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We study quantum information transmission in a Heisenberg-XY chain where qubits are affected
by quasi-local environment action and compare it with the case of local action of the environment.
We find that for open boundary conditions the former situation always improves quantum state
transfer process, especially for short chains. In contrast, for closed boundary conditions quasi-local
environment results advantageous in the strong noise regime. When the noise strength is comparable
with the XY interaction strength, the state transfer fidelity through chain of odd/even number of
qubits in presence of quasi-local environment results smaller/greater than that in presence of local
environment.
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I. INTRODUCTION

Quantum state transfer from one site to another is a
key task in the field of quantum information and quan-
tum computation [1]. In addition to its essential role
in quantum communication protocols, it is required for
connecting small quantum processors in a quantum com-
puter. Moreover, it might help us to get deep under-
standing of the behavior of natural systems, particular-
ity biological systems [2]. Transmitting information de-
mands a physical system to serve as quantum channel,
through which a quantum state is carried. There exist
some schemes considering qubits as the electronic states
of trapped ions and transfer quantum information be-
tween ions through their Coulomb mutual interactions
[3], vibrational mode (bus-mode) [4] or photons [5].

Recently, Bose exploited nearest-neighbor interactions
of Heisenberg-XY chain to perform swap operations to
transfer quantum state from one end to another along
the chain with some fidelity [6]. Despite the previous pro-
tocols [7] applying external controls (which are decoher-
ence sources as well) to switch coupling between qubits to
transmit information, this protocol does not need any ex-
ternal control on the interconnecting qubits between the
input and output qubits. An experimental implementa-
tion of the protocol based on Josephson junction array is
provided in [8]. Then, Datta in [9] proved that fixed but
different couplings can provide perfect state transfer in
Heisenberg-XY chain.

Considering the unavoidable noisy effects in the dy-
namics of real quantum systems as well as the necessi-
ties of miniaturizing devices applied in quantum tech-
nologies like quantum computers, it may happen that
nearest-neighbor qubits in Heisenberg-XY chain become
so closely spaced to experience the same environment ef-

fects [10]. Inspired by this fact, we would like to inves-
tigate quantum state transfer in a Heisenberg-XY chain
with open and periodic boundary conditions in the pres-
ence of “chained” (quasi-local) environments and com-
pare the results with the case of local environments. This
investigation may address the question of whether one
should allow the qubits interact through chained environ-
ments or realize a situation in which each qubit interacts
with its own environment.

Here, we found that chained environments in compari-
son with local ones, giving rise to indirect interactions be-
tween contaminated qubits, facilitates information trans-
fer over a (short) chain with open boundary conditions.
However, due to quantum interference phenomena, these
noise induced links enhance/suppress the transfer process
through the chain with periodic boundary conditions de-
pending on its even/odd number of qubits.

The paper is organized as follows. We introduce the
model and the master equation governing its dynamics
in Sec. II; then we describe the strategy to solve such
equation and consider the fidelity as a measure of in-
formation transfer efficiency. In Sec. III, we present the
solution for XY chain with open boundary conditions, an-
alytical for the smallest non trivial length (3 qubits) and
numerical for longer (up to 10 qubits). The results for
chains with periodic boundary conditions are provided in
Sec.IV, again analytical for the smallest non trivial length
(3 qubits) and numerical for longer (up to 10 qubits). Fi-
nally, conclusions are drawn in Sec. V.

II. THE MODEL

We shall consider a chain of qubits with nearest-
neighbor Heisenberg-XY interactions, a model realized
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in both condensed-matter [11] and quantum computing
[12]. The Hamiltonian of the Heisenberg-XY chain is
given by

Hxy = ξ

N ′∑
n=1

(
σnσ

†
n+1 + σ†nσn+1

)
, (1)

where σi := |0〉〈1| and |0〉 (resp. |1〉) is the ground
(resp. excited) state of the ith qubit and ξ represents the
coupling strength between nearest-neighbor qubits. Fur-
thermore N ′ for chains with open and periodic bound-
ary condition equals N − 1 and N respectively, being
N the total number of qubits in (length of) the chain
(in closed boundary conditions the (N + 1)th qubit co-
incides with the 1st). The Hamiltonian (1) is hence de-
fined on the Hilbert space H (of N qubits) spanned by
⊗Ni=1{|0〉i, |1〉i}.

