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Abstract

We study the late time evolution of negatively curved Friedmann–Lemaître–Robert-

son–Walker (FLRW) models with a perfect fluid matter source and a scalar field non-

minimally coupled to matter. Since, under mild assumptions on the potential V , it

is already known – see e.g. [18] – that equilibria corresponding to non-negative local

minima for V are asymptotically stable, we classify all cases where one of the energy

components eventually dominates. In particular for nondegenerate minima with zero

critical value, we rigorously prove that if γ, the parameter of the equation of state is

larger than 2/3, then there is a transfer of energy from the fluid and the scalar field to

the energy density of the scalar curvature. Thus, the scalar curvature, if present, has
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a dominant effect on the late evolution of the universe and eventually dominates over

both the perfect fluid and the scalar field. The analysis in complemented with the case

where V is exponential and therefore the scalar field diverges to infinity.

1 Introduction

Scalar fields implement a useful tool used by theorists for the description of the early in-

flationary phase and of the present accelerating expansion of the Universe, [1, 2, 3]. Scalar

fields arise in several conformally equivalent theories of gravity, e.g., in higher order grav-

ity theories (HOG), in string theories [4] and in scalar-tensor theories involving scalar field

self-interactions and dynamical couplings to matter [5]. An important example of a scalar

field coupled to matter is provided by the general form of scalar-tensor theories of gravity

[5, 6, 7], where the action in the Einstein frame takes the form

S =
∫

d 4x
p−g

{
R −

[(
∂φ

)2 +2V
(
φ

)]+2χ−2Lm
(
g̃µν,Ψ

)}
, (1)

where

g̃µν =χ−1gµν,

and χ= χ(
φ

)
is the coupling function; matter fields are collectively denoted byΨ. This ac-

tion contains as special cases HOG theories with χ
(
φ

)= e
p

2/3φ and g̃µν = e−p2/3φgµν. Non

minimally coupling occurs also in models of chameleon gravity [8, 9], with g̃µν = e2βφgµν,

where β is a coupling constant. The same form of coupling has been proposed in models

of the so called coupled quintessence [10] (see also [11, 12, 13] for more general couplings).

Variation of the action (1) with respect to the metric g yields the field equations,

Gµν = Tµν
(
g ,φ

)+T m
µν

(
g ,Ψ

)
, (2)

where T m
µν is the matter energy momentum tensor. The Bianchi identities imply that the

total energy-momentum tensor is conserved and therefore there is an energy exchange be-

tween the scalar field and ordinary matter. In all the above examples, the conservation of
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their sum is provided by the equations (compare to [10]),

∇µT m
µν

(
g ,Ψ

)=QT m∇νφ, ∇µTµν
(
g ,φ

)=−QT m∇νφ, (3)

where Q := d lnχ/dφ, depends in general on φ and T m is the trace of the matter energy-

momentum tensor, i.e., T m = gµνT m
µν

(
g ,Ψ

)
. Variation of S with respect to φ yields the

equation of motion of the scalar field,

äφ− dV

dφ
=−QT m. (4)

In early investigations in scalar-field cosmology a minimal coupling of the scalar field

was assumed, (see for example the review articles [3, 7] and references therein). It is true

that inclusion of non minimal coupling increases the mathematical difficulty of the anal-

ysis; however, it is important to consider non minimal coupling in scalar field cosmology

[5]. Many physical theories predict the presence of a scalar field coupled to matter and

therefore, the introduction of non minimal coupling is not a matter of taste [14]. Models

with exponential potentials have been intensively studied not only because of the variety

of alternative theories of gravity which predict exponential potentials, but also due to the

fact that this potential has the nice property that V ′ ∝V which allows for the introduction

of normalized variables according to the formalism of Wainwright et al [15] – see however,

[16, 17, 18, 19]. Another large class of potentials used in scalar-field cosmological models

has a local minimum. In view of the unknown nature of the scalar field supposed to cause

accelerated expansion, it is important to investigate the general properties shared by all

Friedmann–Lemaître–Robertson–Walker (FLRW) models with a scalar field irrespective of

the particular form of the potential.

