
TASK QUARTERLY vol. 21, No 3, 2017, pp. 197–214

QUEUING NETWORKS TO EVALUATE
WEB APPLICATIONS: MODELLING

LEONARDO PASINI
Department of Computer Science, University of Camerino,

Via Madonna delle Carceri, 62032 Camerino, Italy

(received: 4 May 2017; revised: 2 June 2017;
accepted: 9 June 2017; published online: 3 July 2017)

Abstract: The aim of this work is to define a procedure for the modelling of a computer network
for the simulation of the network traffic induced by the execution of web applications. The work
consists in describing the objects of a library defined for modelling both the hardware and the
software of the system. These are specific objects with an architecture based on complex queuing
service structures. The objects of the library are used to both build the computer network model
and describe the operation of a web application executed on the network in a distributed fashion.
Keywords: traffic simulators, queuing networks, web application
DOI: https://doi.org/10.17466/tq2017/21.3/a

1. Introduction
In this work, we tackle a preliminary step in the study of the issue of

evaluating the performance of web applications executed in a distributed fashion
on a computer network. The study will be completed in a next work, which will
show the results of the simulations relating to the execution of web applications
built following different architectural paradigms [1, 2].

The procedure for the evaluation of such web applications consists in the
simulation of traffic flows induced by the distributed processing of the applications
across the computer network. The first step in this direction, outlined in this work,
is the modelling of the overall system, both as far as Hardware and Software. The
Hardware model makes it possible to model a computer network like the one
shown in Figure 1.

The Software model must make it possible to describe the following proces-
sing stages that a web application completes on the computer network. Once the
complex system model made up by the Hardware and Software has been obtained,
we will be able to continue with the construction of the simulator, which is based
on the description of the model.



198 L. Pasini

Figure 1. Computer network

Section 2 outlines the Hardware components of the object library needed
for the modelling of the basic computer network on which the execution of web
application is simulated. Section 3 outlines the Software components of the library
needed for the modelling of the processing stages of a web application on the
network.

An example of a computer network is shown in Figure 1. This network con-
sists of different types of objects, which will be described in the next paragraphs:
Hosts, Terminals, Routers and lines connecting the various network devices. In
Figure 1 the term “Via” identifies a Way object.

To each of these network devices corresponds a type of library object,
described in the next paragraphs. These devices make up the hardware of the
system, simulated in its complex operation.

2. The library Hardware components
The devices making up the hardware of the computer network are all

modelled using an architecture based on queuing service systems.



Queuing networks to evaluate web applications: modelling 199

For each of these devices that can be identified in a computer network, like
the one shown in Figure 1, we will include the drawing of the architectural model
of the corresponding library object and its definition code within the scope of
QNAP2 programming [3].

2.1. The Router object
The Router sends the data, split into packets, to different local subnets. On

a logical point of view, the Router is therefore an internal network node in charge
of the level 3 switching of the internet level in the TCP/IP model. Its architecture
is shown in Figure 2.

Figure 2. The Router object architecture

The Router consists of a CPU queue and two queue pointer arrays, which
represent the various routing possibilities of a packet towards other network
devices connected to the Router.

The S array represents the whole of the outputs towards the Hosts directly
connected to the Router within the network. When a packet processed by the CPU
queue is intended for a Host directly connected to the Router, the CPU routes it
directly towards the destination. Otherwise, the packet is routed towards one of
the Ways exiting the Router, based on a probability distribution described by the
PROB array of the object.

The QNAP2 code for the definition of the Router object is the following:

OBJECT ROUTER (ID, N);
INTEGER N;
INTEGER ID;
QUEUE CPU;
REF QUEUE S(NH);
REF QUEUE INSTR(N);
REAL PROB(N);
REAL RATE;
REAL P ERR;

END;

The ID and N parameters in the object definition are the identification of the
Router within the computer network and the number of Ways at the output of



200 L. Pasini

the Router. In particular, we have the following indications regarding the internal
variables of the object:

• N: is the number of Routers directly connected to the network.
• ID: is the identification of the Router within the network.
• CPU: is the main Router queue; it calculates transmission times and routes the

packets towards the S array if the Router is directly connected to the packet
recipient Host, or to INSTR if it will be necessary to go through another Router.