Realistic quantum systems are generally open, always
exposed to surrounding environment. Thus, we must
take into account the influence of external environment to
get a proper understanding of the real dynamics of quan-
tum physical systems. Here we shall consider quasi-local
(or chained) environments affecting the Heisenberg-XY
chain as well as local environments.

(a)

(b)

1 2 3 4

1 2 3 4

FIG. 1: Schematic diagram of 4-qubit chain with chained
environments (a) and local environments (b). Rectan-
gles denote qubits, straight lines XY interaction, and el-
lipses/circles environments.

In the former case, as shown in Fig.1a, each individ-
ual qubit dissipates into two environments: one common
with its left and another with its right nearest neighbor
[13]. The time evolution of the global system consisting
of N qubits that interact with each other according to
Eq.(1) as well as with chained environment is described
by the following master equation:

ρ̇ = D1[ρ] = −i [Hxy, ρ]

+

N ′∑
n=1

γ
[
2 (σn + σn+1) ρ

(
σ†n + σ†n+1

)
−
{(
σ†n + σ†n+1

)
(σn + σn+1) , ρ

}]
, (2)

in which γ is the dissipative parameter and { , } denotes
the anti-commutator.

In the latter case, as can be seen in Fig.1b, each indi-
vidual qubit dissipates only, and independently, into its
local environment. The master equation governing the
system dynamics of the Heisenberg-XY chain in presence
of local environments can be written as

ρ̇ = D2[ρ] = −i [Hxy, ρ]

+

N∑
n=1

γ
[
2σnρσ

†
n −

{
σ†nσn, ρ

}]
. (3)

In order to solve Eqs. (2) and (3), we follow the same
approach used in [14]. In the sense that we start with
the formal solutions ρ(t) = etDiρ(0), i = 1, 2 and then
substitute Taylor expansion of etDi :

ρ(t) = ρ(0) + tDiρ(0) +
t2

2!
D2
i ρ(0) +

t3

3!
D3
i ρ(0) + ... (4)

As can be seen, repeated applications of the super oper-
ator Di to the initial state ρ(0) will result in the state
within the subspace of Hρ(0) ⊂ H where H = H ⊗ H∗
(being H∗ the dual of H). In the case of small number of
initial excitations e (e << N) that implies dim(Hρ0) <<
dim(H) [15], we can expect to find analytical solutions.
Therefore, applying the super operator Di to the ini-
tial state ρ(0), we achieve closed relations determining
a complete set of operators {Πi} spanning Hρ(0), that is
Hρ(0) = Span{Πi}. Hence ρ(t) can be expanded in terms
of them:

ρ(t) =
∑
i

ai(t)Πi. (5)

Substituting this into the corresponding master equation
(Eq. (2) or Eq. (3)), we find a set of coupled ordinary
differential equations for the coefficients ai(t).

Once we have the density operator at any time, we
consider the optimal average fidelity between input and
output states as measuring the goodness of information
transfer. We set the initial state of the chain as

ρ(0) = |ψ〉1〈ψ| ⊗ |0〉2〈0| ⊗ . . .⊗ |0〉N 〈0|, (6)

where

|ψ〉 = cos(θ/2)|0〉+ sin(θ/2)eiφ|1〉. (7)

Qubit 1 is considered as the input, while we label by o the
output. It will be o = N for open boundary conditions
and o = dN2 e+ 1 for closed boundary conditions. In such
a way the output qubit will always be the farthest from
the input one.

After time t, the output state is obtained by reduced
density operator of the output qubit ρo(t) = Tr6o ρ(t),
where Tr6o means the trace overall qubit of the chain but
the output (oth) one. As we will show the dynamics
imposes the following general form for output state at
qubit o in the basis {|0〉, |1〉}:

ρo(t) =

(
%(t) sin2(θ/2) ς(t) sin θeiφ

ς(t)∗ sin θe−iφ 1− %(t) sin2(θ/2)

)
. (8)
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Furthermore, we allow the possibility of acting a suitable
unitary transformation V on the output qubit. There-
fore, the input-output fidelity is obtained as [16]

fV1,o = 〈ψ|V ρo(t)V †|ψ〉, (9)

where V takes the general form V =

(
u∗ −v∗
v u

)
with

|u|2 + |v|2 = 1. As we will see later V allows us to in-
troduce phase shifts on the off-diagonal elements of the
output density matrix and affects the fidelity [17]. The
average fidelity can be found by integrating over all input
states, that is over the Bloch sphere:

