
ar
X

iv
:1

70
6.

01
04

5v
1 

 [
m

at
h.

C
V

] 
 4

 J
un

 2
01

7

MONGE-AMPÈRE EXHAUSTIONS

OF ALMOST HOMOGENEOUS MANIFOLDS

MORRIS KALKA, GIORGIO PATRIZIO AND ANDREA SPIRO

Dedicated to Ngaiming Mok for his sixtieth birthday

Abstract. We consider three fundamental classes of compact almost homogenous mani-
folds and show that the complements of singular complex orbits in such manifolds are
endowed with plurisubharmonic exhaustions satisfying complex homogeneous Monge-
Ampère equations. This extends to a new family of mixed type examples various classical
results on parabolic spaces and complexifications of symmetric spaces. Rigidity results on
complex spaces modeled on such new examples are given.

1. Introduction

Plurisubharmonic exhaustions satisfying the complex homogeneous Monge-Ampère equa-
tion on a complex space appear naturally in many contexts. Probably the first time they
have been extensively considered was in Value Distribution Theory on affine algebraic va-
rieties or, more generally, on parabolic spaces ([11, 33]). When the exhaustions satisfy the
complex homogeneous Monge-Ampère equation with the least possible degeneracy – the
strictly parabolic case in the terminology of Stoll – a natural foliation is associated to the
exhaustion, namely the collection of complex curves that are tangent to the annihilators of
the Levi form. The very nice behavior of these exhaustions in this case and the analogy
with the case of Riemann surfaces, suggested Stoll that these might be instrumental for
the characterization of special complex manifolds such as Cn, the unit ball Bn, bounded
complete circular domains or affine cones. It is well known that this is indeed the case (see
for instance [34, 8, 35, 23, 36, 26]). In all these instances the minimal set of the exhaus-
tion is always a point or, after blowing up to resolve singularities, a compact projective
manifold. The exhaustion has always a logarithmic type of singularity along such minimal
set. In these examples, there is a sharp difference of behaviors, depending on whether or
not the plurisubharmonic exhaustions, satisfying the complex homogeneous Monge-Ampère
equation, is bounded from above. If the exhaustion is unbounded, the associated foliation is
necessarily holomorphic, the holomorphic type of the manifold is fixed and the only allowed
deformations are rescalings of the exhaustion in the direction of the leaves of the folia-
tion ([8, 26]). On the other hand, when the exhaustion is bounded above, there is a very
rich class of non biholomorphically inequivalent examples which are suitable deformation
of the unit ball Bn ⊂ Cn – in fact an infinite dimensional class, see [16, 17, 5, 24] – and,
up to rescaling, the plurisubharmonic exhaustions that satisfy the complex homogeneous
Monge-Ampère equation are pluricomplex Green functions.
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In a rather different development, plurisubharmonic exhaustions satisfying the complex
homogeneous Monge-Ampère equation occur as a natural byproduct of the construction
of intrinsic complexifications of real analytic compact Riemannian manifolds, the so called
Grauert Tubes. They are tubular neighborhoods of each such manifold in its tangent bundle
– possibly the entire tangent bundle – equipped with an adapted complex structure with
the property that the differentials of parameterizations of geodesics of the manifold are
holomorphic embeddings into the Grauert tube of strip shaped neighborhoods of the real
line in C (see e.g. [13, 18, 27]; see also [10] for generalizations to the Finsler case). Here
the real analytic Riemannian manifold sits in the Grauert tube as a top dimensional totally
real submanifold, and it is the minimal set of the norm function on the tangent bundle
determined by the Riemannian metric. Considering the above described adapted complex
structure, the norm function turns out to be a plurisubharmonic exhaustion satisfying
the complex homogeneous Monge-Ampère equation and exhibiting a “square root” type of
singularity along its minimal set, that is the real analytic Riemannian manifold on which
the Grauert tube has been built. Note that, in this case, once the size of the tubular
neighborhood is fixed, whether finite or – when possible – infinite, there is a strongly rigid
behavior: the isometric type of the minimal set of the exhaustion completely determines
the complex structure of the Grauert tube.

In this paper we consider a large class of almost homogeneous complex manifolds with
cohomogeneity one actions, that is complex manifolds M with a real Lie group G of bi-
holomorphisms acting with real hypersurfaces as principal orbits. Almost homogeneous
complex manifolds have been extensively studied and classified (see [14, 15, 1] and, for the
strictly related topic of the classification of compact homogeneous CR manifolds, [2, 3]).
Under the additional assumption that all principal G-orbits are strongly pseudoconvex hy-
persurfaces and that the manifold has vanishing first Betti number, it is possible to fully
describe all compact almost GC-homogeneous manifolds with cohomogeneity one G-actions
of strongly pseudoconvex principal orbits ([29]). It turns out that, up to blow ups, there
are three types of such manifolds (see §3.2 below for details):

• Type 1: Almost homogeneous manifolds with two compact complex manifolds as
exceptional orbits; they are all CP 1 bundles over a flag manifold.

• Type 2: Almost homogeneous manifolds with one compact complex exceptional
orbit and one totally real; they are the compactifications of the Morimoto-Nagano
manifolds, i.e. the compactifications of the standard complexifications of compact
symmetric spaces of rank one (CROSS).

