
ar
X

iv
:1

90
4.

00
47

5v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  3

1 
M

ar
 2

01
9

The Entropy Production of Ornstein-Uhlenbeck Active Particles:

a path integral method for correlations

Lorenzo Caprini1, Umberto Marini Bettolo Marconi2, Andrea Puglisi3,

Angelo Vulpiani4,5

1 Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100 L’Aquila, Italy
2 Scuola di Scienze e Tecnologie, Università di Camerino - via Madonna delle Carceri, 62032, Camerino,
Italy
3 CNR-ISC, Consiglio Nazionale delle Ricerche
4 Dipartimento di Fisica, Università Sapienza - p.le A. Moro 2, 00185, Roma, Italy
5 Centro Interdisciplinare "B.Segre", Accademia dei Lincei, Roma, Italy

E-mail: lorenzo.caprini@gssi.it

Gennuary 2019

Abstract. By employing a path integral formulation, we obtain the entropy production rate for a system
of active Ornstein-Uhlenbeck particles (AOUP) both in the presence and in the absence of thermal noise.
The present treatment clarifies some contraddictions concerning the definition of the entropy production
rate in the AOUP model, recently appeared in the literature. We derive explicit formulas for three different
cases: overdamped Brownian particle, AOUP with and without thermal noise. In addition, we show that
it is not necessary to introduce additional hypotheses concerning the parity of auxiliary variables under
time reversal transformation. Our results agree with those based on a previous mesoscopic approach.
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1. Introduction

In recent years, the rapid development of nanotechnologies opened the possibility of manipulating

matter at the single molecule level and drew the attention of the physicists towards the study of

systems comprising few particles [1]. Due to the smallness of the systems considered, the standard

thermodynamic description is insufficient and it is necessary to take into account fluctuations around the

average values of thermodynamic variables. Stochastic energetics [2–5] has been introduced to deal with

these requirements: it extends thermodynamic concepts to single particle trajectories and generalizes

familiar quantities such as internal energy, exchanged heat, work and entropy to systems consisting of

few particles or even a single particle. Such an approach introduces the concept of trajectory as the

time history of the system and associates to it the notion of entropy production of a single realization

of the dynamics [6, 7]. An average over different realizations reproduces the macroscopic values of the

thermodynamic variables. The physical interpretation of this methodology has been discussed in [3, 8, 9],

where the concepts of entropy production of the medium, i.e the entropy flux to the environment, and

the total entropy production of the system have been connected. In particular, the entropy production

has been identified as the energy dissipated in the thermostat, whose form generally relies on identifying

thermal forces from the dynamics.

Some years ago, the theory has been generalized to include non-Markovian processes characterized

by memory effects in the noise and/or in the memory kernel [10]. More recently, more complicated cases

have been studied where it has been proposed to modify somehow “arbitrarily" the definition of entropy

production rate [11–15]. In certain cases, this is a meaningful procedure, for instance in the presence

of external magnetic fields [16–19], where employing modified backward-trajectory generators leads to

expected and well-known results. In other cases the meaning of these modified entropy production

definitions is less clear, see for instance the discussion in [20]. A recent example where such a trajectory

approach to the entropy production has been employed and generated some debate is the case of active

systems [14, 15, 21–26]. These systems include a large class of self-propelled agents, which live at different

length scales and share a peculiar feature, namely the ability to convert energy from the environment into

directed persistent motion. In particular, a single active agent on a small time scale shows a persistent

trajectory, caused by some chemical reactions in the case of a manmade artificial Janus particle [27, 28]

or by biological complex mechanisms such as flagella in the case of natural Escherichia coli [29]. These

mechanisms consume energy and render active systems intrinsically out of equilibrium. Since we expect

a non-zero entropy production in their steady state even in absence of external forces it is quite natural

to explore their dynamics under the lens of stochastic thermodynamics with the idea of gaining better

control of their functioning and finding strategies to optimize their performances [30–33].

Several descriptions have been developed in order to capture the behavior of active systems: among

the simplest models we mention the Run and Tumble [34–37] and the Active Brownian Particles (ABP)

model [33, 38, 39]. More recently, the active Ornstein-Uhlenbeck particle (AOUP) [40, 41] model has

been introduced as a convenient approximation of the ABP[42, 43]. In fact, the former leads to a

simpler analytical treatment and gives more possibilities to obtain interesting predictions [44–47].

The computation of the entropy production in the AOUP model has originated some debate

concerning the following question: what is the parity of the self-propelling force under time-reversal

transformation (TRT)? Assuming that self-propulsion is even or odd, several authors obtain different

results for the entropy production, as addressed in [25]. In the present work, we show that a
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hypothesis about the time-reversal parity of the self-propelling force is not necessary [24] and propose a

different method to compute the entropy production, which basically coincides with the non-Markovian

generalization of the path integral approach [10].