FV1,o =
1

4π

∫ π

0

dθ sin(θ)

∫ 2π

0

dφfV1,o(θ, φ, t)

=
1

2
+

1

6

{
2%|u|2 + 2(ςu∗2 + ς∗u2)− %

}
. (10)

We then maximize it over V obtaining the optimal value
of u to be

uopt = ei{1/2 tan−1[Im(ς)/Re(ς)]+sgn[Re(ς)]π/2}. (11)

Hence the optimal average fidelity F opt1,o reads as

F opt1,o =
1

2
+

1

6

{
%+ 4

√
[Re(ς)]2 + [Im(ς)]2

}
. (12)

III. OPEN BOUNDARY CONDITIONS

In this section, we shall consider a Heisenberg-XY
chain with open boundary condition in presence of quasi-
local and local environments. First, we shall analytically
calculate the optimal average fidelity for the shortest non
trivial chain with 3 qubits. Then, we shall provide the
results for longer chains by numerical calculations and
analyze the effects of the local and chained environments
on the state transfer process.

A. Quasi-local environments

The master equation (2) for a 3-qubit chain with open
boundary condition reads

ρ̇ = D1[ρ] = −iξ
[(
σ1σ

†
2 + σ†1σ2

)
+
(
σ2σ

†
3 + σ†2σ3

)
, ρ
]

+ γ
[
2 (σ1 + σ2) ρ

(
σ†1 + σ†2

)
−
{(
σ†1 + σ†2

)
(σ1 + σ2) , ρ

}]
+ γ

[
2 (σ2 + σ3) ρ

(
σ†2 + σ†3

)
−
{(
σ†2 + σ†3

)
(σ2 + σ3) , ρ

}]
.

(13)

Using the strategy mentioned in Sec.II, we get the set of
operators {Πi} that span Hρ(0) as follows:

Π0 = |0〉〈0|,
Πk = |k〉〈k|,
Π2k+2 = |k〉〈0|+ |0〉〈k|,
Π2k+3 = i(|k〉〈0| − |0〉〈k|),
Π2k+2l+4 = |k〉〈l|+ |l〉〈k|,
Π2k+2l+5 = i(|k〉〈l| − |l〉〈k|), (14)

with k, l = 1, 2, 3 and l < k. Here |k〉 stands for the chain
state with a single excitation located on the kth qubit.
Expanding the density matrix as Eq.(5) and inserting
into Eq.(13), we find a set of coupled ordinary differ-
ential equations for the coefficients that are reported in
Appendix A. Just coefficients a3, a8, a9 appear in output
state. Solving the differential equations for these coef-
ficients (see appendix A) we find the output state (8)
with

%(t) =
a3

sin2(θ/2)

=
1

4

{
e−2γt − 2e−5γt/2

[
cosh(

γtx

2
) cos(

γty

2
)

+
y cosh(γtx2 ) sin(γty2 ) + x cos(γty2 ) sinh(γtx2 )

x2 + y2

]
+

1

2
e−3γt

[
cos(γty) + cosh(γtx)

+
2y sin(γty) + 2x sinh(γtx)− cos(γty) + cosh(γtx)

x2 + y2

]}
,

(15)

and

ς(t) =
a8 + ia9
sin(θ)eiφ

=
−e−γt

4

+
e−3γt/2

4
cosh

(γt
2

(x+ iy)
)[

1 +
tanh

(
γt
2 (x+ iy)

)
x+ iy

]
,

(16)

where

x =

9− 8( ξγ )2 +
√

81 + 112( ξγ )2 + 64( ξγ )4

2


1/2

,

y =

−9 + 8( ξγ )2 +
√

81 + 112( ξγ )2 + 64( ξγ )4

2


1/2

.