• Type 3: A finite list of exceptional almost homogeneous manifolds with one compact
complex exceptional orbit and one compact exceptional orbit of mixed real/complex
type; the latter is a bundle over a flag manifold with fiber which is either a sphere
or a real projective space of specified dimension.

Each such manifoldM has always two singular G-orbits and at least one of them is complex.
If S ⊂ M is such a complex orbit, then on Mo := M \ S there exists (see Theorem 3.2 for
precise statement) a C∞ exhaustion τ : Mo → [0,∞), such that {τ = 0} is exactly the other
singular G-orbit So of M and whose restriction to Mo \ {τ = 0} = Mo \ So is such that:

1) it is strictly plurisubharmonic (i.e. 2i∂∂τ = ddcτ > 0);
2) there exists a smooth function f : (0,∞) → R with df 6= 0 such that the composition

u := f◦τ is a plurisubharmonic solution to the Monge-Ampère equation (∂∂u)n = 0.
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Furthermore ifM is of Type 1, then u has a logarithmic singularity along So (i.e. u := log τ),
while when M is of Type 2 or of Type 3, u has a “square root” singularity along So (i.e.
u :=

√
τ).

For the almost homogeneous manifolds of Type 1 or Type 2, the existence of such ex-
haustion is either well known or not surprising. What is new in this result are the examples
given by the manifolds of Type 3 and the unified approach for the construction of the ex-
haustion, based on properties of group actions and on the detailed analysis of the complex
structure of the Morimoto-Nagano manifolds due to Stenzel ([32]; see also [20]).

The main motivation for presenting in a unified way such three families of examples
comes from the need of a common approach to the problem of deformation and of rigidity
for complex manifolds with plurisubharmonic exhaustions that are solutions of the complex
homogeneous Monge-Ampère equation. There are a number of elements that play a crucial
role into the picture, among which we name:

a) the nature of the minimal set and of the singularity of the exhaustion along it;
b) the nature of the leaves of the foliation associated to the exhaustion (either parabolic

or hyperbolic Riemann surfaces) which, in turn, depends on its upper boundedness
or unboundedness.

In §4 we start such study of deformations, providing the set up and defining the main tools
for such investigation, in particular the appropriate deformation tensors. Here, we suitably
extend the notions introduced in [24] and based on the work of Bland and Duchamp [5], for
the analysis of deformations of the so-called manifolds of circular type, an important family
of complex manifolds that is included in the class of examples of Type 1. In Theorem 4.2
we give a first result which provides informations on the deformability of examples of Type
1, Type 2 and Type 3 according to the nature of the minimal set of the exhaustion.

1.1. Notation.

An n-dimensional complex manifold M is considered as a pair (M,J), where J is the
(1, 1) tensor field that gives the complex structure. The operator dc := dcJ is defined on

k-forms by dc = J ◦ d ◦ J , so that ddc = 2i∂∂.
A CR manifold of hypersurfaces type will be indicated as triple (N,D, J), given by a

real manifold N of odd dimension, a codimension one distribution D ⊂ TN and a smooth
family J of complex structures Jx : Dx → Dx, x ∈ N , satisfying the integrability conditions
[JX, Y ] + [X,JY ] ∈ D and [JX, JY ] − [X,Y ] − J [JX, Y ] − J [X,JY ] = 0 for any X,Y ∈
D. The holomorphic distribution of (N,D, J) is the subbundle D10 ⊂ TCN of the +i-
eigenspaces of C-linear maps Jx : DC

x → DC
x . We recall that a CR manifold (N,D, J) is

Levi non-degenerate if and only it the underlying real distribution D is contact.
A complex space X is actually a pair (X ,OX ), where X is a Hausdorff topological space

and π : OX → X is the sheaf of local C-algebras, characterizing the complex space. Any
complex manifold M is identified with the complex space (M,OM ), with OM sheaf of
germs of local holomorphic functions of M . It is well known ([30, 9, 21]) that if (X ,OX ) is a
complex space carrying a C∞-exhaustion τ : X → [0,∞), which is strictly plurisubharmonic
outside a compact set, then it always admits a Remmert reduction, i.e. a pair ((Y,OY ), π),
formed by a Stein space (Y,OY ) and a proper surjective holomorphic map π : X → Y such
that: a) π : X → Y has connected fibers, b) π∗(OX ) = OY and c) for any holomorphic
map f : X → Z into a Stein space (Z,OZ), there is a unique holomorphic map f ′ : Y → Z
such that f = f ′ ◦ π. Geometrically, the projection map π : X → Y collapses all positive-
dimensional compact analytic sets of X .
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2. Monge-Ampère spaces

In this paper, our interest is focused on the following class of complex manifolds with
plurisubharmonic exhaustions.

Definition 2.1. Let X̃ be a complex manifold. A Monge-Ampère C∞ exhaustion for X̃ is

a C∞ exhaustion τ : X̃ → [0, T ), possibly with T = ∞, whose restriction to X̃ \ {τ = 0}
verifies:

1) it is strictly plurisubharmonic (i.e. 2i∂∂τ = ddcτ > 0)
2) there exists a smooth function f : (0,∞) → R with df 6= 0 such that the composition

u := f ◦ τ is a solution to the Monge-Ampère equation (∂∂u)n = 0 and satisfies the
non-negativity condition 2i∂∂u ≥ 0.