Moreover, we discuss the more realistic case where, in addition to the stochastic active force, another

source of noise, that is the thermal bath modelling the solvent medium, is included in the dynamics.

This possibility has been already explored considering both ABP [26, 48–50] and AOUP dynamics [23],

always taking some assumption about the parity of the self-propulsion force. Again we show here that

a univocal computation is possible.

We mention that other models have been recently considered, for instance taking explicitly into

account the role of hydrodynamic interactions [51], chirality [52] or by considering explicitly the chemical

nature of the self-propulsion force[53, 54]. Entropy production has been recently computed using Field

Theories models without Time-Reversal Symmetry [21].

The article is structured as follows: in Sec. 2 we briefly review the general path-integral approach

in the presence of a non-Markovian noise, discussing a generalization of Sekimoto’s formula for the

injected power. In Section 3 we provide some examples: for completeness, we apply the method to the

well-known result for a Brownian colloid in a thermal bath and discuss the case of the AOUP dynamics

with and without the presence of the thermal noise, i.e. considering or not the role of the thermal

environment. Finally, in Sec. 4, we summarize the results and present some conclusions.

2. Path Integral approach

To introduce the path integral approach, we consider the more general dynamics in terms of the set of

state variables, ω, describing our physical system. Without any loss of generality, we can express the

dynamics as a set of first order differential equations, whose particular structure depends on the physical

properties of our model:

ω̇ = F (ω) + η . (1)

The vector force, F , is a generic vector function, depending in principle on all the variables and

containing the deterministic contribution to the dynamics. Instead, the vector η contains the stochastic

contributions to the evolution and could be a signal correlated in time. In the picture of mesoscopic

dynamics, we can imagine that η, hereafter referred as noise vector, stems from a coarse-grained

procedure of some degrees of freedom whose dynamics is faster than the one associated with the slow

variables, ω. To fix the ideas, for an underdamped colloidal particle in a thermal bath the set ω can be

identified with the position, x, and the velocity, v, of the particle. As stated in the Introduction, there

exist many physical systems where the noise is correlated in time and/or displays some correlations

between its components. For the sake of simplicity, we assume that the first noise moment, 〈η〉, is zero,

without any loss of generality, and the second moment is given by the two-time correlation matrix,

νij(t− s) = 〈ηi(s)ηj(t)〉.
For instance, in the so-called AOUP model exponentially decaying correlations appear in the noise. In

order to exhibit the generality of such a result, we consider a general invertible matrix ν(t− s) in this

Section.

In the following, we use the compact notation, ω = {ω}Tt0, to denote the time history of the single

trajectory between the initial time, t0, and the final time, T . The explict introduction of a source of
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noise in the dynamics, produces a non-trivial probability, P [ω|ω0], of observing a path ω given the intial

state ω0. In the following, we consider Gaussian noises, which are entirely specified by the mean values

and correlations, 〈η〉 and νij(t − s). Under these assumptions, the probability of observing the noise

path, η, reads:

P̃ [η|η0] ∝ exp

[

−1

2

∫

dt

∫

dsη(s)T−1(t− s)η(t)

]

, (2)

where we dropped an irrelevant normalization factor. The two-time integrals of Eq. (2) are computed

along the times involved in the evolution of the trajectory, from t0 to T . The operator T−1 is the inverse

of the two time-correlator ν, defined as
∫

dt′T−1(t− t′)ν(t′ − s) = Iδ(t− s),

where I is the unit matrix and δ(t) is the Dirac delta function. In the Appendix Appendix A, we

compute T−1 in Fourier space for some choices of noise correlations.

Using Eq. (1) we express the noise in terms of ω and ω̇ through a change of variables. Formally,

we have η = η[ω, ω̇] from Eq.(1) and the following relation between the two path probabilities:

logP [ω|ω0] = log P̃ [η|η0] + log det
∂η

∂ω
, (3)

where the last term is the Jacobian of the transformation from η to ω. Therefore, we can express

the probability of a trajectory in terms of both the dynamical variables of the system and their time

variations:

P [ω|ω0] ∝ exp

[

−1

2

∫

dt

∫

ds η[ω(s), ω̇(s)]T−1(t− s) η[ω(t), ω̇(t)]

]

. (4)

In this path probability, we have neglected the contribution of the determinant, since under some rather

general conditions [55–57] it does not play any role in the computation of the entropy production of the

system. By taking into account the relation (1), without loss of generality, Eq.(4) can be rewritten as:

P [ω|ω0] ∝ exp

[

−1

2

∫

dt

∫

ds [ω̇ − F (ω)] (s)T−1(t− s) [ω̇ − F (ω)] (t)

]

. (5)

2.1. Reversed trajectory

In order to obtain the entropy production rate, we have to determine the probability associated with

the reversed trajectory. To do so, we need to know how each variable transforms under a time reversal

transformation. In the following, we denote with Θ the time-reversal operator, which acts on a time-

dependent observable o(t) as Θo(t) = o(T − t). We remark that in our treatment each component

of ω does not have to possess necessarily a definite parity under time reversal (odd or even), but can

transform as a combination of odd or even variables according to some fixed prescription.

