behaviour is thus divided into two branches. On one branch, model generation
proceeds as if no clumping has been detected. On the other branch, all the future
positions of b1 are delayed by the specified wait time. Note that there may be a
bus b3 following b1, that becomes in turn too close to b1 because b1 is waiting. This
may indeed be detected as clumping in some subsequent step of the generation
process, and produce another branch in the generated model.

The model generation that we implemented is rather primitive in nature. In
particular it does not account for guessing intermediate positions of a bus when
no position is available in one time interval, and does not take into account the
fact that a bus may be delayed due to external conditions (e.g. sudden, unpre-
dictable traffic jams) that would therefore affect all the future positions of a bus
and would require, e.g., a discounting factor in computing future positions after
a bus rests for a given time. Such considerations, together with experimentation
with more complex strategies (see e.g., [19]) can be easily accounted for in our
methodology, by changing the clumping detection function and the computation
of derived traces. However, the simple method that we implemented is sufficient
for interactive experimentation for model checking purposes, and demonstrates us-
ability and feasibility of a tool-chain comprising branching model generation and
spatio-temporal model checking in the context of smart transportation.

7.3 Experiment set-up, model size and execution time

We used as input the GPS traces of 12 buses over route 100 (Airport-City Centre)
in Edinburgh, U.K., kindly provided by Lothian Buses. We experimented with
a trace length covering one hour and a half (drawn from several days of origi-
nal GPS traces), which in our tests has proved sufficient to provide interesting
behaviour without giving rise to unmanageable model sizes. We remark that it
would not be very interesting to employ much longer trace lengths; it is expected
that any reasonable bus holding strategy would “reset” the maximum delay after
some period of time, to permit the strategy to take place again. Otherwise, the
“maximum delay” parameter of the model would quickly prevent any further re-
sponse to clumping after all buses have reached the maximum value. In the model
we generate, there are buses that reach the maximum delay within the given time
frame, therefore longer traces would not be significant in evaluating properties of
bus holding strategies such as the one we investigate.

Although we did not compute accurate statistics on our data, we can provide
some estimates on model sizes. Approximately, one hour and a half of input data
are covered by 2000 input GPS positions. The generated branching model (see
Figure 12) consists of about 800 states. A digital image (pixel size: 340x100) is
associated to each state. The on-disk size of the generated model (including all
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files, suitable for analysis by topochecker) is about 80MB. All test were executed
on the same machine (see Section 7.4). The time for model generation is in the
order of 10 seconds. As we shall see, analysis via model checking, depending on the
considered formula, ranges between a few seconds and a few minutes resulting in a
rapid work-flow for interactive refinement of the logic formulas that are used. Such
low numbers indicate that larger models (e.g. using higher-resolution images, or
more detailed input traces) would be tractable. However, as we already explained,
the considered data size is appropriate for the task that we illustrate, and in our
experiments there was no need for heavier workloads.

The model generation parameters (see Section 7.1) were instantiated as follows.
Time step length was set to 1 minute; the considered time window starts at 7 a.m.
and ends at 8.30 a.m.; the number of time steps during which a bus should rest in
response to a wait instruction was set to 2 time steps; the maximum delay allowed
for a bus was set to 6 minutes. The parameters for clumping detection were set as
follows: spatial distance set to 500 meters; temporal distance set to 5 time steps;
clumping duration set to 2 time steps. As the route is served on average by one bus
every 10 minutes, such parameters seem realistic. We experimented with variations
of the chosen parameters without observing noticeable changes of model size and
computation times.

7.4 Spatio-temporal properties

The spatio-temporal model obtained as described above contains a lot of informa-
tion, relating bus positions to several features, e.g. individual bus delay, spatial
aspects (such as the position of bus stops, or the distance between buses) and
temporal aspects. Looking at such highly structured information may be a hard
task; although numerical indicators may be derived, these do not capture the com-
plexity of the observed phenomena. Our spatio-temporal logical language is used
as a query language, in the spirit of queries over structured data in traditional
relational databases, in order to extract complex structured information from the
data of the generated model.