A Stein space X is a Monge-Ampère space if it is the space of a Remmert reduction π :

X̃ → X from a complex manifold X̃ with a Monge-Ampère C∞ exhaustion τ : X̃ → [0, T ).
If X is a smooth complex manifold, we call it Monge-Ampère manifold.

If X is a Monge-Ampère space, the continuous function

τ ′ : X → [0, T ) , τ ′(x) := τ(y) for some y ∈ π−1(x)

is called Monge-Ampère C0 exhaustion of X . The level set τ ′−1(0) = π(τ−1(0)) is the soul
of X determined by τ . By construction, the exhaustion τ ′ is surely of class C∞ on the
complementary set of the soul.

A modeling example for the class of Monge-Ampère spaces is the complex Euclidean
space Cn, equipped with the standard exhaustion

τo : C
n → [0,+∞) , τo(z) = ‖z‖2 . (2.1)

Indeed, Cn is the Remmert reduction of the blow up π : C̃n → Cn of Cn at the origin and the

unique smooth function τ : C̃ → [0,+∞), which extends the function τo|Cn\{0} → (0,+∞)

at all points of π−1(0) ≃ CPn−1, is a Monge-Ampère C∞ exhaustion for C̃n. The function
u = f ◦ τ , which satisfies (2) in this case, is u(x) = log(‖x‖2). The soul is the singleton {0}.

Other important examples of Monge-Ampère manifolds are the domains of circular type
([22, 23, 24]), a class which naturally includes all circular domains and all strictly convex
domains of Cn. As for Cn, each manifold of circular type is the Remmert reduction of its
blow-up at a fixed point xo, called center, and it has a Monge-Ampère C0-exhaustion, whose
corresponding soul consists only of the center xo.

Examples of Monge-Ampère manifolds with souls containing more than one point
are given by the so-called Morimoto-Nagano spaces. They are the complex manifolds
(N,J), in which N = T (G/K) is the tangent bundle of a CROSS G/K and J is the
GC-invariant complex structure, determined by the natural identification of T (G/K) ≃
GC/KC. A Morimoto-Nagano space (N,J) is equipped with a Monge-Ampère exhaustion
τ : T (G/K) → [0,+∞) for which τ−1(0) coincides with the zero section of N = T (G/K)
and is therefore a totally real manifold of maximal dimension. In these examples, the
exhaustion is actually C∞ at all points and the manifold is the Remmert reduction of itself.

3. Monge-Ampère exhaustions of almost homogeneous manifolds

3.1. Almost homogeneous manifolds with cohomogeneity one actions.

Let M be an n-dimensional complex manifold and G a real Lie group of biholomor-
phisms of M , which acts on M of cohomogeneity one, that is with principal orbits that
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are real hypersurfaces of M . Since any principal orbit G·x is a real hypersurface of a com-
plex manifold, it is naturally equipped with a G-invariant induced CR structure (D, J) of
hypersurface type. If all principal G-orbits are strongly pseudoconvex, we say that the
cohomogeneity one action is of strongly pseudoconvex type.

A notion that is strictly related with the cohomogeneity one actions is the following.
Let GC be a complex Lie group of biholomorphisms of M . The complex manifold is called
almost homogeneous for to the GC-action (shortly, almost GC-homogeneous) if there is a
GC-orbit which is open and dense in M .

It is clear that any homogeneous complex manifold M = GC/H is almost homogeneous,
but there are many examples of almost homogeneous manifolds that are not homogenous.
Many such examples are indeed offered by cohomogeneity one actions. Assume that G ⊂ GC

is a compact real form of a reductive complex Lie group GC and that there is a cohomo-
geneity one G-action on a compact complex manifold M . If x ∈ M is a regular point for
the G-action, the GC-orbit GC·x is a complex submanifold of M containing the real hyper-
surface G·x. It is therefore open in M . As a consequence of standard facts on the orbit
space of cohomogeneity one actions (see e.g. [7, 28, 29]), one can see that such open orbit
GC·x is dense but, in general, not equal to M . More precisely, GC·x = M if and only if the
real Lie group G has no complex singular orbits in M .

3.2. Three important classes of almost homogeneous manifolds.

We now focus on a special class of compact almost homogeneous GC-manifolds with a
compact real form G ⊂ GC acting of cohomogeneity one.

Let M be a compact complex manifold with a cohomogeneity one holomorphic G-action
of strongly pseudoconvex type. Each principal G-orbit N = G·x ⊂ M has the following
two important properties:

– it is a compact homogeneous G-manifold, identifiable with a coset space N = G/H;
– it has an induced G-invariant strongly pseudoconvex CR structure (D, J).