In this paper we study the late time evolution of initially expanding negatively curved

FLRW models with a scalar field having an arbitrary bounded from below potential function

V
(
φ

)
. Although most of the literature deals with the flat case, negatively curved FLRW

models cannot be ruled out by current observation in principle, and have been already

analysed i.e. in [22] for the massless case (see also final section 4 below). Our results are

rigorously proved and do not depend on the specific form of the potential function, but

possibly at most on its local form near its minimum. Ordinary matter is described by a
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barotropic fluid with equation of state

p = (γ−1)ρ, 0 < γ< 2. (5)

The scalar field is nonminimally coupled to matter according to (1), (2) and (4). Under

general assumptions on the potential function V (φ) we study the late time mutual behavior

of the energies associated to the scalar and the fluid, and their relation with the “energy”

associated to the spatial curvature of the cosmological model. In particular, in case of a

nondegenerate minimum of the potential with vanishing critical value, we show that for

γ < 2/3 the perfect fluid eventually dominates the energy density of the scalar field, i.e.,

Ωρ → 1,Ωφ,Ωk → 0, a property already shared by flat models for γ< 1. However, if γ> 2/3,

the energy density of the scalar curvature eventually dominates over both the perfect fluid

and the scalar field, i.e., Ωk → 1 and Ωφ,Ωρ → 0 asymptotically. This result shows that the

scalar curvature, if present, has a dominant effect on the late evolution of the universe.

The paper is organized as follows. Section 2 briefly recollects the basic ideas of the

model studied. The results on the asymptotic behavior of the energy are described in Sec-

tion 3. In paragraph 3.1 we consider the case when the scalar approaches a local non-

degenerate minimum of the potential V (φ), and find in Theorem 3.1 the spectrum of the

qualitative behavior of the energies in terms of the parameter γ entering the equation of

state of the fluid. To complete the analysis in analogy with [18], we also present in para-

graph 3.2 the case of the exponential potential, finding out that the curvature energy may

take over the other energies also in this case. The final Section 4 is devoted to conclusions

and perspectives.

2 Model description

The metric is given by the general, possibly nonflat FLRW metric

ds2 =−dt 2 +a(t )2
( dr 2

1−kr 2
+ r 2dΩ2

)
,

where dΩ2 = dϑ2 + sin2ϑdϕ2. For this metric, assuming that Lm is the Lagrangian of a

perfect fluid with equation of state (5), the field equations (2) reduce to the Friedmann

4



equation,

H 2 + k

a2
= 1

3

(
ρ+ 1

2
φ̇2 +V

(
φ

))
, (6)

and the Raychaudhuri equation,

Ḣ =−1

2
φ̇2 − γ

2
ρ+ k

a2
, (7)

while the equation of motion of the scalar field (4), becomes

φ̈+V ′(φ)+3Hφ+Q(φ)
(3γ−4)

2
ρ = 0, (8)

where Q(φ) is the logarithmic derivative of the coupling function χ(φ) which is supposed

to be strictly positive and differentiable. The Bianchi identities (3) yield the conservation

equation,

ρ̇+3γρH =Q(φ)
4−3γ

2
ρφ̇. (9)

Here, a (t ) is the scale factor, an overdot denotes differentiation with respect to time t , H =
ȧ/a and units have been chosen so that c = 1 = 8πG . The potential V

(
φ

)
of the scalar field

is a C 2 function and dV /dφ is denoted by V ′ (φ)
.