• S: is an array containing the pointers to the various Access R queues of the
Hosts connected to the Router. It is used when a packet or a Webapp must
reach a Host directly connected to the Router in which it is.

• INSTR: is an array containing pointers to the various channel queues of the Ways
that connect the various Routers to each other within the network. It is used
when a packet or a Webapp must reach a Host not directly connected to the
Router in which it is, therefore going through another Router in order to reach
its destination.

• PROB: is the array that indicates the probability of a packet to be routed towards
a position of the INSTR array.

• RATE: is the transmission rate.
• P ERR: Is the probability of error, or the probability that a packet may be lost

along the path.

2.2. The Way object
In a computer network, the Way object is a mono directional connection

channel between two Routers. It’s a half-duplex connection channel only capable
of sending information packets in one direction.

Figure 3. The Way object architecture

Its architecture is shown in Figure 3. This object consists of a queue service
device that simulates the transmission delay of a packet transiting on the channel.
It has a queuing pointer to which the CPU of the destination Router is assigned
as value at the moment of the generation of the computer network model.

The QNAP2 code for the definition of this object is shown below, with the
list of internal variables:



Queuing networks to evaluate web applications: modelling 201

OBJECT WAY(ID, TEM);
QUEUE CHANNEL;
REF QUEUE NEXT R;
REAL TEM;
INTEGER ID;

END;

• CHANNEL: is the queue that for a data packet simulates the delay for its trans-
mission among the Routers. It forwards packets to the CPU queue of the Router
after the one where the packets themselves are located.

• NEXT R: is the pointer to the Router CPU queue; it’s recalled by the CHANNEL queue.
• TEM: is the average time required for the transmission of a packet.
• ID: is the identification of the Way within the network.

2.3. The Line HR object
Line HR is a connection channel between Host and Router within the

computer network. Its architecture is shown in Figure 4. The internal R queue
simulates the packet transmission delay within the transmission channel.

Figure 4. The Line HR object architecture

The QNAP2 code for the definition of this object is shown below, with the
list of internal variables:

OBJECT LINE HR(T);
QUEUE R;
REF QUEUE ROUT;
REAL T;

END;

• R: is the delay center that simulates the transmission time between the Host
and the Router; it forwards the packets to the Router CPU queue by means of
the ROUT pointer.

• ROUT: is the pointer to the Router CPU queue.
• T: is the average time required for the transmission of a packet.

2.4. The Line TH object
This object is a Terminal-Host connection channel within the computer

network. It’s a full-duplex channel that allows the flow of packets in both



202 L. Pasini

Figure 5. The Line TH object architecture

communication directions on the line connecting the Host to the Terminal. The
architecture of the Line TH object is shown in Figure 5.

The QNAP2 code for the definition of this object is shown below, with the
list of internal variables:

OBJECT LINE TH(TH);
QUEUE QH, HQ;
REF QUEUE TOUT, TIN;
REAL TH;

END;

• QH: is the queue that sends the packets from the Terminal to the destination
Host User queue by means of the TOUT pointer.

• HQ: is the queue that sends the packets from the Host to the destination Terminal
Access H queue by means of the TIN pointer.

• TOUT: is the queue pointer used by the QH queue; it recalls the Host User queue.
• TIN: is the queue pointer used by the HQ queue; it recalls the Terminal Access H

queue.
• TH: is the average time for the transmission of the packet; it simulates the

transmission delay.

2.5. The Host object
The Host object indicates the network devices, both in terms of hardware

and software, required by the protocol for the transmission of the packets through
the network. This object is modelled for the simulation of the operation of the
TCP/IP network communication protocol.

The architecture of the Host object is shown in Figure 6.
The QNAP2 code for the definition of this object is shown below, with the

list of internal variables:

OBJECT HOST(ID);
QUEUE USER, CONTROL, PROTOCOL;
QUEUE ACCESS E, ACCESS R, WINDOW, TIMER, WEBTIMER;
REF QUEUE NETWORK;
REF QUEUE HOTE;
INTEGER ID;
INTEGER ID R;
INTEGER WIN SIZE;
INTEGER LI, LA;



Queuing networks to evaluate web applications: modelling 203

Figure 6. The Host object architecture

REAL T EMI I, T EMI A;
REAL T REC I, T REC A;
REAL TIME OUT;
REF PACKET PAK, ANSW;
REF WEBAPP WA; & pointer for web applications

END;

• USER: is the queue that receives the data from the Terminal through the Line TH
object and forwards them to the CONTROL queue.