The classification (up to coverings) of compact homogeneous CR manifolds (G/H,D, J)
with these two properties has been determined in [2, 3]. From this classification and other
important properties of almost homogeneous manifolds, proved in [14, 15, 1], in principle
one can get a complete description of all compact almost GC-homogeneous manifolds M
with cohomogeneity one G-actions of strongly pseudoconvex type. Such description is given
explicitly in [29] under the assumption that the first Betti number is b1(M) = 0. As it is
pointed out in [1], the cases with b1(M) = p 6= 0 are fibered bundle over p-dimensional
complex tori, with a fibre M ′ which is an almost homogeneous manifold with b1(M

′) = 0.

According to [29], any compact almost homogeneous manifold M with strongly pseudo-
convex, cohomogeneity one G-actions and with b1(M) = 0 belongs to one of the following
disjoint three classes. Here, the complex structure J of M is the natural G-invariant com-
plex structure.

3.2.1. Almost homogeneous manifolds with two ends. Consider the CP 1-bundles of the form

π : M = GC ×P,ρ CP
1 −→ GC/P , (3.1)

where:

a) GC/P is a flag manifold (i.e. a homogeneous quotient of a complex semisimple Lie
group GC by a parabolic subgroup P ⊂ GC), equipped with a compact real form
G ⊂ GC and a fixed choice of a G-invariant Kähler metric g on GC/P ;
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b) ρ : P → Aut (CP 1) is a biholomorphic action on CP 1 of the isotropy group P , such
that ρ|G∩P : G ∩ P → Aut (CP 1) coincides with the standard cohomogeneity one
action of T 1 = ρ(G ∩ P ) on CP 1.

For each such CP 1-bundle, the compact real form G ⊂ GC acts transitively on the flag
manifold F = GC/P and of cohomogeneity one on M . There are exactly two singular G-
orbits, say S, S′, both of them complex and G-equivalent to the flag manifold F = GC/P =
G/G ∩ P . Their intersections with a fibre of π : M = GC ×P,ρ CP

1 −→ GC/P are the two

singular orbits of the standard action of T 1 on CP 1. The action of GC has three disjoint
orbits: Mreg := M \ (S ∪ S′) (which is open and dense), S and S′.

A manifold of this kind is usually called with two ends, since any singular G-orbit that is
complex is referred as an end of the manifold. It is known that any other almost homoge-
neous manifold, which satisfies the above conditions and for which there are two complex
singular G-orbits, admits a blow up, which is G-equivalent to CP 1-bundles described above
([29], Thm. 2.4). We shortly call such manifolds almost homogeneous manifolds with two
ends and those as in (3.1) in canonical form.

The simplest example in this class is the blow up C̃Pn of CPn at a point [xo]. Indeed, it
is an almost homogeneous manifold with two ends with

G = SUn , GC = SL2(C) ,

GC/P := SLn(C)/P ≃ CPn−1 , where P := {A ∈ SLn(C) : A·xo = xo}

The singular G-orbits are both biholomorphic to CPn−1, one given by the exceptional
divisor at [xo], the other by the hyperplane πo = {[x] : x ∈ (xo)

⊥}.

3.2.2. Compactifications of Morimoto-Nagano spaces. It is the class of compact complex
manifolds, given by the infinite sequences of manifolds

CPn , Qn = {[z] ∈ CPn+1 : tzz = 0} , CPn × CPn , Gr2,2n(C) ,

together with the Cayley projective plane

EIII = E6/SO2·Spin10 .

Each of these manifold is a G-invariant compactification of a Morimoto-Nagano space for
an appropriate compact simple Lie group G. More precisely,

a) CPn is the SOn-invariant complex compactification of TRPn,
b) Qn is the SOn-invariant complex compactification of TSn,
c) CPn × CPn is the SOn-invariant complex compactification of TCPn,
d) Gr2,2n(C) is the Spn-invariant compactifications of THPn,
e) EIII is the F4-invariant complex compactification of TOP 2.

In all these cases, G acts of cohomogeneity one of strongly pseudoconvex type. There
are two singular G-orbits, one complex, the other totally real. The former is the complex
manifold which is complementary to the tangent bundle TS of the CROSS S = G/K, the
latter is the zero section of TS and is therefore identifiable with S = G/K. Since only one
singular G-orbit is complex, these manifolds are said to be with one end.

We remark that, by the results of Morimoto and Nagano ([19]), Cn, the unit ball Bn ⊂
Cn and the Morimoto-Nagano spaces are the only Stein manifolds on which there is a
biholomorphic cohomogeneity one action of strongly pseudoconvex type for a compact Lie
group G. This is one of the main reasons of interest for this class.
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3.2.3. Almost homogeneous manifolds with one end of mixed type. This class consists of the
almost homogeneous manifolds constructed as follows. Let G be a compact Lie group and

M̂ a homogeneous G-bundle of the form

π : M̂ = G×GQ,ρ F −→ G/GQ , (3.2)

where the basis G/GQ, the fibre F and the representation ρ : GQ → Aut (F ) form one of
the triples listed in Table 1. There, the map ρ is indicated only by the group ρ(GQ), which
in all cases has to be considered as a group of projective transformations of a projective
space CP s or CP s+1, depending on whether F = CP s or F = Qs ⊂ CP s+1.