Setting y = φ̇ and α(φ) := 4−3γ
2 Q(φ), we obtain the system

φ̇= y,

ẏ =−3H y −V ′ (φ)+αρ,

ρ̇ =−3γρH −αρy, (10)

Ḣ =−1

2
y2 − γ

2
ρ+ k

a2
,

subject to the constraint

3H 2 + 3k

a2
= ρ+ 1

2
y2 +V

(
φ

)
. (11)

We begin with some general properties of the system (10) with the constraint (11). Firstly,

the system shares the remarkable property of the Einstein equations that, if equation (11)

is satisfied at some initial time, then it is satisfied throughout the evolution. Secondly, fol-

lowing the arguments in [20, 21], one can show that an initially expanding flat or negatively
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curved universe remains ever-expanding. Thirdly, the third of (10) implies that the set ρ = 0

is invariant. Therefore, if initially ρ is positive, it remains positive for ever. Furthermore, for

k = 0,−1 the fourth equation of (10) implies Ḣ < 0, thus H is a decreasing function of time

t and is bounded from below either by 0 or
√

V (φ∗)/3) where V ′(φ∗) = 0. We observe that

the function W (t ) defined as

W (t ) =W (φ(t ), y(t ),ρ(t ), H(t )) = H 2 − 1

3

(
1

2
y2 +V (φ)+ρ

)
, (12)

satisfies the equation

Ẇ =−2HW, (13)

therefore, sgn(W ) is invariant under the flow of (10)and since

W (t ) =− k

a2(t )

it must be k =−sgn(W (0)).

Using the constraint (11) to eliminate a, we observe that the critical points of (10) are

given by (φ=φ∗, y = 0,ρ = 0, H =±√
V (φ∗)/3) where V ′(φ∗) = 0.

Following [18], we assume two properties for the scalar potential V (φ): (i) the (possibly

empty) set
{
φ : V (φ) < 0

}
is bounded, and (ii) the set of critical points is finite. Under these

assumptions one can show – see e.g. [18, Proposition 1] – that (φ∗, y∗ = 0,ρ∗ = 0, H∗ =√
V (φ∗)/3), where φ∗ is a – possibly degenerate – strict local minimum for the potential

V (φ), is an asymptotically stable equilibrium point for expanding cosmologies in the open

spatial topologies k = 0 and k = −1. The purpose of this paper is to establish some results

on the asymptotic behaviour in the case k =−1.

3 Asymptotic behavior of the energy

In the following, we are going to study the late time behaviour of solutions of (10), which

are initially expanding, i.e., H(0) > 0. Our aim is to study which is the asymptotically domi-

nating energy in the above model: we have the energy ρ associated to the perfect fluid and
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the energy associated to the scalar field

ε= 1

2
y2 +V (φ), (14)

so that using equation (12) we have

Ωρ+Ωφ+Ωk = 1 (15)

where

Ωρ = ρ

3H 2
, Ωφ = ε

3H 2
, Ωk = W

H 2
= 1

a2H 2
, (16)

are the normalized energies related to the perfect fluid, the scalar field and the spatial scalar

curvature. Notice that the third component may become relevant, unlike the flat case k = 0

where the leading contribution is either given by the perfect fluid or the scalar. We will con-

sider in subsection 3.1 the case of a nondegenerate minimum of the potential and show the

main result of this paper, Theorem 3.1, whereas in subsection 3.2 we will take into account

the exponential potential with critical point at infinity.

3.1 Nondegenerate minimum of the potential

Let us study the asymptotic behaviour when the scalar field approaches a local minimum

of the potential V (φ). We will focus on the case when V (φ∗) = 0 – indeed, when V (φ∗) > 0,

the energy density of the scalar field approaches a strictly positive value and eventually

dominates. The less trivial case is given when the critical value for the potential is zero,

and we consider the case where this minimum is nondegenerate. Furthermore, we assume

without loss of generality that φ∗ = 0 and therefore, the potential near its minimum takes

the form

V (φ) = 1

2
λ2φ2 +O(φ3), λ> 0. (17)

From now on, the higher order terms in V (φ) will be systematically neglected, since it can

be shown that the results we are going to state are not affected.

We recall [18, Theorem 2] that, in the flat case k = 0, Ωρ eventually dominates when

γ< 1, whereasΩφ eventually dominates when γ> 1 in a generic way, i.e. except at most for

a particular solution of the system. Let us go and see what happens when k = −1 and, in
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principle, another form of “energy” deriving from the spatial curvature of the cosmological

model enters into play.