(17)

Inserting Eqs.(15) and (16) into (12), we get

F opt1,3 =
1

2
+

1

24

[{
e−2γt +

1

2
e−3γt[cos(γty) + cosh(γtx)]
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− 2e−5γt/2 cosh(
γtx

2
) cos(

γty

2
) +

e−3γt

x2 + y2

×
(1

2
[cosh(γtx)− cos(γty)] + x sinh(

γtx

2
)

+ y sin(
γty

2
)− 2eγt/2[x sinh(

γtx

2
) cos(

γty

2
)

+ y cosh(
γtx

2
) sin(

γty

2
)]
)}1/2

+ 1
]2
− 1

24
. (18)

B. Local environments

We rewrite Eq.(3) for a chain of three qubits with open
boundary condition

ρ̇ = D2[ρ] = −iξ
[(
σ1σ

†
2 + σ†1σ2

)
+
(
σ2σ

†
3 + σ†2σ3

)
, ρ
]

+ γ
[
2σ1ρσ

†
1 − σ

†
1σ1ρ− ρσ

†
1σ1

]
+ γ

[
2σ2ρσ

†
2 − σ

†
2σ2ρ− ρσ

†
2σ2

]
+ γ

[
2σ3ρσ

†
3 − σ

†
3σ3ρ− ρσ

†
3σ3

]
. (19)

Then, the action of D2 on the initial state ρ(0) of three
qubits (of which the first is the input one) leads to the
subspace Hρ(0) spanned by

Π0 = |0〉〈0|,
Πk = |k〉〈k|,
Π2k+2 = |k〉〈0|+ |0〉〈k|,
Π2k+3 = i(|k〉〈0| − |0〉〈k|),
Π10 = i(|2〉〈1| − |1〉〈2|),
Π11 = |3〉〈1|+ |1〉〈3|,
Π12 = i(|3〉〈2| − |2〉〈3|), (20)

with k = 1, 2, 3. Substituting Eq.(5) into Eq.(19) we
get the set of ordinary differential equations reported in
Appendix A together with its solutions. Using them we
arrive at the elements of the reduced density operator for
the third (output) qubit

% = e−2γt sin4

(
ξt√

2

)
,

ς = −1

2
e−γt sin2

(
ξt√

2

)
.

(21)

Finally, thanks to Eg.(12), the optimal average fidelity
reads:

F opt1,3 =
1

2
+

1

6
{%+ 4|ς|}

=
1

2
+
e−γt

3
sin2

(
ξt√

2

)[
1 +

e−γt

2
sin2

(
ξt√

2

)]
.

(22)

We are now going to compare the effects of local and
quasi-local noise on information transfer in Heisenberg-
XY chain. Fig.2 (a,b) show Eq.(18) (blue dots) and
Eq.(22) (red squares) in two different noise regimes.
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FIG. 2: Optimal average fidelity between first and third
qubits of a three-qubit Heisenberg-XY chain with open
boundary conditions in presence of chained (blue dots)
and local (red squares) noise.

According to Fig.2 (a), when γ is comparable to ξ we
observe residual oscillatory behavior that comes from the
Heisenberg-XY Hamiltonian dynamics. Also, chained
environments induce indirect links between nearest-
neighbor qubits and increase the fidelity with respect
to the local environments. The behavior in strong-noise
regime (γ >> ξ), Fig.2 (b), for local environments can
be interpreted by the quantum Zeno effect. That is, re-
peated measurements on the quantum system can freeze
its Hamiltonian evolution [18]. Here the strong interac-
tion of the quantum chain with its local environments,
playing the role of measuring apparatus, effectively de-
couples each qubit from its nearest neighbors in the chain
and leads to the lowest optimal average fidelity. In con-
trast, chained environments inducing long-lived indirect
interactions between contiguous qubits significantly en-
hance the optimal average fidelity and quantum state
transfer process.

Next, we have numerically solved the differential equa-
tions in Hρ(0) obtained by Eqs.(2) and (3) for system’s
size N = 4, ..., 10, found the optimal average fidelity be-
tween the first and last qubits of the chain and repre-
sented its maximal value for different chain lengths in
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Fig.3.
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FIG. 3: Maximum of optimal average fidelity between
the two ends of the chain vs number N of qubits with
open boundary conditions in presence of quasi-local (blue
dots) and local (red squares) envornments.

According to Fig.3, the fidelity of state transfer in both
cases of local and quasi-local noise decreases by increas-
ing the chain’s length. This behavior, that is also re-
ported in [6] for Heisenberg-XY chain in the absence of
noise, comes from the dispersion of information over the
chain (see also [19]). The better performance of quasi-
local environment with respect to the local one (which
is more evident in the strong noise regime) tends to be
washed out over a length of more than 10 qubits.