The almost homogeneous manifolds of this class are those having the form (3.2) together
with all other complex G-manifolds with exactly one complex singular G-orbit and admit-

ting a manifold M̂ as a blow-up along such G-orbit. By a direct inspection of the Levi
forms of the regular G-orbits (they can be determined from the explicit descriptions in [4]),
one can check that all of them are of strongly pseudoconvex type. Each manifold of this
third class has two singular G-orbits S, S′, the first complex, the second neither complex
nor totally real. However, the intersection of S′ with each fibre Fx = π−1(x) (which is an
almost homogeneous space of the second class) is a totally real submanifold G-equivalent
to RPn or Sn. Due to this, the manifolds of this third class are called with one end and of
mixed type and those as in (3.2) in canonical form.

G/GQ F ρ(Q)

I1 SUn/S(U2 ×Un−2) CP 2 SO3

I2 SUn/S(U2 ×Un−2) Q2 SO3

II
(SUp/S(U2 ×Up−2))× (SUq/S(U2 ×Uq−2))

p+ q > 4
CP 3 SO4/Z2

III SUn/S(U4 ×Un−4) n > 4 CP 5 SO6/Z2

IV1 SO10/SO2 × SO8 CP 7 SO8/Z2

IV2 SO10/SO2 × SO8 Q7 SO8

V1 E6 /SO2 × Spin10 CP 9 SO10/Z2

V2 E6 /SO2 × Spin10 Q9 SO10

Table 1

Remark 3.1. From Table 1, cases II and III are the only ones with no counterparts with
quadrics as fibers. The reason becomes manifest if one recalls how Table 1 derives from the
previous results on almost homogeneous manifolds and homogeneous CR structures.

By [15], if a compact almost homogeneous GC-manifold M has a cohomogeneity one
G-action and just one end, then it is either a compactification of a Morimoto-Nagano space
or a fiber bundle over a flag manifold G/GQ. In this second case, the fiber F is either a
compactification of a Morimoto-Nagano space or admits a cohomogeneity one G-action with
a single isolated fixed point. Since each regular G-orbits in M are homogeneous compact
CR manifolds, up to a covering, all of them are further constrained to be G-equivariantly
equivalent to a Levi non-degenerate homogeneous CR manifolds of the classification in [2].

This last fact gives a lot of restrictions on the group G and the fiber F . In fact, one gets
that there are very few possibilities for the triples (G/GQ, F, ρ(GQ)), in which F must be
either CP s or Qs ⊂ CP s+1 with s = 2, 3, 5, 7 or 9, the group ρ(GQ) either SOs/Z or SOs

and G/GQ must be one of the five possibilities appearing in Table I, one per each of the
five possible cases for the dimension s of F . An additional restriction comes from the fact
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that GQ must admit a representation ρ : GQ → Aut (F ) with ρ(GQ) = GQ/ ker ρ equal to
SOs/Z2 or SOs. For all five cases for s, there exists a closed normal subgroup N ⊂ GQ

so that GQ/N = SOs/Z2, but only for three of them there exists a normal subgroup N so
that GQ/N = SOs. Cases II and III are those where there is no such normal subgroup.

3.3. A new class of Monge-Ampère spaces.

From now on, we restrict to the complex manifolds described in §3.2.1, §3.2.2 and §3.2.3.
For each of them we refer to G as the group of the cohomogeneity one action.

As we already mentioned, on each such manifold at least one of the two singular G-orbits
is complex. Let S ⊂ M be such orbit and denote by Mo := M \ S its complementary set.
By definition, it is a complex manifold, on which

– G has a cohomogeneity one action of strongly pseudoconvex type;
– GC acts either transitively on Mo (this occurs when the second singular G-orbit
S′ ⊂ M is not complex) or with an open and dense orbit.

In addition to this, the following crucial property holds.

Theorem 3.2. Let M be one of the almost homogeneous GC-manifolds described in §§3.2.1,
3.2.2, 3.2.3 in canonical form and S = G·x ⊂ M a complex singular G-orbits. Then:

i) The complementary set Mo = M \ S admits a G-invariant Monge-Ampère exhaus-
tion τ : Mo → [0,∞);

ii) This exhaustion is the unique (up to a scaling factor) G-invariant Monge-Ampère
exhaustion τ satisfying the following three conditions:
α) it satisfies (2) of Definition 2.1 with f(t) = log(t) in case both singular G-orbits

of M = Mo ∪ S are complex and f(t) =
√
t otherwise;

β) the level set {τ = 0} coincides with the second singular G-orbit S′ of M ;
γ) if S′ is not complex, then u = f ◦ τ =

√
τ admits a continuous extension at

each point xo ∈ {τ = 0}; if S′ is complex, then for each xo ∈ {τ = 0}, there is a
system of complex coordinates z = (zi) centered at xo, in which u = f◦τ = log τ
has a logarithmic singularity at xo, i.e.

u(z) = log τ(z) = log ‖z‖+O(1) .

Thus, any Remmert reduction Mo of one such manifold Mo is a Monge-Ampère space.