• CONTROL: is the queue that simulates the sliding window of the TCP/IP protocol,
asks for passage rights to the WINDOW traffic light and forwards the information
to the PROTOCOL queue.

• PROTOCOL: is the main Host queue. In the management of Web applications, it
recalls the PROT WEB procedure. Depending on the application side, Client or
Server, it collects the reception completed ACK, forwards the packets again in
case of losses, checked by the Time Out, deletes the packets from the buffer
and manages the sequence numbers. This device also forwards to the higher
Terminal the data packets reaching the network by means of the HOTE pointer,
which recalls the HQ queue of the Line TH object for connection to the Terminal.

• ACCESS E: is the queue that manages the packets leaving the Host; it recalls the
ACC EMI procedure that sets the length of the packets and the times for the
physical transmission towards the network. Moreover, by means of the NETWORK
pointer, it forwards the packet to the R queue of the Line HR object that connects
to the Router.



204 L. Pasini

• ACCESS R: is the queue that manages incoming packets; it recalls the ACC REC

procedure that sets the length of the packets and the times for their physical
reception.

• WINDOW: is a traffic light type queue that manages the requests of passage rights
for the packets sent by the CONTROL queue.

• TIMER: is a queue that saves the transmitted packages. In case of packet loss, or
Ack not received within the Time-Out limit period, this device resends a copy
of the packet through the PROTOCOL queue.

• WEBTIMER: this queue is only active in case of Web applications; it has the same
function as TIMER, but manages the packets of Web applications.

• NETWORK: is a pointer to the R queue of the Line HR object that connects the Host
to the Router. It’s recalled by the ACCESS E queue.

• HOTE: is a pointer to the HQ queue of the Line TH object that connects the Host
to the Terminal. It’s recalled by PROTOCOL.

• ID: is the identification of the Host within the network.
• ID R: is the identification of the Router directly connected to the Host.
• WIN SIZE: is the size of the sliding window of the TCP/IP protocol.
• LI: is the length of a standard traffic data packet; it’s used for the calculation

of the delay caused by the access queues to the ACCESS E and ACCESS R network.
• LA: is the length of a standard traffic Ack; it’s used to calculate the delay caused

by the transmission on the network.
• T EMI I: is the average time taken to emit a byte of a packet on the network.
• T EMI A: is the average time taken to emit a byte of an Ack on the network.
• T REC I: is the average time taken to receive a byte of a packet.
• T REC A: is the average time taken to receive a byte of an Ack.
• TIME OUT: is the standard traffic Time-Out; if the Time-Out period is exceeded,

the packet is resent.
• PAK: is a pointer to a standard traffic packet; it’s used in the management of the

data being forwarded.
• ANSW: is a pointer to a standard traffic packet that corresponds to an answer.
• WA: is only present in case of Web application; it’s a pointer to a Webapp.

The QNAP2 code below describes the structure of the Protocol queue of
a Host of the computer network.

/STATION/
NAME = *HOST.PROTOCOL;
SCHED = PRIOR;
SERVICE(EMISSION) = PROT EMI(T EMI I, T EMI A);
SERVICE(WEBAP) = PROT WEB(T EMI I, T EMI A);
SERVICE(RICHIN) = PROT EMI(T EMI I, T EMI A);
SERVICE(RECEPT) = PROT REC(T REC I, T REC A);
TRANSIT(RECEPT) = OUT;

The service of a packet in the Protocol queue consists in the calling of
a specific service procedure based on the class to which the packet belongs to.
The user classes can be: EMISSION, WEBAP, RICHIN, RECEPT.



Queuing networks to evaluate web applications: modelling 205

The PROT EMI procedure processes the standard traffic packets issued. This
procedure creates a copy of the packet and passes it to the TIMER queue, which
will send it again to PROTOCOL, should no confirmation ACK be received within
the Time-Out period. After the processing time, the procedure also forwards the
original packet to the ACCESS E queue, which carries out the physical transmission
of the same through the network.