In the remainder of this section, we illustrate some relevant queries for the
smart buses scenario, explain how they are built, and show the model checker
output. Such output consists of an image for each state s of the model, coloured
according to the truth value of each formula at each point of the model at state
s. We just show the image associated, in the model checker output, to the initial
state, as this is sufficient to get a glimpse on how such formulas operate; however,
part of the effectiveness of using topochecker in this case study is the possibility
of interactive exploration of the results (as we mentioned in Section 5), by us-
ing graphviz to visualize the Kripke model, and open the associated image in the
model checker output, when clicking on a state. For each considered formula, we
also provide a rough estimate of execution times; these are based on a desktop ma-
chine equipped with an intel core i7 processor and 8 gigabytes of central memory.
CPU power directly (linearly) affects execution time, since the spatio-temporal
model-checking algorithm is linear in the size of the model. The algorithm is a
global in-memory model checker, therefore RAM size only affects feasibility of the
analysis, since the model must fit into memory to be analysed; we note that in our
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Let centreBus = [blue == 10];
Let airportBus = [blue == 15];
Let unknownBus = [blue == 13];

Let bus = centreBus | airportBus | unknownBus;
Let bus1 = bus & [red == 0];
Let bus2 = bus & [red == 15];
Let bus3 = bus & [red == 30];
Let bus4 = bus & [red == 45];
Let bus5 = bus & [red == 60];
Let bus6 = bus & [red == 75];
Let bus7 = bus & [red == 90];
Let bus8 = bus & [red == 105];
Let bus9 = bus & [red == 120];
Let bus10 = bus & [red == 135];
Let bus11 = bus & [red == 150];
Let bus12 = bus & [red == 165];

Let delayed = [green > 0];
Let delayed1min = [green == 5];
Let delayed2mins = [green == 10];
Let delayed3mins = [green == 15];
Let delayed4mins = [green == 20];
Let delayed5mins = [green == 25];
Let delayed6mins = [green == 30];

Let busStop = [red == 0] & [green == 255] & [blue == 0];

Fig. 14: Abbreviations for relevant image features based on the colour coding of
the model generator.

experiment, the model size is just about 80MB, which is two orders of magnitude
smaller than the maximum available at the machine in use.

First of all, we need to set up some abbreviations for formulas that have a
concrete meaning in our scenario, namely bus stops, buses, direction, and delays,
based on the colour coding used by the model generator. Such abbreviations are
reported in Figure 14, and their meaning should be self-explanatory. Note that
formulas centreBus, airportBus, and unknownBus represent directions (going to
the centre, going to the airport, or unknown). The direction of a bus is detected
algorithmically in the model generator, and can therefore be unknown e.g. when
there is only one data point, or when there are zero (both things only happen at
the beginning and end of the given AVL trace).

Furthermore, we need to introduce some general-purpose definitions of param-
eterised formulas (that is, derived operators), reported in Figure 15, and formally
introduced in Section 2 and [15]. Let us recall the meaning of the derived opera-
tors with the notation used in the tool. Formula touch(x,y), based on the inner
formula reach(x,y), identifies all the points laying in an area, say A, such that
each point in A directly touches either one point satisfying y or another point
in A, and all points in A satisfy x. Formula everywhere(x) is a global assertion
operating on connected spaces; it denotes all points of the space, when all points
satisfy x, and no point otherwise. Formula somewhere(x) is a “global” assertion
(on connected spaces) in turn; it either denotes all points of the space, when there
exists at least one point satisfying x, or no point, if there is no point satisfying x.
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Let reach(x,y) = !((!y) S (!x));
Let touch(x,y) = x & reach(x|y,y);
Let everywhere(x) = x S FF;
Let somewhere(x) = !(everywhere(!x));

Fig. 15: Some general-purpose parameterised formulas.

First, one can check whether the considered trace length (one hour and a half)
is enough to capture the interesting dynamics of the chosen bus holding strategy.
In the case of our simple strategy, we assume that if buses reach their maximum
waiting time, they should soon be “reset” (e.g., by allocating a waiting time in the
final destination, that can be adjusted depending on the situation). Long traces
become less significant if some buses reach their maximum delay in the generated
model. This is checked via the formula

somewhere(E F (bus & delayed6mins));

The tool topochecker takes 30 seconds to verify this formula, and colours in
red all the points of each state (but note that it is sufficient to look at the first
state), demonstrating that there are buses that reach the maximum delay time.
Note that there are, necessarily, paths where buses do not reach the maximum
delay (as wait instructions generate choice points in the model, therefore they are
“optional”).