We remark that this theorem gives a whole new class of examples of Monge-Ampère
spaces (X , τ). Indeed, all known examples of Monge-Ampère spaces are complex n-
dimensional manifolds with a soul S, which is either formed by an isolated point (it is
what occurs in a manifold of circular type) or a totally real submanifold of maximal dimen-
sion, i.e. with dimR S = 1

2 dimR X (it is the case of the Morimoto-Nagano spaces). But, by
the above theorem, we see that each manifold Mo = M \S determined by a manifold M in
canonical form of the third class has a Remmert reduction which is a Monge-Ampère space
with a soul S that is neither a point nor a totally real submanifold of maximal dimension.

The proof of Theorem 3.2 is based on some properties of almost homogeneous spaces,
which we recall in the next subsections. We begin by introducing some additional notation.

3.3.1. Notational issues. Let GC be the complexification of the semisimple Lie group G and
g = Lie(G), gC = g + ig = Lie(GC). We denote by B the Cartan-Killing form of gC and
for any subspace v ⊂ gC, we indicate by v⊥ its B-orthogonal complement in gC. The same
notation is used for the B-orthogonal complements of subspaces of g.
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For each X ∈ gC = g+ ig ⊂ Lie(Aut (Mo)), we denote by X̂ ∈ X(Mo) the corresponding

infinitesimal transformation of Mo, i.e. the unique complete vector field whose flow ΦX̂
t ,

t ∈ R, is the family of diffeomorphisms

ΦX̂
t : Mo → Mo , ΦX̂

t (x) := exp(tX)·x .

We recall that the map ̂ : gC −→ X(Mo) between gC and the space of vector fields of Mo

is an injective anti-homomorphism of Lie algebras, i.e. [X̂, Ŷ ] = −[̂X,Y ] for all X,Y ∈ gC.

Consider now a regular point xo ∈ Mo and identify G·xo with the coset space G·xo = G/L
with xo ≃ e·L. We recall that the surjective linear map

ı : g −→ Txo(G·xo) = TeLG/L , ı(X) = X̂ |xo

induces an isomorphism between the vector space l⊥ ⊂ g, complementary to l, and the
tangent bundle of G·xo at xo. In the following, we constantly use such isomorphism to
identify these vector spaces. In this way, the subspace Dxo ⊂ Txo(G·xo) and the complex
structure Jxo : Dxo → Dxo of the CR structure (D, J) are identified with

– an AdL-invariant codimension one real subspace m ⊂ l⊥;
– an AdL-invariant complex structure J : m → m.

Choosing a unitary vector Z ∈ l⊥ ∩ m⊥ (it is AdL- invariant and unique up to a sign), we
get an AdL-invariant decomposition

g = l+ l⊥ = l+ (m+ RZ) . (3.3)

Using the fact that D is contact, one can show that l+ RZ = Cg(Z) (see e.g. [4], §3.1).

3.3.2. Distinguished curves in the above three classes of almost homogeneous manifolds.

Consider now the infinitesimal transformation JẐ = îZ corresponding to iZ ∈ gC and let

η : R −→ Mo , ηt := exp(itZ)·xo = ΦJẐ
t (xo) .

By Thms. 3.4 and 3.7 in [31], the curve η has the following crucial properties.

(1) It intersects each regular G-orbit of Mo = M \ S; in fact, there exists a G-invariant
Kähler metric g onM , with the property that ηt is a reparameterization of a geodesic
of g orthogonal to all regular G-orbits.

(2) If S ⊂ M is the only complex singular G-orbit, then η intersects the non-complex
singular G-orbit S′ ⊂ Mo; in this case, there is no loss of generality if we change
the starting point of η and assume that xo = η0 is in S′.

(3) If both singular G-orbits S, S′ are complex, then η intersects neither of them; how-
ever limt→+∞ ηt is either in S or S′; changing Z into −Z, we may always assume
that limt→+∞ ηt ∈ S′.

(4) Each element in the isotropy Gηt of a regular point ηt fixes all other points of the

curve; this implies that the space l⊥ ≃ TηtG·ηt is the same for all G-regular points
of the curve η; there is also a canonical isomorphism Dηt between the spaces Dηt

of the CR distributions of the G-orbit G·ηt, so that they are all identifiable with a
fixed vector subspace m ⊂ l⊥, independent on t.

(5) If M = Mo∪S is an almost homogeneous manifold with one end and of mixed type,
then ηt is entirely included in a single fiber of the projection π : M → G/GQ over
the flag manifold G/GQ described in Table 1.
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3.3.3. The distinguished curves of Morimoto-Nagano spaces. Assume now that M = Mo∪S
is the compactification of a Morimoto-Nagano space, so that Mo = TS′ for a CROSS
S′ = G/K. Let k = Lie(K) and g = k + p the corresponding B-orthogonal decomposition
of g. We recall that Mo = TS′ is G-equivariantly identifiable with TS′ ≃ G ×K,ρ p. with
ρ(K) = AdK |p, and that the G-invariant complex structure of TS′ is the pull-back J =
ϕ∗(Jo) of the complex structure Jo of G

C/KC by means of the G-equivariant diffeomorphism

ϕ : TS′ = G×K,ρ p −→ GC/KC , ϕ([(g,X)]K ) := exp(iX)·gKC . (3.4)

An explicit expression for J has been determined by Stenzel in [32] (see also [20]) and it
can be described as follow. Let

π : G× p → G×K,ρ p

be the natural quotient map. Then, for any (g,X) ∈ G × p, the vectors v ∈ T(g,X)(G × p)
can be described as pairs v = (Y |g, V ), with Y ∈ g and V ∈ p. Consequently, for each

w ∈ T[(g,X)]K (G×K p), there is a (non-unique) element (Y (w)|g, V (w)) ∈ T(g,p)(G× p) with

π∗(Y
(w)|g, V (w)) = w .