IV. PERIODIC BOUNDARY CONDITION

In this section, we study the effects of local and quasi-
local environments on the efficiency of state transfer
through a chain having closed boundary conditions. Like-
wise the previous section, analytical calculations for the
fidelity in the case of three qubits will be provided and
then the fidelity for longer chains will be evaluated nu-
merically.

A. Quasi-local environments

Eq.(2) for a three-qubit chain with closed boundary
condition becomes:

ρ̇ = D1[ρ] = −iξ
[(
σ1σ

†
2 + σ†1σ2

)
+
(
σ2σ

†
3 + σ†2σ3

)
+
(
σ3σ

†
1 + σ†3σ1

)
, ρ
]

+ γ
[
2 (σ1 + σ2) ρ

(
σ†1 + σ†2

)
−
{(
σ†1 + σ†2

)
(σ1 + σ2) , ρ

}]
+ γ

[
2 (σ2 + σ3) ρ

(
σ†2 + σ†3

)
−
{(
σ†2 + σ†3

)
(σ2 + σ3) , ρ

}]
+ γ

[
2 (σ3 + σ1) ρ

(
σ†3 + σ†1

)
−
{(
σ†3 + σ†1

)
(σ3 + σ1) , ρ

}]
.

(23)

Applying the operator D1 on ρ(0) yields the complete set
of operators as in Eq.(14) and a set of ordinary differen-
tial equations that are reported in Appendix B together
with its solutions. Then the reduced density operator for
the third qubit results as Eq.(8) with:

% =
e−2γt

9

{
1 + e−6γt − 2e−3tγ cos(3tξ)

}
,

ς =
e2γt(iξ−γ)

6

{
e−6γt(iξ+γ) − 1

}
. (24)

Finally, using Eq.(12), the optimal average fidelity can
be found as

F opt1,3 =
1

54

[
1

3

√
e−2γt + e−8γt − 2e−5γt cos(3tξ) + 1

]2
− 1

54
+

1

2
. (25)

B. Local environments

The master equation governing the dynamics of a chain
of three-qubit with periodic boundary conditions is ob-
tained from Eq.(3) as

ρ̇ = D2[ρ] = −iξ
[(
σ1σ

†
2 + σ†1σ2

)
+
(
σ2σ

†
3 + σ†2σ3

)
+
(
σ3σ

†
1 + σ†3σ1

)
, ρ
]

+ γ
[
2σ1ρσ

†
1 − σ

†
1σ1ρ− ρσ

†
1σ1

]
+ γ

[
2σ2ρσ

†
2 − σ

†
2σ2ρ− ρσ

†
2σ2

]
+ γ

[
2σ3ρσ

†
3 − σ

†
3σ3ρ− ρσ

†
3σ3

]
.

(26)

Then, one can arrive at the Eq.(14) and a set of ordinary
differential equations for coefficients ai that are reported
in Appendix B together with its solutions. We can then
find the elements of the reduced density operator of the



6

output (third) qubit:

% =
4

9
e−2γt sin2(3tξ/2),

ς = − i
3
e−γt−itξ/2 sin(3tξ/2). (27)

The optimal average fidelity results

F opt1,3 =
1

2
− 1

3
e−2γt

{
1

2
− 2

3
sin2

(
3tξ

2

)
− 1

18
[5 + 4 cos (3tξ)]− 2

3
eγt
∣∣∣∣sin(3tξ

2

)∣∣∣∣} .
(28)

At the end, we compare the influence of local and
quasi-local noise on the optimal average fidelity. In Fig.4,
we report the optimal average fidelity (25) and (28) for
two different noise regimes.
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FIG. 4: Optimal average fidelity between the first and
third qubits of a closed three-qubit chain with local (red
squares) and chained (blue dots) environments.

As shown in Fig.4, when the dissipative parameter is
not large enough to establish strong environment-induced
chain links in quasi-local case, due to the interference
phenomena, local environments are more efficient. To
have a clear picture of the effect of these two kind of
noise we report the maximum of optimal average fidelity
between the 1st and its farthest qubit for chains with
periodic boundary condition of odd and even sizes in
Figs.5,6.
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FIG. 5: Maximum of optimal average fidelity between
the first qubit and its farthest neighbor in a closed chain
of odd size (N = 3, 5, 7, 9). Here o = dN2 e+ 1 labels the
output qubit affected by chained (blue dots) and local
(red squares) environments.
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FIG. 6: Maximum of optimal average fidelity between
the first qubit and its farthest neighbor in a closed chain
of even size (N = 4, 6, 8, 10). Here o = dN2 e+1 labels the
output qubit affected by chained (blue dots) and local
(red squares) environments.