One problem of the considered strategy is that it may slow down the whole
network. The considered bus route has an expected frequency of one bus every 10
minutes. We will now use the model checker to verify if there are bus stops where
no buses pass by for 15 minutes, which would be a noticeable delay. This will be
done by model checking the generated model, considering both the case in which
no bus is delayed (therefore, the problem is intrinsic to the considered data), and
the case where delay is permitted (therefore, additional problems found are to be
related to the chosen behavioural policy).

In order to consider only system states with / without added delay, we first
define the formulas noDelay and delay:

Let noDelay = everywhere(!(bus & delayed));

Let delay = somewhere(bus & delayed);

Next, we define two formulas related to the presence of buses at stops. Formula
busAtStop(dir) identifies points belonging to a stop where there is a bus travelling
according to the specified direction. Formula emptyStop(dir) identifies points
belonging to a bus without any bus travelling in the given direction (note that, by
Remark 1, we do not take into account the direction of each stop).

Let busAtStop(dir) = touch(busStop,dir);

Let emptyStop(dir) = busStop & (!touch(busStop,dir));

The next formula is parameterised with a parameter del, which will be clarified
later and is related to the delay of buses, a direction, and a continuation cont. It
is used to identify a bus stop that is empty (with respect to buses passing in the
specified direction), satisfies d, and in at least one possible next time step, also
satisfies cont.
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Let noBusesStep(del,dir,cont) =

emptyStop(dir) & del & (E X cont);

Passing a continuation is used to simplify formula noBusesFifteenStepsDir

described below. Such formula is still parameterised over del and dir, and computes
the points belonging to a bus stop which is not served by any bus in the given
direction for 15 steps, and satisfies del at each step. Additionally, we check that
the last step is not a final state (which implies that also intermediate steps are not
final). Not including final states is needed as those states are the points where the
path is artificially truncated by the end of the model generation process. Therefore
such states exhibit an artificial infinite loop (“deadlock”) that should not be taken
into account, for example because a bus stop that is empty in a deadlock state will
stay empty forever. Such deadlocks are the result of using finite models (such as
the model we generate) when considered as Kripke structures in model checking.
The model checker topochecker defines a special predicate, named deadlock, to
denote points of such states.

Let noBusesFifteenStepsDir(del,dir) =

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

noBusesStep(del,dir,

emptyStop(dir) & del & (![deadlock]))))))))))))))));

In order to get significant results, such property should be checked twice, with
the dir parameter set to airportBus and centreBus, respectively. This can be
done as follows:

Let noBusesFifteenSteps(del) =

noBusesFifteenStepsDir(del,airportBus) |

noBusesFifteenStepsDir(del,centreBus);

The formula can be instantiated with del set either the noDelay property de-
fined above, in order to restrict checking to states (and paths) where no delay is
introduced at any step by the chosen clumping mitigation strategy, or passing as
del the TT logical constant (true at every point in every state) in order to avoid
such restriction.

In the initial part of the generated model (first 40 minutes, just one branching
point introduced, middle part of the model depicted in Figure 12), this property
is true at some states for some stops, even with no delay added by the clump-
ing mitigation strategy. Therefore, the problem was already present in the input
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Fig. 16: Output at state 40 of the formulas noBusesFifteenSteps(noDelay) and
E F noBusesFifteenSteps(noDelay). No point is coloured by the model checker.