Using (6) we can eliminate k from (10) thereby obtaining

φ̇= y,

ẏ =−3H y −λ2φ+αρ, (18)

ρ̇ =−3γρH −αρy,

Ḣ =−1

3
y2 +

(
1

3
− γ

2

)
ρ+ 1

6
λ2φ2 −H 2.

The phase space of the system is the set{(
φ, y,ρ, H

) ∈R4 : H 2 > 1

3

(
ρ+ 1

2
y2 +V (φ)

)}
, (19)

due to the constraint (11).

To tackle the problem we consider expansion-normalized variables, a traditionally use-

ful approach for flat cosmologies (see e.g. [17]) that will be exploited here also for the k =−1

case under examination. We set

w = λp
6

φ

H
, z = 1p

6

y

H
, u =

p
W

H
, (20)

in order to write normalized energies (16) as

Ωρ = 1− (u2 +w 2 + z2), Ωφ = w 2 + z2, Ωk = u2, (21)
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and the system (18) takes the form

ẇ =λz +w H

(
3z2 +u2 + 3

2
γ

(
1−w 2 − z2 −u2)) ,

ż =−λw + zH
(−3+3z2 +u2)+3H

(
1−w 2 − z2 −u2)(γ

2
z + αp

6

)
, (22)

u̇ =−uH

(
1−3z2 −u2 − 3

2
γ

(
1−w 2 − z2 −u2)) ,

Ḣ =−H 2
(
3z2 +u2 + 3

2
γ

(
1−w 2 − z2 −u2)) .

The above system is slightly complicated, with respect to its flat counterpart, by the intro-

duction of one more equation, the third one, that in the flat k = 0 is trivially satisfied since

W = 0 and then u = 0. The main complication arising will be that, in the argument below,

we will have to employ spherical coordinates instead of polar ones.

We also observe that, in view of the first of (20), and recalling that α is in principle a

function of the scalar field φ only, we can consider α = α(w, H); however one should bear

in mind that we are considering solutions such that φ→ φ∗, and then α will approach a

constant as t →+∞. This fact will be used in the proofs throughout below.

Finally we notice that, unlike the case that will be treated in next paragraph 3.2, the

presence of the terms λz and −λw in the first two equations of (22) does not allow to con-

sider, as is usually done for similar studies, a normalized time τ, and therefore the first three

equations no more decouple from the fourth one, as happens in the exponential case.

As mentioned above, it will be useful to consider the system in spherical coordinates

(R,θ,η) defined as

u = R cosη,

w = R sinηcosθ, (23)

z = R sinηsinθ,

9



and the system is rewritten in the following form:

θ̇+λ= 3H cosθ

(
−sinθ+ αp

6sinη

(
1−R2

)
R

)
, (24a)

η̇= H cosη

(
sinη

(
1−3sin2θ

)+ 3αsinθp
6

(
1−R2

)
R

)
, (24b)

Ṙ = H
(
1−R2)(R

(
sin2η

(
1−3sin2θ

)−1+ 3γ

2

)
+ 3αsinηsinθp

6

)
, (24c)

Ḣ = H 2
(
R2 (

sin2η
(
1−3sin2θ

)−1
)− 3γ

2

(
1−R2)) , (24d)

compare with [18, eq.(23)]. Notice that, using (21) and (23), the normalized energies now

are given by

Ωρ = 1−R2, Ωφ = R2 sin2η, Ωk = R2 cos2η, (25)

The main result of this paper is the following:

Theorem 3.1. Let φ∗ be a nondegenerate minimum of V (φ) with zero critical value. Con-

sider the solutions of (10) with k =−1 approaching the (asymptotically stable) equilibrium

point (φ∗, y = 0,ρ = 0, H = 0). Then if γ< 2/3 then the normalized energy of the perfect fluid

dominates asymptotically:

Ωρ → 1, Ωφ,Ωk → 0.

On the other side, when γ> 2/3, the energy of the scalar curvature dominates asymptotically:

Ωk → 1, Ωφ,Ωρ → 0.

Observe that, in particular, the energy associated to the scalar field never eventually

dominates1.