By [32], the tensor J[(g,X)]K is the unique endomorphism of T[(g,X)]KG×K,ρ p such that

J(w) = π∗(−(TX)−1(V (w))|g + TX(adX(Y (w)k))|g , TX(Y (w)p)) .

with TX :=

(
sin adX
adX

)−1

◦ cos adX ,
(3.5)

where for each E ∈ g = k+ p, we denote by Ek, Ep the B-orthogonal projections into k and
p, respectively, and the notation sin adX , cos adX , etc. stand for the operators defined by
power series. Note that for each X in p or in k, the linear operators

sin adX
adX

: g −→ g and cos adX : g −→ g

are invertible, even and preserve k, p. So, also TX is invertible, even and preserves k and p.
With the help of this information we may now give an explicit description for the curve

η : R → TS′, described in §3.3.2. For simplicity, assume that the identification TS′ ≃
G×K,ρ p is done in such a way that the G-regular point yo = η1 ∈ Mo \ S′ has the form

yo = [(e,Xo)]K for some 0 6= Xo ∈ p .

Then, the isotropy subalgebra l := gyo of G at yo is l = k ∩ ker(adXo). Moreover, since
S′ = G/K has rank one, we know that ker(adXo) ∩ p = RXo so that the linear map

adXo |p∩(RX)⊥ : p ∩ (RXo)
⊥ → k

has trivial kernel. Consider now the vector subspaces p1, p2, m
′ of g = k+ p defined by

p1 := p ∩ (RXo)
⊥ ⊂ p , p2 := adXo(p1) ⊂ k , m′ := p1 + p2 .

Lemma 3.3. The subspace m′ coincides with the adXo-invariant orthogonal complement
m′ = (l+ RXo)

⊥. This also implies that adXo(p2) = p1.

Proof. Since [l,Xo] = 0 we have that B(l, p2) = B(l, [X, p1]) = −B([l,X], p1) = 0, i.e.
p2 ⊂ l⊥. This, together with the fact that p2 ⊂ k ⊂ (RXo)

⊥, implies that m′ = p1 + p2 ⊂
(l+ RXo)

⊥. The equality follow by counting dimensions.
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By this lemma, we have l⊥ = RXo +m′. On the other hand, for each Y1 ∈ p1, Y2 ∈ p2,

̂(Y1 + Y2)[(e,Xo)]K
=

d

dt
exp(t(Y1 + Y2))·[(e,Xo)]K

∣∣
t=0

=

= π∗

(
d

dt
(exp(t(Y1 + Y2)),Xo)

∣∣
t=0

)
= π∗(Y1|e + Y2|e, 0) .

Hence, by (3.5)

J ̂(Y1 + Y2)[(e,Xo)]K
= π∗(TXo(adXo(Y2))|e , TXo(Y1)) . (3.6)

We now observe that, since TXo is a series of even powers of adXo, by Lemma 3.3, it preserves
p1 and p2. Hence, both Y ′

1 := TXo(adX(Y2)) and Y ′
2 := TXo(Y1) are in p1. Moreover,

since adXo |p2 : p2 → p1 is a linear isomorphism, there exists Y ′′
2 ∈ p2 ⊂ k such that

Y ′
1 = −[Y ′′

2 ,Xo]. It follows that the vector (3.6) can be written as

J ̂(Y1 + Y2)[(e,Xo)]K
= π∗(Y

′|e , −[Y ′′
2 ,Xo]) = π∗(Y

′
1 |e + Y ′′

2 |e ,Xo) =

= ̂(Y ′
1 + Y ′′

2 )[(e,Xo)]K
.

(3.7)

This implies that under the natural isomorphism

ı : RXo +m′ −→ Tyo(TS
′) ,

the complex structure of the CR structure (D, J) of TG·yo preserves the subspace m′. By
counting dimensions it follows that m′ coincides with the J-invariant subspace m of l⊥ and

that Xo

B(Xo,Xo)
= ±Z. From this and (3.5), we also get that JẐ|[(e,Xo)]K = π∗

(
0, ±Xo

B(Xo,Xo)

)
.