In the regime in which γ is comparable with ξ, both
Hamiltonian and dissipative terms play relevant roles in
the system’s dynamics. The wave function propagating
in a closed chain depending on the odd/even number of
qubits experiences opposite phases, as a consequence of
the quantum interference phenomena, hence the induced
links by dimerized environment reduce/enhance the per-
formance of information transfer (see Figs.(5a,6a)). In
the strong dissipative regime (γ >> ξ), there is weak
direct connection between qubits (due to quantum Zeno
kind effect) that implies Fmax1,o ≈ 0.5 in the case of local
noise. However, the dimerized case exploits the indirect
induced connections and significantly enhances the state
transfer process on the chain (Figs.(5b,6b)). However,
this higher performance is also decreasing by increasing
the system’s size.

V. CONCLUSION

We have studied the effect of two different kinds
of dissipation, quasi-local and local, on quantum state
transfer precess in Heisenberg-XY chain with open and
closed boundary conditions. We have shown that the
chained environments inducing indirect connections be-
tween nearest-neighbor qubits remarkably enhance the
fidelity of state transfer in short chains (N < 10) with

open boundary conditions. In the situation of chains
with closed boundary conditions the same behavior is
found in the strong noise regime. However, due to
quantum interference phenomena, distinct behaviors ap-
pear in the weak-noise regime: chained environments de-
crease/increase the fidelity of state transfer in chains with
odd/even number of qubits. Going beyond the quasi-
local dissipation model investigated here, we might claim
that the fidelity enhancement can be related to the spa-
tial extension of non-local environment effects. The ob-
tained results highlight the relevance of the topology of
environmental actions on a set of Hamiltonian interact-
ing qubits. A subject that deserves attention due the
continuing miniaturization of quantum devices.
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Appendix A: Density matrix for open boundary
conditions

Here, we shall investigate the dynamics of density ma-
trix of a three-qubit Heisenberg-XY chain with open
boundary condition dissipating in quasi-local environ-
ments as well as in local environments. In the former
case, we expand the density matrix using the operators
in Eq.(14) and insert into Eq.(13) and get:

ȧ0(t) = 2γ {a1(t) + a3(t) + 2[a10(t) + a14(t) + a2(t)]} ,
ȧ1(t) = −2γ[a1(t) + a10(t)] + 2ξa11(t),

ȧ2(t) = −2γ[a10(t) + a14(t) + 2a2(t)] + 2ξ[a15(t)− a11(t)],

ȧ3(t) = −2γ[a3(t) + a14(t)]− 2ξa15(t),

ȧ4(t) = −γ[a4(t) + a6(t)] + ξa7(t),

ȧ5(t) = −γ[a5(t) + a7(t)]− ξa6(t),

ȧ6(t) = −γ[a4(t) + 2a6(t) + a8(t)] + ξ[a5(t) + a9(t)],

ȧ7(t) = −γ[a5(t) + 2a7(t) + a9(t)]− ξ[a4(t) + ξa8(t)],

ȧ8(t) = −γ[a6(t) + a8(t)] + ξa7(t),

ȧ9(t) = −γ[a7(t) + a9(t)]− ξa6(t),

ȧ10(t) = −γ[a1(t) + a2(t) + 3a10(t) + a12(t)] + ξa13(t),

ȧ11(t) = −γ[3a11(t) + a13(t)]− ξ[a1(t)− a2(t) + a12(t)],

ȧ12(t) = −γ[a10(t) + 2a12(t) + a13(t)] + ξ[a11(t)− a15(t)],

ȧ13(t) = −γ[a11(t) + 2a13(t)− a15(t)]− ξ[a10(t)− a14(t)],

ȧ14(t) = −γ[a2(t) + a3(t) + a12(t) + 3a14(t)]− ξa13(t),

ȧ15(t) = −γ[a13(t) + 3a15(t)]− ξ[a2(t)− a3(t)− a12(t)],
(A1)