To show the above result we consider the compact and positively invariant set U ={
u2 +w 2 + z2 ≤ 1,u ≥ 0

}× {H ∈ [0, H0]}. By LaSalle’s theorem the possible ω–limit points for

trajectories living in U are given by the circles w 2 + z2 = r 2∞ (=constant) with u = u∞ con-

stant. We must then observe that a trajectory of the system can admit only one suchω–limit

1Also observe that the transition case γ= 2
3 is excluded from the current analysis, similarly to the transition

case γ= 1 of [18, Theorem 2]
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circle, otherwise with a simple contradiction argument one would obtain infinite limit cir-

cles of this kind. Therefore, with reference to the variable change given by (23), we find that

∃ limt→+∞ R(t ) =: R∞ ≥ 0 and, if R∞ > 0, also ∃ limt→+∞η(t ) = η∞ ∈R. Then Theorem 3.1 is

a straightforward consequence of the following two claims, that will be shown to hold.

Claim 3.1. If R∞ = 0 then γ< 2/3..

Claim 3.2. If R∞ > 0 and γ 6= 2/3 then γ> 2/3 and R∞ = 1.

Claim 3.1 holds because, if R → 0, then from (24d) we get that Ḣ ≈−3γ
2 H 2, and integrat-

ing twice we obtain a ≈ t
2

3γ . Since ȧ ≈ 2
3γ t

2
3γ−1, then it must be

Ωk = R2 cos2η= u2 = W

H 2
= 1

ȧ2
≈ 9

4
γ2t

2
(
1− 2

3γ

)
,

which recalling R → 0 is consistent only when γ< 2/3.

To prove Claim 3.2 we begin by showing by contradiction that sinη∞ = 0. Indeed if

that is not the case, since H monotonically goes to zero, from (24a) we obtain θ ≈−λt and

consequently the following asymptotic estimates as t →+∞ are found:

∫ t

0
H cosηsinη

(
1−3sin2θ

)
ds =

∫ t

0
H cosηsinη

(
3

2
cos2θ− 1

2

)
ds ≈

∫ t

0
−1

2
H cosη∞ sinη∞ ds+c0

and ∫ t

0
H cosη

3αsinθp
6

(
1−R2

)
R

ds ≈ c1 ∈R,

for some c0,c1 ∈R. Using the above estimates in (24b) we get

η(t ) ≈−1

2
cosη∞ sinη∞ ln a(t )+ c2,

for some c2 ∈ R, and therefore it must be cosη∞ = 0 and so sin2η∞ = 1. This implies the

following asymptotic estimate in (24d):

∫ t

0

Ḣ

H 2
ds ≈−νt ,

11



where ν= (3
2 R2∞+ 3

2γ(1−R2∞)
)
. Integrating once again we find that

u2 = 1

ȧ2
≈ t 2(1−1/ν)

and recalling that u2 = R2 cos2η→ 0 it must be ν< 1, that implies γ< 2/3 and R∞ <p
2/3.

But similar arguments applied to (24c) give

R(t )−R(0) ≈
∫ t

0
H(1−R2

∞)
3

2
R∞(γ−1)ds + c3

for some c3 ∈ R, and then either γ = 1 or R∞ = 1, that are both inconsistent with what we

have found above. Then sinη∞ = 0. Now, recalling that we are excluding γ = 2/3, (24c)

again produces the asymptotic estimate

Ṙ

R
(
1−R2

) ≈ H

(
3

2
γ−1

)
,

that implies R/
p

1−R2 ≈ a
3
2γ−1, which is consistent with R∞ > 0 only if γ> 2/3 and R∞ = 1,

finally proving Claim 3.2.

Two remarks are in order. Firstly, our results hold also for very weak or even zero cou-

pling, i.e. when α → 0, see the discussion in the last paragraph of Section 4. The same

conclusion also holds for exponential potentials, see Section 3.2. Secondly, the asymptotic

state when Ωk → 1 and Ωφ,Ωρ → 0 corresponds to a Milne universe, see also [22]. In that

case the asymptotic value of the effective equation of state parameter is w =−1/3.