Restricting to even or odd variables, the probability associated with the reversed path is:

P [Θω|Θω0] ∝ exp

[

−1

2

∫

dt

∫

ds [−ǫω̇ − F (ǫω)] (s)T−1(t− s) [−ǫω̇ − F (ǫω)] (t)

]

,(6)

where ǫ is a diagonal matrix with elements ±1 for even and odd components under time reversal

symmetry, respectively, and Θω0 = ǫωT .
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In the following, we assume that ω contains only even variables under time reversal transformation

(TRT), in such a way that ǫ reduces to the identity matrix. Since by definition ν is even under TRT, it

follows that also T−1 is even. In this case, the probability of the reversed trajectory reads:

P [Θω|Θω0] ∝ exp

[

−1

2

∫

dt

∫

ds [−ω̇ − F (ω)] (s)T−1(t− s) [−ω̇ − F (ω)] (t)

]

. (7)

2.2. Entropy Production and Dissipation

After these preliminaries, following [10] we are ready to compute the entropy production of the medium,

ΣT , in terms of the ratio between the probability of the forward and backward trajectory.

ΣT = log
P [ω|ω0]

P [Θω|Θω0]
=

1

2

∫

dt

∫

ds
[

ω̇(t)T−1(t− s)F (ω(s)) + F (ω(t))T−1(t− s)ω̇(s)
]

+
1

2

∫

dt

∫

ds
[

ǫ ω̇(t)T−1(t− s)F (ǫω(s)) + F (ǫω(t))T−1(t− s) ǫ ω̇(s)
]

. (8)

In the first passage we have dropped the quadratic terms ωT−1ω and FT−1F since they trivially

contribute as boundary terms, as shown in [10]. In the case of even variables ω, the two terms in the

right-hand side of Eq. (8) are equal and rewrite:

ΣT = log
P [ω|ω0]

P [Θω|Θω0]
=

∫

dt

∫

ds
[

ω̇(t)T−1(t− s)F (ω(s)) + F (ω(t))T−1(t− s)ω̇(s)
]

=

∫

dt
[

ω̇(t)
(

T−1 ∗ F
)

(t) + F (t)
(

T−1 ∗ ω̇
)

(t)
]

, (9)

where the symbol ∗ denotes the convolution operation. Indeed, since T−1 is a decreasing function of its

argument, we can extend one of the integrals between −∞ to ∞, just by producing a subdominant term

which disappears in the steady states obtained for large T . This allows us to define the time-dependent

entropy production rate as:

σ(t) = ω̇(t)
(

T−1 ∗ F
)

(t) + F (t)
(

T−1 ∗ ω̇
)

(t) . (10)

The first term of Eq.(10), apart from a factor 1/2, has the same form of the generalized Sekimotos’

injection term, while the second addend is new. In the Brownian case since T−1(t− s) ∝ Iδ(t− s) the

two terms are equal, but in general, they are not. If T−1(t− s) = δ(t− s)G−1(t) is an operator local in

time, Eq.(10) reduces to the following form:

σ(t) =
[

ω̇ G−1 F + F G−1 ω̇
]

(t) =
[

ω̇ G−1 F +
(

ω̇ G−1 F
)adj
]

(t) , (11)

where the superscript adj stands for the adjoint operation and in the last equality we have used that

T−1 = (T−1)
adj

. We point out that even when T−1(t− s) = δ(t − s)G−1(t) , still T−1 can represent a

differential and not a multiplicative operator.

It is interesting to connect the entropy production to the dissipation, I, defined as the imbalance

between the power dissipated by the drag force and the power injected by the noise. This definition,

originally developed by Sekimoto for driven Langevin processes [58, 59] have been generalized to particles

immersed into a viscoelastic bath [60]. In this framework, the generalization of the dissipation to systems

following the dynamics (1) is straightforward:

I = ω̇ G−1 F = −ω̇ G−1 ω̇ + ω̇ G−1 η . (12)
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We remark that the form of I resembles the dissipation of particles immersed in a viscoelastic bath.

Now, we can express the entropy production rate in terms of the dissipation:

σ = I + Iadj . (13)

Eq.(13) generalizes Sekimoto’s result for a Brownian dynamics where I = Iadj , which will be explicitly

reviewed in the next Section.