8

with the following initial conditions:

a0(0) = cos2(θ/2), a1 = sin2(θ/2),

a4(0) =
1

2
sin(θ) cos(φ), a5(0) =

1

2
sin(θ) sin(φ),

ai(0) = 0,∀i 6= 0, 1, 4, 5. (A2)

We only report solutions for coefficients a3, a8, a9 that
are required to calculate the reduced density matrix for
the third qubit.

a3 =
1

4

{
e−2γt − 2e−5γt/2

[
cosh(

γtx

2
) cos(

γty

2
)

+
y cosh(γtx2 ) sin(γty2 ) + x cos(γty2 ) sinh(γtx2 )

x2 + y2

]
+

1

2
e−3γt

[
cos(γty) + cosh(γtx)

+
2y sin(γty) + 2x sinh(γtx)− cos(γty) + cosh(γtx)

x2 + y2

]}
× sin2(θ/2),

a8 =
1

8
e−

3γt
2

{
−2eγt/2 cosφ+ e−iφ cosh[

γt

2
(x− 16iξ

x
)]
(

1

+
tanh[γt2 (x− 16iξ

x )]

x− 16iξ/x

)
+ eiφ cosh[

γt

2
(x+

16iξ

x
)]
(

1+

+
tanh[γt2 (x+ 16iξ

x )]

x+ 16iξ
x

)}
× sin(θ),

a9 =
1

8
e−

3γt
2

{
−2eγt/2 sinφ+ ie−iφ cosh[

γt

2
(x− 16iξ

x
)]
(

1+

+
tanh[γt2 (x− 16iξ

x )]

x− 16iξ/x

)
− ieiφ cosh[

γt

2
(x+

16iξ

x
)]
(

1+

+
tanh[γt2 (x+ 16iξ

x )]

x+ 16iξ
x

)}
× sin(θ). (A3)

In the case of local environments, using Eqs.(5) and
(14) into (19), we get

ȧ0(t) = 2γ[a1(t) + a2(t) + a3(t)],

ȧ1(t) = −2γa1(t) + 2ξa10(t),

ȧ2(t) = −2γa2(t) + 2ξ[a12(t)− a10(t)],

ȧ3(t) = −2γa3(t)− 2ξa12(t),

ȧ4(t) = −γa4(t) + ξa7(t),

ȧ5(t) = −γa5(t)− ξa6(t),

ȧ6(t) = −γa6(t) + ξ[a5(t) + a9(t)],

ȧ7(t) = −γa7(t)− ξ[a4(t) + a8(t)],

ȧ8(t) = −γa8(t) + ξa7(t),

ȧ9(t) = −γa9(t)− ξa6(t),

ȧ10(t) = −2γa10(t) + ξ[a2(t)− a1(t)− a11(t)],

ȧ11(t) = −2γa11(t) + ξ[a10(t)− a12(t)],

ȧ12(t) = −2γa12(t) + ξ[a11(t) + a3(t)− a2(t)],

(A4)

with the initial conditions as Eq.(A2) and the following
relevant solutions

a3(t) = e−2γt sin4(tξ/
√

2) sin2(θ/2),

a8(t) = −1

2
e−γt sin2(tξ/

√
2) sin(θ) cos(φ),

a9(t) = −1

2
e−γt sin2(tξ/

√
2) sin(θ) sin(φ).

(A5)

Appendix B: Density matrix for closed boundary
conditions

The time evolution of density matrix of a three-
qubit chain with closed boundary conditions interacting
through XY Hamiltonian in presence of quasi-local and
local noises are given by Eq.(23) and Eq.(26), respec-
tively. In the case of quasi-local noise, the coefficients
of Eq.(5) determining the density matrix are obtained
through the following set of ordinary differential equa-
tions:

ȧ0(t) = 2γ[a1(t) + a2(t) + a3(t)],

ȧ1(t) = −2γa1(t) + 2ξ[a11(t) + a13(t)],

ȧ2(t) = −2γa2(t) + 2ξ[a15(t)− a11(t)],

ȧ3(t) = −2γa3(t)− 2ξ[a13(t) + a15(t)],

ȧ4(t) = −γa4(t) + ξ[a7(t) + a9(t)],

ȧ5(t) = −γa5(t)− ξ[a5(t) + a8(t)],

ȧ6(t) = −γa6(t) + ξ[a5(t) + a9(t)],

ȧ7(t) = −γa7(t)− ξ[a4(t) + a8(t)],

ȧ8(t) = −γa8(t) + ξ[a5(t) + a7(t)],

ȧ9(t) = −γa9(t)− ξ[a4(t) + a6(t)],

ȧ10(t) = −2γa10(t) + ξ[a13(t) + a15(t)],

ȧ11(t) = −2γa11(t) + ξ[a2(t) + a14(t)− a1(t)− a12(t)],

ȧ12(t) = −2γa12(t) + ξ[a11(t)− a15(t)],

ȧ13(t) = −2γa13(t) + ξ[a3(t) + a14(t)− a1(t)− a10(t)],

ȧ14(t) = −2γa14(t)− ξ[a11(t) + a13(t)],

ȧ15(t) = −2γa15(t) + ξ[a3(t) + a12(t)− a2(t)− a10(t)],
(B1)

where the initial conditions read as Eq.(A2).
The coefficients that we need to find the reduced den-

sity matrix of the third qubit read

a3(t) =
e−2γt

9

{
1 + e−6γt − 2e−3γt cos(3tξ)

}
sin2(θ/2),

a8(t) =
e−γt

6

{
e−3γt cos(φ− 2tξ)− cos(φ+ tξ)

}
sin(θ),

a9(t) =
e−γt

6

{
e−3γt sin(φ− 2tξ)− sin(φ+ tξ)

}
sin(θ).

(B2)

When the chain is affected by local environments, we get

ȧ0(t) = 4γ[a1(t) + a2(t) + a3(t) + a10(t) + a12(t) + a14(t)],
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ȧ1(t) = −2γ[2a1(t) + a10(t) + a12(t)] + 2ξ[a11(t) + a13(t)],

ȧ2(t) = −2γ[2a1(t) + a10(t) + a14(t)]− 2ξ[a11(t)− a15(t)],

ȧ3(t) = −2γ[2a3(t) + a12(t) + a14(t)]− 2ξ[a13(t) + a15(t)],

ȧ4(t) = −γ[2a4(t) + a6(t) + a8(t)] + ξ[a7(t) + a9(t)],

ȧ5(t) = −γ[2a5(t) + a7(t) + a9(t)]− ξ[a6(t) + a8(t)],

ȧ6(t) = −γ[a4(t) + 2a6(t) + a8(t)] + ξ[a5(t) + a9(t)],

ȧ7(t) = −γ[a5(t) + 2a7(t) + a9(t)]− ξ[a4(t) + a8(t)],

ȧ8(t) = −γ[a4(t) + a6(t) + 2a8(t)] + ξ[a5(t) + a7(t)],

ȧ9(t) = −γ[a5(t) + 2a9(t) + a7(t)]− ξ[a4(t) + a6(t)],

ȧ10(t) = −γ[a1(t) + a2(t) + 4a10(t) + b12(t) + a14(t)]
+ ξ[a13(t) + a15(t)],

ȧ11(t) = −γ[a13(t) + a15(t) + 4a11(t)]
+ ξ[a2(t)− a1(t)− a12(t) + a14(t)],

ȧ12(t) = −γ[a1(t) + a3(t) + a10(t) + 4a12(t) + a14(t)]
+ ξ[a11(t)− a15(t)],

ȧ13(t) = −γ[a11(t) + 4a13(t) + a15(t)]
+ ξ[a14(t)− a1(t) + a3(t)− a10(t)],

ȧ14(t) = −γ[a2(t) + a3(t) + a10(t) + a12(t) + 4a14(t)]
− ξ[a11(t) + a13(t)],

ȧ15(t) = −γ[4a15(t)− a11(t) + a13(t)]
+ ξ[a3(t)− a2(t)− a10(t) + a12(t)], (B3)

with the initial conditions mentioned in Eq.(A2) and the
following relevant solutions:

a3(t) =
4

9
e−2γt sin2(3tξ/2) sin2(θ/2),

a8(t) =
1

3
e−γt sin(

3tξ

2
) sin(φ− tξ

2
) sin(θ),

a9(t) = −1

3
e−γt sin(

3tξ

2
) cos(φ− tξ

2
) sin(θ). (B4)
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