The different evolutions described in Theorem 3.1 are illustrated in Figures 1 and 2.

In all cases we have considered a coupling function χ
(
φ

) = e
p

2/3φ, that gives α constant.

The constant value for λ in potential (17) has been picked up equal to 2. Moreover initial

data have been chosen in such a way that at some initial time, the universe expansion is

accelerated in accordance with [23]. Figure 1a shows the evolution of the energies in case

γ = 1/3: curvature energy remains small and decreasing to zero, whereas matter energy

rapidly dominates overΩφ.

The situation is completely different when γ> 2/3. In Figure 1b is represented the case

γ = 4/3: in this case the curvature energy slowly increases and eventually takes over the

other energies, withΩρ rapidly vanishing andΩφ decreasing in a more persistent way.
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Ωk Ωϕ Ωρ

(a) γ= 1/3

�� ��� ��� ��� ���
��

���

�
Ωk Ωϕ Ωρ

(b) γ= 4/3

Figure 1: Normalized energy evolution with coupling function χ
(
φ

)= e
p

2/3φ, and potential
V (φ) = 2φ2 + o(φ2), corresponding to the two different behaviors found in Theorem 3.1.
Initial data for the normalized energies areΩρ = 0.3145,Ωφ = 0.685 andΩk = 0.0005, within
the error range expected in [23].

.

Of course, the way both scalar and matter energies decrease depends on γ: see for in-

stance Figure 2 that represents the energy distributions from the same initial data for two

cases where pressures are close to zero. As one would expect, Ωρ and Ωφ go to zero keep-

ing the mutual hierarchy of the flat case k = 0 which depends on the sign of γ−1, see [18,

Theorem 2].

3.2 Exponential potential

To broaden the analysis, let us consider a potential of the form V (φ) = V0e−λφ+` and as-

sume that there exists a constant α0 such that

α0 = lim
φ→+∞

α(φ) = 4−3γ

2
lim

φ→+∞
Q(φ). (26)

As remarked in [18] after the statement of Proposition 1, there is a critical point “at infinity”

which is asymptotically stable. If the critical value ` is strictly positive then the scalar nor-

malized energy approaches 1, againstΩρ andΩk which go to zero. The subtle case is then to

investigate what happens when `= 0, when φ→+∞, and y,ρ→ 0. Expansion-normalized

13



�� ��� ��� ��� ��� ���
��

���

�
Ωk Ωϕ Ωρ

(a) γ= 0.9

�� ��� ��� ��� ��� ���
��

���

�
Ωk Ωϕ Ωρ

(b) γ= 1.1

Figure 2: Normalized energy evolution for two “near-dust”cases. Here the initial data, cou-
pling function and potential are the same as in Figure 1, and only the value of γ changes.

variable change

u =
p

W

H
, w =

√
V0

3

e−λ
2φ

H
, z = yp

6H
, (27)

together with the new time variable defined by dτ= 3Hdt bring system (10) to the form

u′ =−1

6
u

(−3γ+ (3γ−2)u2 +3γw 2 +3γz2 −6z2 +2
)

,

w ′ =−1

6
w

(
−3γ+ (3γ−2)u2 +3γw 2 +3γz2 +p

6λz −6z2
)

,

z ′ = z

(
−1+ z2 + u2

3
+ γ

2

(
1−u2 −w 2 − z2))+ 1p

6

(
λw 2 +α(

1−u2 −w 2 − z2)) ,

H ′ =−H

(
1

3
(u2 +3z2)+ γ

2

(
1−u2 −w 2 − z2)) .

(28)

Here a prime (′) denotes differentiation with respect to the new time τ. In this case

the evolution equation for H decouples from the rest of the evolution equations and so we

have a system of three equations in the unknowns u, w, z. The definition (27) implies that

the variables u, w, z are all positive, included z; indeed we know that φ→ +∞, therefore

situations where y is eventually negative are irrelevant for our study.