Finally, assuming the ergodicity the time average of σ(t) in the limit T → ∞ is the same as its

average over the probability space thus we can write Eq. (9) as:

ΣT ≃ T 〈σ〉 = T
∫

dωps(ω)
[

ω̇
(

T−1 ∗ F
)

+ F
(

T−1 ∗ ω̇
)

]

. (14)

where ≃ means that we are considering the entropy production in the stationary state. In other words,

we do not include the time-dependent entropy production due to typical time to reach the steady state,

which depends on the initial conditions.

3. Over-damped dynamics

In this Section, we study the entropy production of particles in the over-damped regime and neglect the

inertial terms. For the sake of simplicity, we restrict to the one-dimensional case. According to such a

choice, the dynamics is described by the set ω containing only the particle position, x, which are even

under time-reversal transformation. In particular, the dynamics takes the simple form:

ẋ =
F

γ
+ η, F = −Ψ′(x) , (15)

where F is the force due to the external potential, Ψ(x), and γ the drag coefficient. We can easily

extend the theory to the case of a driving deterministic force which intrinsically pushes the particle out

of equilibrium, a generalization which does not add anything to the current discussion. The stochastic

source, η, can represent the contribution of the solvent surrounding the tagged colloidal particle, as usual

for Brownian dynamics, but also the internal self-propulsion mechanism of microswimmers, as recently

assumed in active matter models. Other interpretations of such a model, proposed by Di Leonardo

et. al.[61, 62] and experimentally confirmed, suggest to consider the noise amplitude as the effect of a

bath of active particles on a tracer passive body, whose evolution is described by Eq.(15). In particular,

choosing F as a force due to an external harmonic potential we can model the effect of an active gel

[63–66], as observed experimentally [67].

3.1. Example I: Brownian particle

Let us begin with the case of a Brownian particle in the presence of a confining potential. Its evolution

is described by the over-damped dynamics (15), where η is a Gaussian noise vector with zero-mean and

variance 〈η(t)η(s)〉 = 2(Tb/γ)δ(t− s). According to this choice, we have:

T−1(t) = γ
δ(t)

2Tb
(16)

and the entropy production rate, using Eq. (10), is:

σ(t) = − γ

2Tb

[

Ψ′

γ
ẋ+ ẋ

Ψ′

γ

]

= − ẋ

Tb
Ψ′ = − 1

Tb

d

dt
Ψ. (17)
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The last equality shows that σ(t) is a time derivative and this represents a boundary term (b.t.) with

the consequence that the average entropy production (9) vanishes:

ΣT ≃ T 〈σ〉 = −
∫

1

Tb

d

dt
Ψ dt = b.t. (18)

This result is consistent with the validity of the detailed balance condition: in fact, the particle is globally

in equilibrium with the environment and there is no production of entropy.

Moreover, according to Eq.(12) the injected power, I, reads:

I = ẋΨ′ = γẋ (ẋ− η) , (19)

which is nothing but Sekimoto’s result and provides a consistency check for our approach. Taking the

stationary average of Eq.(19), it is straightforward to see that 〈I〉 = d
dt
〈Ψ〉 which necessarily vanishes in

the steady-state, as we expect.

3.2. Example II: Self-propelled particles without thermal noise

Let us turn to study an example of far from equilibrium system, inspired by the physics of active matter.

Due to the nature of the self-propulsion, we expect to encounter a non-zero entropy production.

We shall employ the AOUP dynamics in the absence of a thermal bath, i.e. in a regime where

the thermal noise due to the environment in which the microswimmers are immersed is not considered.

Such an assumption is based on experimental observations of several systems, for which the diffusion

due to the thermal noise is negligible with respect to the one due to the self-propulsion. The equation

of motion for the position, x, is still given by the overdamped equation Eq.(15) but in order to capture

the physics of complex microswimmers such as E.Coli [29], protozoa [68] or living tissues [69] the model

contains an extra degree of freedom. We refer to this degree of freedom as self-propulsion force or simply

self-propulsion. In the AOUP, the self-propulsion is obtained by replacing the white-noise source η in

Eq.(15) by a Gaussian noise, ηa, exponentially correlated in time. For consistency with our previous

works, we choose the two-time correlation of ηa to be

〈ηa(t)ηa(s)〉 =
Da

τ
exp (−|t− s|/τ) .

We point out that the relevance of the activity is determined by the ratio between the persistence

time of the activity, τ , and the time related to the external potential[42], tΨ = γ/|Ψ′|′. Indeed, when

τ ≪ tΨ, we can approximate the noise as Brownian motion, ηa ≈
√
2Daξ, being ξ a white noise, this

corresponds to an adiabatic elimination of the faster degree of freedom. In particular, we obtain exactly

this regime when τ = 0.