data. After 40 time steps, there is no stop satisfying this property without con-
sidering added delay, whereas there are several stops where the issue manifests,
if added delay is taken into account. This indicates that the considered clump-
ing mitigation strategy may indeed introduce large delays in the bus network.
In Figure 16, we show the model checker output8 in State 40 (highlighted in
Figure 12), for the formulas noBusesFifteenSteps(noDelay) (in red) and E F

noBusesFifteenSteps(noDelay) (in orange); indeed, no point is coloured in or-
ange or red, as there is no future state exhibiting bus stops where no bus passes by
for 15 minutes. Cumulative execution time for both formulas is about 5 minutes.
The model checker output can be inspected by looking at the tree of system states,
paired with the corresponding images. In doing so, starting from the initial state,
one observes that evaluating the formulas at later time steps, some stops turn red,
then orange, then red again, then green. In the initial state, some stations will not
be reached by buses for quite some time, therefore they are red. Such issue could
be considered spurious; however, later in time, as we already mentioned, there is
a point in the input trace where the considered bus stops actually are not served
by any bus for a long time. This is correctly highlighted by the model checker
(the orange-coloured stops) in all states preceding the problem. Then the issue
manifests, and stations are correctly coloured in red until a state is reached where
the problem is no longer present.

In Figure 17, we show the model checker output at state 40, for the formulas
noBusesFifteenSteps(TT) (in red) and E F noBusesFifteenSteps(TT) (in or-
ange). Execution time is about 4 minutes. In this case, it is apparent that there
are stops, especially in busy areas such as the airport and the city centre, that
become problematic if the clumping mitigation strategy we are considering is used.
Note that such results are obtained by looking at all system paths, therefore one
should not think that all the potentially problematic stops become so in the same
run of the system. Further inspection of the tree of system states can also be used
to identify the choices that may lead to states with more stops exhibiting large
delays.

Finally, since our strategy is designed to mitigate clumping, one may wonder
if that really happens. We can check this by a variation of the method we used in
formula noBusesFifteenSteps(d). Intuitively, both clumping and “too few buses”

8 States are numbered in the implementation and output for each state can be directly
viewed without navigating the Kripke structure.
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Map data copyright 2017 Google

Fig. 17: Output of the formulas noBusesFifteenSteps(TT) (in red) and E F

noBusesFifteenSteps(TT) (in orange) at state 40.

are indications about the frequency of buses at stops. This explains the similarity
between the two formulas.

Let clumping(del,dir) =

del & busAtStop(dir) &

(E X ((del & emptyStop(dir)) &

(E X ((del & busAtStop(dir)) |

(E X (del & busAtStop(dir)))))));

Let notDelayedClumping =

touch(busStop,

E F (clumping(noDelay,airportBus)

| clumping(noDelay,centreBus)));

Let delayedClumping =

touch(busStop,

E F (clumping(delay,airportBus)

| clumping(delay,centreBus)));

Formula clumping(del,dir), similarly to noBusesFifteenSteps, only anal-
yses states (and paths) that satisfy the property passed as parameter del. The
additional parameter dir is necessary as, in the particular case of this route, buses
going in opposite directions pass very close to stops of both directions; therefore
one needs to check separately for each direction whether a clumping happens.

Once this is clarified, it is easy to see that formula clumping(del,dir) checks
whether a bus of the specified direction is calling at a certain bus stop, then at
step 2 no bus is calling at that stop, and finally, there is another bus calling at that
stop in one or two subsequent steps. Such a situation is clearly an instance of the
clumping problem; requiring the bus stop to be empty (i.e. no bus calling at it)
for one step makes sure that the formula can be model checked in constant time
with respect to the number of buses employed on the route: one does not need
to check that the bus calling at the stop in step 2 is different from the one being
there at step 1. Note that from step 3 on, any bus at the stop can be expected
to be different from the one calling at the same stop in step 1, since the same
bus is guaranteed to have left the stop in step 2. This way one does not need to
instantiate the clumping formula for each possible “current” bus.

The size of the (simpler) timeConglomerate formula presented in Section 6 is
linear in the number of buses, which results in too high model-checking time when
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Fig. 18: Output of the formula notDelayedClumping (in orange).