The PROT REC procedure processes the packets received from the network. An
initial evaluation is carried out to ascertain if the packet contains ACK or data.
In case of data, the packet is passed to the higher Terminal and a confirmation
ACK is issued for the source Host that has sent the information. In case of ACK,
the packet it refers to is deleted from the timer queue as the communication has
been successful.

The PROT WEB procedure processes the packets of the Web application being
simulated, and is therefore linked to the Software objects that will be discussed
later on. This procedure uses a pointer to the Host object that includes the queue
recalling the procedure and an implicit reference to the current user to be treated
as WEBAPP, and then carries out a data origin check, ascertaining if they come from
the higher Terminal or the network. This is possible because each packet retains
the identification of the Terminal that generated it, but most of all thanks to the
one-to-one correspondence between each Terminal and the Host below to which
it is linked. In case of data to be transmitted, which means when forwarding
a packet to the outside, an exact copy of the same will be created, to be passed to
the WEBTIMER queue, while the packet itself is sent to the ACCESS E queue, so that
it can be transmitted to the remote Host for the processing of the Web packet as
contemplated on the B side of the processing stage.

2.6. The Terminal object
The Terminal object represents the whole of the local hardware structures of

a PC connected to the network, in addition to the resource management software,
which in actual facts is normally integrated in the operating system.

The architecture of the Terminal object is shown in Figure 7.
The QNAP2 code for the definition of this object is shown below, with the

list of internal variables:

OBJECT TERMINAL (IDT);
QUEUE USER, ACCESS H, CPU, DISK;
QUEUE SCH, TERM; & Queues, only active for Web Terminals;
BOOLEAN ACTIVES;
INTEGER IDT;
INTEGER ID H;
STRING NAME;
INTEGER REQLENGHT;
REAL PROCESS, PROC D;
REF REQUEST RQ;
REF QUEUE PORT;

END;



206 L. Pasini

Figure 7. The Terminal object architecture

• USER: is a source that produces standard traffic packets and sends them to the
Terminal CPU queue. This source is active if the Terminal is not involved in the
execution of a Web application.

• ACCESS H: is a queue that receives packets from the Host and sends them to the
Terminal SCH queue. This queue also manages the switch of the Web application
execution side during the simulation, from Client to Server depending on the
situation.

• SCH: is a queue that is only active in Terminals involved in the execution of Web
applications. It manages all the operations using an OP variable. The service
procedure of this queue carries out certain operations depending on the value
taken on by the OP variable and the side, Client or Server, of execution of the
Web application. For example, depending on the OP value, it routes the packets
towards the various CPU, DISK and TERM queues of the Terminal object. This
queue also takes care of the transmission of packets to the Software object
Service queue and to the Line TH QH queue, by means of the PORT queue pointer.

• CPU: is the queue that simulates the delay caused by the operations that the CPU

must carry out locally. At the end of the service, this queue routes the packets
towards the Terminal SCH queue.

• DISK: is the queue that simulates the delay caused by disk accesses required for
the application. At the end of the service, the packets are routed towards the
Terminal SCH queue.

• TERM: is the queue that simulates the delay of the application due to interaction
with the user. The packets are then routed towards the Terminal SCH queue.

• ACTIVES: is a Boolean variable that indicates if the User source is active, meaning
if standard traffic data packets are generated locally or not.

• IDT: is the identification of the Terminal within the network.



Queuing networks to evaluate web applications: modelling 207

• ID H: is the identification of the Host to which the Terminal is connected.
• NAME: is the name of the Terminal.
• REQLENGTH: is the length of a request for the CPU or for the disk in a Terminal

that simulates a standard data flow.
• PROCESS: is the time required by the CPU to complete an operation.
• PROC D: is the time required by the disk to complete an access.
• RQ: is a pointer to a packet generated by the User queue.
• PORT: is a pointer to the QH queue of the Line TH object.

3. The library Software components
In this paragraph we will discuss the software components that allow the

modelling of the traffic flows in the computer network. These flows describe
two types of traffic that can be found in the simulation of the operation of
the computer network. The first type is the so-called standard (or basic) traffic,
consisting of flows of packets regarding the generic use of the computer network
as telecommunication network. These flows have been analysed in the following
publications [4, 5]. The second type is the traffic of packets induced by the
execution of a web application on the network.