In the AOUP model, T−1 is a differential operator. As shown in Appendix Appendix A it has the

form:

T−1(t) = δ(t)G−1(t) =
δ(t)

2Da

(

1− τ 2
d2

dt2

)

. (20)

For τ = 0, T−1 reduces to a multiplicative operator, in agreement with the case of a Brownian suspension

of particles with diffusion coefficient, Da. By using Eq.(15), identifying ω with the particle position, x,

and the vector force as Ψ′ = −F , the entropy production rate of the system reads:

σ(t) = −1

γ

[

ẋ(t)
(

T−1 ∗Ψ′
)

(t) + Ψ′(t)
(

T−1 ∗ ẋ
)

(t)
]
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= − 1

2Daγ

[

ẋ(t)

∫

dsδ(t− s)

(

1− τ 2
d2

ds2

)

Ψ′(s) + Ψ′(t)

∫

dsδ(t− s)

(

1− τ 2
d2

ds2

)

ẋ(s)
]

= − 1

Daγ

d

dt
Ψ+

τ 2

2Daγ

[

ẋ(t)

∫

ds δ(t− s)
d2

ds2
Ψ′(s) + Ψ′(t)

∫

ds δ(t− s)
d2

ds2
ẋ(s)

]

= − 1

Daγ

d

dt
Ψ+

τ 2

2Daγ

[

ẋ3(t)Ψ′′′(t) + ẋ(t)ẍ(t)Ψ′′(t) + Ψ′(t)
d

dt
ẍ(t)

]

= − 1

Daγ

d

dt
Ψ+

τ 2

2Daγ

[

ẋ3(t)Ψ′′′(t) +
d

dt
(ẍ(t)Ψ′(t))

]

. (21)

Formula (21) explicitly solves the recent dispute concerning the entropy production in the AOUP model,

since it has been derived without arbitrary prescription regarding the parity of the self-propulsion force

at variance with Mandal et al. [15]. Their approach considers the introduction of the auxiliary variable

v ≡ ẋ and then, in analogy with the procedure adopted in the case of a magnetic force, arbitrarily

changes the time-reversed path generator. The problem of this approach is discussed in [24].

Going back to Eq.(21) we obtain the following formula for the entropy production rate:

ΣT =

∫ T

dsσ(s) =
τ 2

2Daγ
〈ẋ3Ψ′′′〉 T + b.t. (22)

where the symbol b.t. stands for boundary terms. The entropy production of the model vanishes when

Ψ′′′(x) = 0, for instance in the case of a harmonically confined active particle. Although this result

does not apply to real bacteria, which are always out of equilibrium even in absence of any confining

mechanism, it applies to this particular model [24]. Instead, for a general trapping mechanism, Eq.(22)

predicts a positive entropy production whose value depends on the third derivative of the potential.

The τ dependence agrees with our intuition: when τ grows the distance from equilibrium grows too,

corresponding to a larger entropy production.

Formula (22) coincides with the one obtained by Fodor et al. [70], apart from irrelevant boundary

terms, and shows that their strategy of not fixing the parity of the self-propulsion is the only possible one.

Following a different strategy, based on the method introduced by Seifert [3] that identifies the entropy

production of the medium directly from the manipulation of the Fokker-Planck equation, Marconi et al

found a result [22] for the average entropy production rate which coincides with result (22) except for

irrelevant boundary terms as shown in the Appendix Appendix B. Finally, using Eq.(10) we have the

dissipation of the AOUP model, which resembles the dissipation of a particle in a viscoelastic bath:

I = −ẋG−1Ψ′ −Ψ′G−1ẋ = − 1

2Daγ2

[

ẋ

(

1− τ 2
d2

dt2

)

Ψ′ +Ψ′

(

1− τ 2
d2

dt2

)

ẋ

]

= − ẋΨ′

Daγ2
+

τ 2

2Daγ2

[

ẋ
d2

dt2
Ψ′ +Ψ′ d

2

dt2
ẋ

]

. (23)

Such a formula contains an extra term with respect to Fodor et al. [70], which stems from the second

term of Eq. (10).

3.3. Example III: Self-propelled particles in a suspension at fixed temperature

In a typical experimental setup, the self-propelled particles swim through a solvent, which is usually

described as a medium at thermodynamic equilibrium. In order to model the solvent as a thermal bath,

we assume that the microswimmers cannot change the equilibrium properties of the environment. In this
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picture, the self-propelled object is in an equilibrium-like regime with respect to the thermal reservoir

but is intrinsically far from equilibrium as far as the source of active noise is involved.

Taking explicitly into account the role of the thermal bath could lead to non-trivial phenomena [71],

since formally the particle can be imagined in contact with two reservoirs, the active and the thermal one.