Map data copyright 2017 Google

Fig. 19: Output of the formula delayedClumping (in orange).

checking for clumping that lasts more than 1 time step. Indeed the two formulas
can be combined (detect if in the second step a different bus is present, then use the
formula defined in this section to check clumpings with a length of more than one
step), but in this particular experiment, possibly due to larger than usual distances
between stops, we found very few clumpings of the type detected by the formula of
Section 6. The two formulas notDelayedClumping and delayedClumping identify
bus stops that will eventually contain clumpings, restricting analysis to states and
paths without added delay (that is, the original trace) and to states and paths
that have delay (that is, some buses have been waiting due to the waiting policy).
The touch construct is used as a visual aid, to colour the whole bus stop, as the
result of verification may colour a stop only partially in certain circumstances, due
to a bus being held in a station and overlapping with it in the image. The two
formulas take about 3 minutes each to be checked. Results (in the initial state) for
the “no delay” case are reported in Figure 18, whereas results in the same state
for the “delayed” case are reported in Figure 19, and clearly show effectiveness
of the mitigation strategy. Almost all the bus stops exhibit clumping if no wait
instruction is sent to buses.

8 Further Related Work

Spatial analysis has become an increasingly popular and varied area of research.
Following is a selection of such research mainly addressing spatial issues in trans-
portation illustrating the issues. A spatial time-series model for tracking planned
journeys is presented in [43] although their main area of concern is vehicle speed
forecasting rather than detection of outliers. The detection of outliers has been
addressed by applying stochastic approaches. In [32] a method is presented for
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snapping GPS data onto a road network using a Hidden Markov Model. Noisy
GPS data is identified as being the largest problem with snapping GPS readings
onto road maps. The authors report that GPS signals can be reasonably modelled
as a zero-mean Gaussian with a standard deviation of 10 metres. In [24] the au-
thors present an approach to inferring the lane structure of roads from GPS data
by fitting a mixture of Gaussians to GPS traces. This probabilistic approach nat-
urally models the inherent noise in GPS data. In [35], instead, the authors apply
the concept of functional depth to the identification of outliers in GPS observa-
tions. Outliers are identified by detecting curves rather than central values as in
traditional statistical tests for comparing distributions.

The problems of headway computation are also considered in [36], where Monte
Carlo simulation and time series analysis are used to evaluate a family of interpre-
tations of an ambiguous regulation governing headway for frequent bus services.

From a more theoretical point of view, different forms of spatial logic have been
proposed in computer science to refer to logics expressing properties of structured
objects such as processes or data structures, in particular in the context of π-
calculus (e.g. [10]) and mobile ambients with the related ambient logic (e.g. [12]).
For example a binary logic operator has been introduced, Φ|Ψ , that holds for a
process P when this process is a parallel composition of two processes Q, satis-
fying Φ, and R, satisfying Ψ . Works such as [30,11] introduce notions of physical
space in the context of process calculi; it is an interesting future work to connect
this research line to spatio-temporal model checking. Furthermore, in a stochastic
setting, the Mobile Stochastic Logic (MoSL) [21] has been proposed to predicate
on mobile processes in models specified in StoKLAIM, a stochastic extension of
KLAIM based on the tuple-space model of computations. Also logics for reasoning
on signals have been enhanced with spatial aspects [27,8,25,33,4].

Other variants of spatial logics concern the symbolic representation of the con-
tents of images, and, combined with temporal logics, for sequences of images [7].
The latter is based on a discretisation of the space of the images in rectangular
regions and the orthogonal projection of objects and regions onto Cartesian coor-
dinate axes such that their possible intersections can be analysed from different
perspectives, whereas in [27] a linear spatial superposition logic is defined for the
specification of emergent behaviour. The logic is applied in the context of medical
image analysis for the recognition of patterns.

The spatial logic SLCS [14,15] and its spatio-temporal variant STLCS [13] used
in the current paper, instead, addresses properties of discrete, graph-based models;
such kinds of models include geographical maps, but also multi-dimensional images
(see e.g. [5] for example applications in the medical imaging domain), and richer
data structures such as bigraphs (see [39] for applications of further spatio-temporal
extensions of SLCS, in the field of verification of Cyber-Physical Systems).