3.1. The Customer object
The Customer object is a type of object predefined within the framework

of QNAP2 programming. This object has been extended with two integer fields
to indicate the source Host, SOUR ID, and the destination Host, DEST ID, and two
string fields to indicate the packet type and sub-type, TYPE and TYP. The definition
code is shown below.

CUSTOMER STRING TYP, TYPE;
CUSTOMER INTEGER SOUR ID, DEST ID;
REF CUSTOMER C;

3.2. The Paket and Webapp objects
The library includes two new types of objects, which are sub-types of

Customer: Paket and Webapp. These objects model the packets relating to the
two different types of traffic found on the network: the PAKET object describes the
generic traffic packet found on the network, which could be defined as standard
traffic, while the WEBAPP object represents a traffic packet induced in the network by
the execution of the web application of which we want to simulate the operation.

The PAKET object also includes fields inherited from CUSTOMER, a DIME attri-
bute, which indicates the byte length of the packet, and a BIRTH field, used for
monitoring the round-trip times of the packet in the computer network. The de-
finition code of the PAKET type object is shown below.

CUSTOMER OBJECT PACKET;
REAL BIRTH;
INTEGER DIME;

END;



208 L. Pasini

The WEBAPP object has a more complex structure that derives from the
technique used for the description of the flow of the web application packets during
its processing, which is completed across the computer network in a distributed
manner. The definition code of the WEBAPP type object is shown below.

CUSTOMER OBJECT WEBAPP;
INTEGER AT, ACPU, AD, N, BCPU, BD; & characterisation of a processing stage
INTEGER OP, L;
INTEGER WTOUT;
INTEGER SEQ N;
INTEGER APPDESTID, APPDESTNP;
INTEGER SSO ID, CLIENT, SERVER, SSO;
INTEGER SOURNP, DEST NP; & Software A and B of the web application;
INTEGER ID;

END;

In order to describe the procedure for the execution of a web application
on the computer network, we have introduced the processing stage concept.
The processing stage starts with the preparation activities on an A Terminal
of the network, continues with the transmission of the application packets to a B
Terminal of the network, and concludes with the processing of the data received.
The model that describes the processing of a web application on the computer
network is therefore an ordered and completed sequence of processing stages.
The variables within the WEBAPP object used for the characterisation of a web
application processing stage are indicated in the first row of the code defining the
WEBAPP object above. For this reason, we describe each processing stage as a 𝑛-uple
of six values:
1. ACPU: represents the number of operations to be carried out by the Terminal A

CPU during the stage.
2. AD: represents the number of disk accesses requested during the stage in

Terminal A.
3. AT: represents an estimate of the time that the application will spend during

the stage for the I/O operations with the user on the A side of the application.
4. N: represents the number of bytes transmitted through the network from

Terminal A to Terminal B during the processing stage.
5. BCPU: represents the number of operations to be carried out by the Terminal B

CPU during the stage.
6. BD: represents the number of disk accesses requested during the stage to

Terminal B.
In addition to the above six values, the WEBAPP object also contains the

following variables:
• OP: is an integer variable that indicates the next operation to carry out within

a stage; for example: access to a disk, network transmission, etc.
• ID: is the identification of the WEBAPP.
• L: is an integer variable that indicates the current application processing stage

side, A or B.



Queuing networks to evaluate web applications: modelling 209

• WTOT: indicates the Time-Out period, after which a transmission is considered
as failed and is repeated.

• SEQ N: indicates the position of the packet on the network in the transmission
sequence; it is useful for identifying duplicates at reception.

• APPDESTID: is the identification of the WEBAPP destination.
• APPDESTNP: is the WEBAPP destination port number.
• SSO ID: is the identification of the SSO server, if present in the system.
• CLIENT: is an integer variable that identifies the Client.
• SERVER: is an integer variable that identifies the Server.
• SSO: is a Boolean variable that indicates if we are in the presence of and SSO

Server.
• SOUR NP: it specifies the Software object of the computer network that has

produced the packet; in the TCP/IP protocol this ID is called port number.
• DEST NP: it specifies the Software object of the computer network to which the

packet is addressed.
The traffic flows in the computer network determined by the two types of

objects, Paket and Webapp, trigger traffic flows that differ based on the class to
which the packets belong. The computer network standard traffic is characterised
by the following user classes:
• EMISSION: is the class of the requests issued by the terminal.
• RICHIN: is the class of the requests received by the terminal.
• ANSWER: is the class of the answers reaching the terminal.