A careful inspection of the asymptotically stable equilibria (u∞, w∞, z∞) of (28) gives the

following five mutual exclusive situations, depending on the values of the three parameters

14



λ> 0,γ ∈ (0,2),α0 ∈R:

P1 =
(
0,

√
1− λ2

6
,
λp

6

)
, P2 =

(pλ2 −2

λ
,

2p
3λ

,

√
2
3

λ

)
, P3 =

(
0,0,

√
2
3α0

2−γ
)
,

P4 =
(√α2

0 −
3γ2

2 +4γ−2

α0
,0,

2−3γp
6α0

)
, P5 =

(
0,

√
α2

0 −α0λ− 3
2 (γ−2)γ

λ−α0
,

√
3
2γ

λ−α0

)
. (29)

Recalling (21) it is easy to see that in cases P3 and P5 either the scalar energy or the fluid

energy eventually dominate, in case P1 the scalar energy eventually totally dominates,

whereas in cases P2 and P4 there might be situations where the curvature energyΩk even-

tually dominates.

g(λ)

Ωϕ

Ωk

Ωρ

0
2 2

3

0

2

2 2

1
3

2
3

λ

γ

Figure 3: Asymptotically dominating energy when V =V0e−λφ and the coupling function is

given by χ(φ) = e
p

2/3φ, in terms of the two free parameters λ, γ. The dashed lines separate
the regions where the system (28) approaches the three possibile cases P1, P2 and P4

(H → 0+ always).

Moreover, the scale factor behaves for t →+∞ as

a(t ) ≈ t p , p =
(
u2
∞+3z2

∞+ 3

2
γ

(
1−u2

∞−w 2
∞− z2

∞
))−1

.
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As an example, let us give the detailed results when χ(φ) = e
p

2/3φ, so that α = α0 =(
4−3γ

)p
6. In this case only the three cases P1, P2 and P4 may take place, respectively:

• P1: 0 <λ<p
2, and a(t ) ≈ t 2/λ2

;

• P2: λ>p
2 and max

{
0, g (λ)

}< γ< 2, where g (λ) = 6λ−4
p

6
9λ−3

p
6

, and a(t ) ≈ t ;

• P4: λ> 2
√

2
3 , 0 < γ< g (λ), and a(t ) ≈ t .

Using the fourth equation in (28) we find

ä = a
(
H 2 +3H H ′)= 1−u2 −3z2 + 3

2
γ

(
u2 +w 2 + z2 −1

)
,

and therefore examples with positive acceleration at initial data can be easily provided.

Figure 3 represent the strip (λ,γ) ∈ (0,+∞)× (0,2): the dashed lines separate the three

regions described above. Using (21) we conclude that there is a wide region of the two

parameters where the curvature energy dominates over the other two energies.

4 Further discussion

It is well known that astronomical measurements constrain the spatial curvature to be

very close to zero, although they do not constrain its sign [24]. For example, results of

the Planck mission released in 2015 show the cosmological curvature parameter, Ωk , to

be 0.000±0.005, consistent with a flat universe. More recent constraints on Ωk , yield the

values 0.001±0.002, [23]. Similar bounds for Ωk were found in an analysis of 42 measure-

ments of the Hubble parameter and baryon acoustic oscillation data in [25], although the

authors stress that “more and better data are needed before we can make definitive state-

ments about the spatial curvature of the universe”. Larger bounds 0.09±0.19 for Ωk were

found in a model-independent method to test the curvature of the universe [26]. Although

a flat universe is usually assumed when one studies the nature of dark energy [27], for some

models of dark energy, an open universe is more favoured than a flat universe [28]. Thus

a flat universe may not be a good assumption for constraining some particular models of

dark energy.
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In this investigation we analysed the late time evolution of negatively curved expanding

FLRW models having a scalar field coupled to matter. For exponential potentials V
(
φ

) =
V0e−λφ, the energy density of the scalar curvature eventually dominates over both the per-

fect fluid and the scalar field for a wide range of the parameters λ and γ. For non–negative

local minima of V , the corresponding equilibria share the same properties as in the flat

case [18] namely, they are asymptotically stable and in case the minimum is positive, say

V (φ∗) > 0, the energy density of the scalar field eventually rules over the energy density of

the fluid and the asymptotic state has an effective cosmological constant V (φ∗). In that

case, the equilibrium solution represents an accelerating future attractor. In case the min-

imum is zero and nondegenerate, then Ωρ eventually dominates if γ < 2/3. However, if

γ> 2/3, the energy density of the scalar curvature eventually dominates over both the per-

fect fluid and the scalar field.