For this reason, we consider the dynamics of a self-propelled particles, taking explicitly into account the

role of the thermal bath, due to the solvent in which the active particle is immersed. We must consider

the dynamics described by Eq. (15) and replace η → ηa+ηt, where ηt is a white noise, such that 〈ηt〉 = 0

and 〈ηt(t)ηt(s)〉 = 2 (Tb/γ) δ(t − s), and ηa is the colored noise already introduced in subsection 3.2.

Coherently with the previous notation we obtain that

ν(t− s) = 2
Tb

γ
δ(t− s) +

Da

τ
exp (−|t− s|/τ) ,

so that as shown in the Appendix Appendix A we obtain the following expression for T−1:

T−1(t) =
γ

2Tb
δ(t) +K−1(t) (24)

where

K−1(t) = −Daγ
2

2T 2

b

(

1

1 + Daγ
Tb

)[

1

τ

√

1 +
Daγ

Tb
exp

(

−|t|
τ

√

1 +
Daγ

Tb

)]

. (25)

The first term in Eq. (24) is only determined by the thermal noise, while the second addend depends

both on the thermal and the active noises, Moreover, T−1 is not proportional to a time δ-Dirac function

but is non-local in time as clearly shown by Eq. (25), displaying a time-exponential decay with typical

time τ/
√

1 +Daγ/Tb. The above result has been independently derived in [25]. By applying the formula

(10), the entropy production rate reads:

σ(t) = − 1

Tb

ẋ(t)Ψ′(x)(t)− Ψ′(t)

γ

∫

K−1(t− s)ẋ(s)ds− ẋ(t)

∫

K−1(t− s)
Ψ′(s)

γ
ds

= −Ψ′(t)

γ

∫

K−1(t− s)ẋ(s)ds− ẋ(t)

∫

K−1(t− s)
Ψ′(s)

γ
ds+ b.t. (26)

By considering the equilibrium limit, τ → 0, we expect that the entropy production is simply given

by a boundary term. Indeed, for τ → 0 the expression contained in the square brackets of Eq. (25) is

proportional to a δ-Dirac function. After some simple algebra, we get:

lim
τ→0

T−1(t) =
δ(t)

(Da + Tb/γ)
, (27)

which shows that the denominator is proportional to the sum of the temperature of the solvent and of

the effective active temperature Daγ, as we expect. Applying the form (27) of the operator T−1(t) in

the entropy formula (10) we simply obtain a boundary term in analogy with the Brownian result (17).

It is interesting to consider formula (26) also in the limit Daγ/Tb ≪ 1. Since the amplitude of K−1(t)

is order O(Daγ/Tb) the active entropy production rate decreases with this ratio, as one should expect.

Finally, we discuss the singular limit Tb → 0, where the source of thermal noise approaches to zero.

Neglecting the boundary terms we can show that:

lim
Tb→0

ΣT (Tb 6= 0) =
τ 2

2Daγ
〈ẋ3Ψ′′′〉 T , (28)
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which coincides with the result of Eq.(22) obtained directly from the dynamics without thermal noise.

The explicit calculations are reported in Appendix Appendix C.

Due to the exponential shape of the memory kernel, we can argue that the main contribution of

the entropy production stems from the short time region, where t ∼ s. We thus expand the exponential

kernel in powers of |t − s|/τR ≪ 1, being τR the correlation time associated to T−1, selecting the first

order as the leading contribution. In the same way, the integral gives contribution only within [t− τR, t].

This idea can also be spelled by saying that for each time history the largest contribution to the entropy

production occurs when the variables are strongly correlated. In this way, we obtain:

σ(t) = −2
Ψ′(t)

γ

∫ t

t0

K−1(t− s)ẋ(s)ds− 2ẋ(t)

∫ t

t0

K−1(t− s)
Ψ′(s)

γ
ds

≈ 2
A

γτR

[

Ψ′(t)

∫ t

t−τR

ẋ(s)ds+ ẋ(t)

∫ t

t−τR

Ψ′(s)ds

]

≈ 2
A

γ

{

Ψ′(t)

[

x(t)− x(t− τR)

τR

]

− ẋ(t) [Ψ′(t)−Ψ′(t− τR)]
}

, (29)

being A a constant and τR the correlation time of T−1, given by:

A =
Daγ

2

2T 2

b

(

1

1 + Daγ
Tb

)

, τR = τ

(

√

1 +
Daγ

Tb

)−1

. (30)

In the second step of Eq.(29) we have evaluated the second integrals in the simplest way as possible.

Formula (29) is consistent with what we expect in the limit τ → 0. Indeed, when τ → 0 then τR → 0

and the first addend of Eq.(29) reduces to ∝ Ψ′ẋ, i.e. to a boundary term. Moreover, the second term

of Eq.(29) vanishes in this limit, meaning that the entropy production is zero consistently with the

previous result.