The traffic flow determined by the Webapp packets for the processing of
the web application on the computer network is characterised by the Webap user
class.

3.3. The Software object
This object appears in the modelling of the processing stages of the web

application on the computer network. A Software object is connected to each
terminal that is involved in the processing of the web application. The architecture
of the Software object is shown in Figure 8.

Figure 8. The Software object architecture

The QNAP2 code for the definition of this object is shown below, with the
list of internal variables:



210 L. Pasini

OBJECT SOFTWARE;
QUEUE PROGRAM, SERVICE;
INTEGER EXIT;
INTEGER IDS;
INTEGER ROLE;
REF FILE FA;
REF WEBAPP WA;
REF WEBAPP WAAPP;
INTEGER BUF; & support buffer for the swap of source and destination
INTEGER C SEQ N;
REAL RUNTIME;

END;

• PROGRAM: is the queue that generates the Webapp packets; it assigns the desti-
nation and origin port values. It reads all the necessary data from files.

• SERVICE: Main Software queue; it initially recognises if the packet is in a Client
or in a Server, including SSO if present. Depending on the type of application,
it creates and sends the authentication cookie, sends the answer to the Server,
manages the file download and empties the buffer.

• EXIT: is the identification of the Terminal connected to the Software; it also
coincides with the identification of the Host connected to the Terminal.

• IDS: is the Software identification for Client Software; is set to zero for Server
Software.

• ROLE: it identifies the role of the Software; each Software used in the simulation
of a Web application will have a role. The Client will always have role 1, while
when present the SSO server will have role 3. These values are independent of
the identification of the Terminal and are also used within the simulation to
avoid confusion with the identifiers.

• FA: is the pointer to the “server.app” file that contains the model that describes
the following stages for the processing of the Web application on the computer
network. An example is shown in Figure 11.

• WA: is a pointer to a Webapp, normally used to create and send standard
Webapps.

• WAAPP: is a pointer to a Webapp, mainly used for SSO and non-SSO answers.
• BUF: is the support buffer that gives the possibility of reprocessing the source

and destination IDs once the packet has reached the Software.
• C SEQ N: is the control sequence number, normally set as sequence number of

the latest packet received by the Software.
• RUNTIME: is the Web application processing start time.

4. Model construction
The generation of a computer model network as the one shown in Figure 1

is obtained automatically using a procedure called BuildMod, which reads the
network descriptive data from a text file called “Model.dat”.

For each library object type described in this document, the “Model.dat”
file contains the list of object realisations found in the model, with the indication
of the current values of the individual object internal parameters.



Queuing networks to evaluate web applications: modelling 211

The BuildMod procedure also completes the connections among the indivi-
dual realisations of the library objects, determining the global computer network
model, with the Software devices needed for the simulation of the execution of
a specific Web application.

In Publications [4, 5] we have outline the technique for the generation of
a model of telecommunication network based on the use of a descriptive “Mo-
del.dat” file and a BuildMod procedure for automatic network model generation
through the reading of the data listed in the “Model.dat” file.

In the current framework, the generation of the model is similar to what
indicated in the above articles for the evaluation of traffic in telecommunication
networks. In this situation, the “Model.dat” file must contain the description of
both the Hardware and the Software of the system concerned.

Figure 9 shows the way in which the individual library object realisations
are connected to each other within the network. The connection procedure is
completed by assigning the appropriate values to the internal pointers of the
individual objects.

Figure 9. Local computer network architecture

4.1. Modelling of a web application
Figure 10 describes the sequence for the execution of a web application on

the computer network shown in Figure 1. This web application consists in the
navigation sequence of a user within a webfarm.

Below are the roles allocated to the various Terminals by means of the
“Model.dat” file. Terminal 8 will be connected to Software 1 and will have a role 1,
or Client, while Terminals 12 and 13 will be the Servers, with role 2 and 3 and
connected to network Software 2 and network Software 3 respectively.



212 L. Pasini

The Client accesses web Server 12 through the browser, with an information
request regarding the authentication procedure in order to gain access to the
information of that Server. The Client sends information for a total of 5 KB.

Server 12 will send a reply cookie containing the user profile, an XML file
containing the Client details. In this case the packet is 35 KB.