One can understand this result by the following heuristic reasoning. Integrating the en-

ergy density equation (9), we obtain ρ = ce−αφa−3γ. Since φ→ φ∗ as t → ∞, absorbing

e−αφ∗ into the constant of integration, we can write ρ ' ca−3γ as t →∞. If one could use

the Kryloff-Bogoliuboff (KB) approximation [29] it could be shown that near the equilib-

rium the energy density of the scalar field decreases as ε' a−3. Since H 2Ωk scales as a−2, it

is reasonable to conclude that for γ> 2/3 it dominates over both ε and ρ at late times. As re-

marked in [30], the main obstruction in applying KB approximation lies in the impossibility

to have an a–priori estimate on ρ/ε=Ωρ/Ωφ, therefore the need of alternative strategies to

attack the problem.

The above results were rigorously proved assuming only that critical points are finite

and at those points V (φ) is non-negative. No further assumption on V enter in the study

of the late time behavior around a critical point φ∗ ∈ R, because for that situation only the

behavior of the potential near φ∗ is important and no growth at infinity assumptions on V

are actually needed.

A similar behavior as in Theorem 3.1 of the curvature over two interacting fluids was

observed in [22] for k = −1 models. Recalling that in the massless case the scalar field

reduces to a stiff fluid, in view of our result we can say that the γ = 2/3 threshold found in

[22] is stable with respect to the interaction with a potential having a local minimum with

vanishing critical value. The curvature dominated asymptotic state was also found in [31]
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where FLRW models with an exponential potential and a barotropic fluid without coupling

were studied. Nonflat cosmologies have been analytically studied also in [32], where dark

energy is modeled by a cosmological constant and the problem is recast into a competitive

species dynamical framework.

An important question that should be further investigated is the case of closed cosmolo-

gies [33]. Based on the experimentation with the potential V
(
φ

) = V0

(
1−e−p2/3φ

)2
which

arises in the conformal frame of quadratic gravity [34], we believe that a closed model can-

not avoid recollapse, unless the minimum of the potential is strictly positive (see [35] for

non interacting fluid and scalar field). In that case, the asymptotic state must be de Sitter

space.

An other important issue is the strength of the coupling function Q
(
φ

)
. For viable dark

energy models, it is necessary that the energy density of the scalar field remains insignifi-

cant during most of the history of the universe and emerges only at late times to account for

the current acceleration of the universe. However, in models with double exponential po-

tentials it was observed that only a very weak coupling of the scalar field to ordinary matter

can lead to acceptable cosmological histories of the universe [36]. This fact reinforces the

general conclusions in [37, 38, 39], that HOG dark energy models with f (R) = R−µ2(n+1)/Rn ,

where µ> 0,n > 1, are not cosmologically viable. This result is attributed to the fact that in

these theories, matter is strongly coupled to gravity (recall that Q =p
2/3 in HOG theories).

Nevertheless, in [40, 41] specific examples of f (R) ∼ Rn gravity models were built, includ-

ing matter and accelerated phases which are cosmological viable, at the expense of having

noninteger values for n. We do not enter into the old discussion about the equivalence is-

sue of the Einstein and the Jordan frame (see for example [42]; see also [43] with specific

examples and the extended review articles [44, 45, 46, 47, 48] with references therein). As

mentioned after the proof of Theorem 3.1, our results hold for every value of the coupling

function, even forα→ 0. Had we allowed a dynamical role to Q, it would be very interesting

to see if the dynamics leads to a very tiny value of Q at late times. Such a result could lead

to a generalization of the attractor mechanism of scalar-tensor theories towards general

relativity, found by Damour and Nordtvedt in the case of a massless scalar field [49, 50].
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