Passing to the two time state variables probability, and using that the position x(t − τR) and x(t)

are in good approximation uncorrelated, i.e. p(x(t − τR), x(t)) ≈ p(x(t − τR))p(x(t)), we can write the

average entropy production rate in a suitable way:

〈σ〉 ≈ 2
A

τRγ
[〈Ψ′(x)x〉 − 〈x〉〈Ψ′(x)〉+ τR〈ẋ〉〈Ψ′(x)〉] . (31)

Noting that the third addend of Eq.(29) is just a boundary term.

We point out that at variance with the result of subsection 3.2, the entropy production does not

vanish, even in the presence of a harmonic potential, consistently with the fact that the system is now

exchanging energy with two different baths. Moreover, in this case, the average entropy production at

the leading order is proportional to the x-variance of the process, being 〈ẋ〉 = 0, as explicitly evaluated

in [71].

We remark that in the absence of external potentials the above formula independently of the form

of Eq. (10) displays a zero entropy production. As discussed in the previous section, the cause of this

failure to describe the real behavior of active matter system is the poor modeling and not related to the

path integral definition of the entropy production, which is unique once the dynamics is specified.

4. Conclusions

In this work, we studied the entropy production of a target particle, under the action of one or more

sources of noise - with and without memory - following a path integral approach generalized to non-
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Markovian noises. In particular, we discussed the case of an active particle moving in absence of thermal

noise. Several authors have presented different results concerning the entropy production rate, a situation

which provoked an interesting debate. Our approach does not involve arbitrary assumptions regarding

the parity under TRT of the self-propulsion force, which is neither even neither odd. Moreover, we

confirm the result found with independent methods in [70] and [22] apart from boundary terms. We

employ the method also in a more general case, which takes into account the presence of the thermal

bath. This leads to the calculation of the entropy production in more realistic systems.

Path-integral techniques have been recently used to compute the response due to a small

perturbation [72], for instance a small shear flow [73]. Our non-markovian techniques could provide

an interesting way to compute such observables.

Appendix A. Computation of T−1

The computation of the operator T−1, i.e. the inverse of the correlator ν, follows directly from the

definition of the inverse operator:
∫

T−1(t− t′)ν(t′ − s)dt′ = δ(t− s) . (A.1)

Thus, T−1 can be easily evaluated in the Fourier space. Introducing FT as the Fourier trasform operator

and FT −1 as the inverse-Fourier trasform operator and denoting by a tilde the Fourier transform of a

given function, we have by definition that:

T−1(t) = FT −1(T̃−1) =

∫

dω

2π
T̃−1(ω)e−iωt . (A.2)

The convolution in FT -space reads:

T̃−1(ω) =
1

ν̃(ω)
, ν̃(ω) =

∫

dteiωtν(t) . (A.3)

Applying such a prescription we can evaluate the operator T−1 in all the cases discussed in the previous

Sections. For the sake of simplicity we consider the scalar case, without loss of generality:

(i) Brownian particle. The dynamics can be obtained by the general form (15), by replacing η with
√

2Tb/γ η. Applying Eqs.(A.2) we get:

ν̃(ω) = 2Tb, T−1 =
δ(t)

2Tb

. (A.4)

(ii) Active particle without thermal noise. In this case the dynamics is done by assuming that in

Eq.(15) the noise η is replaced with → ηa, an object with zero average and two time correlation

ν(t− s) = γ2(Da/τ)e
−|t−s|/τ . In this case, Eq.(A.2) gives us the following results:

ν̃(ω) =
2Da

1 + τ 2ω2
, T−1(t) =

δ(t)

2Da

(

1− τ 2
d2

dt2

)

. (A.5)

We note that T−1 is a differential operator, which is even in its argument.

(iii) Active particle in contact with a thermal bath. In this case η in Eq.(15) has to be replaced by

the sum of the previous terms, η →
√

2Tb/γ η + ηa. In this way the correlation is simply given by
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ν(t− s) = 2 (Tb/γ)δ(t− s) + (Da/τ)e
−|t−s|/τ and so applying Eq.(A.2) we get:

ν̃(ω) =
2Da

1 + τ 2ω2
+

2Tb

γ
, (A.6)

T−1(t) =
γ

2Tb
δ(t)− Daγ

2

2T 2

b

(

1

1 +Daγ/Tb

)

[

1

τ

√

1 +
Daγ

Tb
exp

(

−|t|
τ

√

1 +
Daγ

Tb

)]

.

(A.7)

The presence of two baths leads to an operator which is not proportional to a δ Dirac function.

As a last remark, all the previous calculations and definitions can be easily generalized to the interacting

case in more dimensions without complications of any kinds.

Appendix B. Equivalence between the Fokker-Planck appproach and the path integral

approach in the computation of the entropy production

Following Marconi et. al. [22], we can compute the entropy production rate of the medium associated

to the AOUP dynamics in absence of thermal noise, by using a Fokker-Planck approach.