The Client will then send a new request to Server 12, also adding to the
previously sent information the identification details of the cookie just received
and the reception details. This entails a 10 KB packet.

Server 12 now has all the necessary information to respond to the Client
and send the requested page. This is a page with a size of 12 KB.

Lastly, the Client adds a further page, belonging to Server 13. However, as
there is no active SSO system, in this case the communication between Software 1
on Terminal 8 and Software 3 on Server 13 is carried out exactly as above.

The “Model.dat” file that describes the system model contains a final section
for the generation of the Software objects required for modelling the execution of
the web application on the computer network. This section consists of a number
of records equal to the number of Software objects in the model. The BuildMod
procedure reads the records in sequence and for each of them generates the
corresponding Software object, indexed in the network based on the generation
order. For each Software, the corresponding record will contain the indication
of the Terminal to which the Software is connected, the role of the Software in
the execution of the application and, if the case, the identification string of the
“server.app” file that describes the application. The “server.app” file contains the
ordered sequence, in subsequent records, of the web application processing stages.
In the file, each application processing stage is described by an 𝑛-uple following
the diagram shown in Paragraph 3.2.

The data that in the “Model.dat” file describe the sequence of Software
objects that must be generated for the web application characterised by the
Sequence diagram shown in Figure 10 are below:

...
& Web Application
IDS Exit Role File
1 8 1 server.app;
0 12 2 1;
0 13 3 1;

4.2. The web application processing stages
The “server.app” file, indicated in “Model.dat”, contains the information

required for the creation and management of the packets that make up the flow
in the computer network for the processing of the web application. “Server.app”
is a text file that in the case of the example of the web application described in
Figure 10 has the structure described in Figure 11.

In this file, each record represents a web application processing stage, in
accordance with the procedure described in Paragraph 3.2. The processing stages



Queuing networks to evaluate web applications: modelling 213

Figure 10. Sequence diagram of a web application

Src Dest Acpu Adisk Aterm Net Bcpu Bdisk
1 2 100 100 500 5000 1500 1500
2 1 100 50 200 35000 1000 500
1 2 100 100 300 10000 400 100
2 1 100 100 300 12000 400 150
1 3 100 100 500 5000 1500 1500
3 1 100 50 200 35000 1000 500
1 3 100 100 300 10000 400 100
3 1 100 100 300 16000 400 150
0 0 -1; && Application end

Figure 11. The “server.app” file



214 L. Pasini

are listed following the execution sequence from top to bottom. The Src and Dest
values correspond to the roles of source Terminal and destination Terminal of
the packets during the processing stage, and constitute side A and side B of the
processing in accordance with what previously defined. For example, as far as the
current web application, Src = 1 and Dest = 2 indicates that the packet left the
Terminal with role 1, which is Client 8, to reach the Terminal with role 2, which
is Server 12.

We can see that the values of the processing parameters on the B side of the
stage, which correspond to the recipient Server, are higher when compared with
the ones of the A side. The B side Server must in fact process the authentication
requests of the Client, therefore needing a higher number of CPU operations and
Disk accesses.

The Net field of each record corresponds to the size of the packet sent by
A to B during the processing stage. Moreover, the −1 value by ACPU in the last
record makes it possible to detect the end of the processing activity and terminate
the execution of the application.

5. Conclusions
In this work, we have defined a library of objects that gives us the possibility

of modelling the operation of a computer network and the traffic of packets
induced on the same by the execution of web applications. The objects of this
library are mainly defined starting from an architectural framework consisting
of a network of queuing service devices. Therefore, starting from a computer
network, we can define its model by building the “Model.dat” file that contains
the list of the realisations of the library objects corresponding to the individual
devices making up the computer network, both as far as Hardware and Software.

In a future publication, we will describe the simulators built based on this
modelling technique for assessing the processing times of web applications realised
using different architectural paradigms.

References
[1] D’Ambrogio A, Iazeolla G and Pasini L 2007 Simulation Modeling Practice and Theory

15 605
[2] Pasini L et al. Queuing networks to evaluate web applications: simulation (in preparation)
[3] Simulog QNAP2 Reference Manual version 9.2
[4] Pasini L and Feliziani S 2007 TASK Quart. 11 (3) 203
[5] Pasini L and Feliziani S 2009 TASK Quart. 13 (4) 315