In the context of self-organising systems a spatial language has been proposed
in [2] which can be used to assess spatial properties of system components to check
desired global properties of the system against emergent global behaviours arising
from local interactions among components. Spatial awareness is also an important
issue in the context of pervasive ecosystems [22]. In that context the development
of computational models is considered in which the entire structure of a pervasive
system is modelled and constructed using an explicit spatial model, supporting
multi-level spatial reasoning, and adapting autonomously to spatial interactions.
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9 Conclusions

The use of a spatial model checker provides us with a sophisticated tool for checking
complex properties over systems where location plays an important role, as it
does in many collective adaptive systems (see for instance [40]). Using this tool
we have been able to detect and correct a wide range of location-related errors
in vehicle location data. By enhancing the logic and the model checker with a
temporal perspective, the interplay of space and time has allowed us to define
complex spatio-temporal formulas, predicating over the relation between points of
a coloured image that evolves over traces or branching models. This methodology
achieves a declarative approach to verification of spatio-temporal properties. This
has a clear advantage over ad-hoc implementations of spatial analysis algorithms,
because slight changes in the interpretation of given requirements do not impact
the implementation of the verification tools, as only the logical formalisation of
requirements needs to be changed.

From the experiment that we presented in Section 7, one can conclude that
model sizes and model-checking times are reasonable for analysing simulations of
bus holding strategies on real-world data using spatio-temporal model checking.
Furthermore, the output format of the model checker makes it possible to explore
the results of model checking interactively, by looking at the tree of all system
states in the generated model, and looking at coloured maps for each state; a
user of the system can therefore inspect the temporal evolution of the Boolean
properties that are computed by the model checker. This can help users to de-
tect correlations between the results of different spatio-temporal formulas. Such
intrinsically “intelligent” process could as well be the object of machine learning
procedures.

We note that our set-up does not yet cater for statistical analysis of the strategy
taken into account. Indeed, our experiment could be repeated for several different
time intervals of our input data, and the Boolean results could be turned into mea-
sures by counting the number of positive and negative results. This approach has
already been demonstrated, in the context of bike sharing systems in [16], under
the name of “statistical spatio-temporal model checking”. Porting the methodol-
ogy to the case study of bus networks will be the subject of future work. However,
this is not straightforward, since the models we generate are branching, whereas
traditional approaches to statistical model checking only operate on linear models.
Future work will therefore need to address concerns such as estimating statistical
confidence and accuracy of the results in statistical model checking of branching
models.

Furthermore, it would be useful to get a more precise indication of when a
wait instruction should be sent to a bus, e.g. by enumerating the traces that have
no clumpings. An algorithmic way to obtain examples of such promising traces
in which clumping is avoided is to generate a counterexample for AF f, where
f is a formula indicating clumping. Counterexample generation for CTL (and
more in particular for a subset of ACTL for which trace-like counterexamples
can be generated in polynomial time) is a well-studied area (see for example [18,
9]). In particular, it is known that trace-like counterexamples can be generated
in polynomial time using the algorithm described in [9]. The formula above is
indeed of the type for which trace-like counterexamples exist. The generation of
counterexamples in the context of spatio-temporal model checking is planned as
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future work; earlier experiments in this direction were made in the first prototype
spatio-temporal model checker that was implemented before topochecker, but
have not yet been ported to the new tool.

Recent work [15] is focused on defining collective variants of spatial and spatio-
temporal properties; that is, the satisfaction value of a formula is defined on a set of
points, rather than on a single point, so that the satisfaction value of a formula with
respect to a set of points (a collective property) is not necessarily determined by the
satisfaction values over the points composing the set (an individual property). Such
interpretation of spatio-temporal logics is particularly motivated by the setting of
collective adaptive systems and could as well bring interesting developments in the
bus clumping case study.

An orthogonal, but nevertheless interesting, aspect of computation is the in-
troduction of probability and of stochastic features. In future work, the statistical
spatio-temporal model checking approach of [16] could be used to address questions
like “how likely it is that a given strategy fixes the problem?” or “how frequently
does the problem manifest itself, before and after applying a given strategy?”. The
task is however non-trivial, as one should first understand how statistical meth-
ods can be applied to the branching models that we derive from traces, whereas
traditional statistical model checking only deals with traces, that do not contain
non-deterministic choice points.
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