By specifying the evolution of ηa as an Ornstein-Uhlenbeck process, we can easily map the active

overdamped dynamics into the underdamped dynamics of a fictitious Brownian particle, where the

activity is mapped into a space dependent Stokes force [45]:

ẍ = −ẋ
Γ(x)

τ
− Ψ′(x)

τ
+

√
2Da

τ
ξ , Γ = 1 + τΨ′′(x) , (B.1)

where ξ is the white noise, such that 〈η〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t− t′).

Following [22], we find an expression for the entropy production of the medium (by setting γ = 1

for simplicity):

〈σ(t)〉 =
∫

dxdẋ
τ

Da
Γ(x)

[

Γ(x)

τ
ẋ2p(x, ẋ)− Da

τ 2
p(x, ẋ)

]

, Γ = 1 + τU ′′(x) . (B.2)

In order to proceed further, we develop a formal relation, by comparing different formulations of the

linear response theory. In particular, in ref. [74] the linear response of an observable O, which depends

on the dynamical variables, due to a small force perturbation, h, reads:

ROv(t− s) = −〈O(t)
d

dv
log p(x, ẋ)(s)〉 , (B.3)

being p the probability in the space (x, v), which is actually unknown. Recently, other relations have

been developed [75, 76], for instance:

ROv(t− s) =
2τ√
2Da

〈O(t)ξ(s)〉 , (B.4)

adapting the coefficient to the specific case we are considering. Then, identifying the rhs of Eqs.(B.3)

and (B.4) and since these relations are valid for the generic observable O(t), we can find an integral

equation which connect p(x, ẋ) and ξ:
∫

dxdẋ

√
2τ√
Da

ξ p(x, ẋ)O(x, ẋ) = −
∫

dxdẋ
∂

∂ẋ
p(x, ẋ)O(x, ẋ) . (B.5)
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By taking intou account this relation, Eq.(B.2) reads:

〈σ(t)〉 =
∫

dxdẋ
τ

Da

Γ(x)

[

Γ(x)

τ
ẋ2 − Da

τ 2

]

p(x, ẋ)

=

∫

dxdẋ
τ

Da
Γ(x)ẋ

[

Γ(x)

τ
ẋ p(x, ẋ) +

Da

τ 2
∂

∂ẋ
p(x, ẋ)

]

=

∫

dxdẋ
τ

Da

Γ(x)ẋ

[

Γ(x)

τ
ẋ−

√
2Da

τ
ξ

]

p(x, ẋ) = − 1

T

∫ T

dt
τ

Da

Γ(x)ẋ

[

ẍ+
Ψ′

τ

]

= − 1

T

∫ T

dt
τ

Da
[1 + τΨ′′(x)] ẋ

[

ẍ+
Ψ′

τ

]

= − 1

T

∫ T

dt
τ

Da

[

d

dt

ẋ2

2
+ τ ẋ ẍΨ′′(x) +

d

dt

Ψ(x)

τ
+

d

dt

Ψ′2

2

]

= − 1

T

∫ T

dt
τ 2

2Da
ẋ3Ψ′′′(x) + b.t. (B.6)

where b.t. stems for boundary terms. We remark that in the second equality of Eq.(B.6) we have

integrated by parts, in the third we have used Eq.(B.5) and in the fourth we have replaced the square

brackets with Eq.(B.1) and we have switched to the time integral assuming the ergodicy of such a system,

T
∫

dxdẋp(x, ẋ) =
∫ T

dt. Last equalities are just the result of an integration by parts. As we claim,

Eq.(B.6) coincides with the one obtained in [70], confirming the consistency of the two approaches.

Appendix C. Entropy production in the limit of zero thermal noise

In order to demonstrate Eq. (28) it is sufficient to prove that:

lim
Tb→0

K−1(t) ≈ − τ 2

2Da

d2

dt2
δ(t) ≡ − τ 2

2Da

δ(t)
d2

dt2
,

where the symbol ≈ means that we neglect additive contributions only representing boundary terms in

the entropy production, in particular addends which are proportional to δ(t). Using the identity:

d2

dt2

[

1

τR
exp

(

− t

τR

)]

=
1

τ 2R

[

1

τR
exp

(

− t

τR

)]

,

K−1(t) given by (25) can be conveniently rewritten as:

K−1(t) = −Daγ
2

2T 2

b

(

1

1 + Daγ
Tb

)2

d2

dt2

[

1

τR
exp

(

− t

τR

)]

, τR =
τ

√

1 + Daγ
Tb

.

As Tb → 0 then τR → 0 and the expression inside the square brackets tends to a δ-Dirac function, while

the prefactor reduces to −τ 2/2Da.
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