Since the integral curve ηt of JẐ satisfies the conditions η0 = [(e, 0)]K and η1 = [(e,Xo)]K ,
we get that

Xo = Z , JẐ|[(e,Xo)]K = π∗ (0, Z) , ηt = [(e, tZ)]K . (3.8)

3.3.4. Proof of Theorem 3.2. We have now all ingredients for the proof. Consider the
function τ : Mo \ S′ −→ R defined as follows. Let η : R → Mo be one of the curves defined
in §3.3.2 and, for each x ∈ Mo \ S′, let us denote by (g(x), t(x)) some pair in G× R with

x = g(x)·ηt(x) . (3.9)

By property (1) of η, such a pair surely exists, but is in general not unique. Indeed, g(x)
is determined up to composition with some h ∈ L = Gx, while t(x) is unique in case S′ is
complex and determined up to a sign in all other cases. Then, we set

τ : Mo \ S′ −→ (0,+∞) , τ(x) :=





e−t(x) if S′ is complex ,

(t(x))2 if S′ is not complex .
(3.10)

By construction, τ is G-invariant. We claim it is also C∞. By G-invariance, the claim is
proven if we show that τ is smooth at each fixed yo := ηto , 0 < to < ∞. For this, consider
the decomposition g = l + RZ + m, with l := gyo, described in (3.3), and let gCyo ⊂ gC

be the isotropy subalgebra at yo of the complexified group GC. Further, denote by n the
2n-dimensional real subspace n := m + RZ + R(iZ) ⊂ gC, which is complementary to gCyo ,

and choose a real basis (F1, . . . F2n) for n with F2n := iZ. We define ẽxpyo : R2n −→ Mo by

ẽxpyo(y
1, . . . , y2n) := (ey

1F1 · · · ey2n−1F2n−1ey
2nF2n)·yo = (ey

1F1 · · · ey2n−1F2n−1)·ηto+y2n .
(3.11)
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Since n is complementary to gCyo , the Jacobian at 0 at ẽxpyo is invertible, so that, by the
Implicit Function Theorem, the map ẽxpyo gives a diffeomorphism between a neighborhood

V of 0 ∈ R2n and a neighborhood U of yo ∈ Mo. We therefore have that the inverse

ξ = (ẽxpyo)
−1 : U −→ V ⊂ R2n

is a system of real coordinates ξ = (y1, . . . , y2n) near yo. Since e
y1F1 . . . ey

2n−1F2n−1 is always
an element of the real Lie group G, from (3.11) we see that for each element y ∈ U we may
choose as (g(y), t(y)) the pair

g(y) = ey
1F1 · · · ey2n−1F2n−1 , t(y) = y2n + to .

Hence, for each y ∈ U ,

τ(y) =





e−(y2n(y)+to) if S′ is complex ,

(y2n(y) + to)
2 if S′ is not complex ,

from which it follows immediately that τ |U is of class C∞, as desired.

We now want to show that for any given point y ∈ S′, there exists a smooth extension of
τ on a whole neighborhood of y, so that we may consider τ as a smooth real function over
the whole Mo. The proof of this property is divided into two cases.

Case 1: the singular G-orbit S′ is not complex. Under this assumption, either Mo is a
Morimoto-Nagano space or M = Mo ∪ S is an almost homogeneous manifold with one
end and of the mixed type. Assume that the first holds, i.e. Mo = TS′ for a CROSS of
the form S′ = G/K. By §3.3.3, Mo ≃ G ×K p and ηt is identifiable with a curve (3.8)

for some unitary Z ∈ p. Then, by G-invariance of the norm ‖·‖ :=
√

−B(·, ·), for each
x = [(g, Y )]K ∈ TS′ \ {zero section}, we may choose as (g(x), t(x)) the pair

g(x) := g , t(x) := ±‖Y ‖2 .

This implies that the map τ : Mo \ S′ = G×K (p \ {0}) → R has the form

τ([(g, Y )]K) = ‖Y ‖2 = −B(Y, Y ) ,

which can be directly checked to be C∞ over the entire TS′ ≃ G×K p ≃ GC/KC.

Assume now thatM = Mo∪S is an almost homogeneous manifold of the third class. Then
Mo is a G-homogeneous bundle over a flag manifold G/GQ, with fibers given by Morimoto-
Nagano spaces. By G-invariance of τ and the fact that curve η is entirely contained in a
single fiber π−1(zo), zo ∈ G/GQ, the smooth extendibility of τ at the points of the singular
G-orbit S′ is equivalent to the smooth extendibility of the restriction of τ |π−1(zo)\S′ to all

points of π−1(zo). And this is checked by the same above argument.

Case 2: the singular G-orbit S′ is complex. In this situation, the manifold M has two
complex singular G-orbits S, S′ and, since it is in canonical form, both of them have real
codimension two. By G-invariance of the function τ , there is no loss of generality if we
assume that the point y ∈ S′, around which we need to show that τ is smooth, coincides
with the limit point y = limt→+∞ ηt. Let K = Gy be the isotropy at y, so that the singular
G-orbit S′ is identifiable with S′ = G/K. Note that, by property (4) of η and a dimensional
argument, if g = l+m+RZ is the decomposition (3.3) corresponding to the regular point
xo = η0 ∈ Mo \ S′, then k = l+ RZ.

Consider a K-invariant Kähler metric g on M and let V = (TyS
′)⊥ be the 2-dimensional

g-orthogonal complement to TyS
′ in TyMo. Since S′ is complex, V is J-invariant. Denote

by expy : V → M the restriction to V of the exponential map of (M,g) at y.
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By standard facts on proper actions (see e.g. [7, 12, 28]), the isotropy representation
of K on TyM preserves V and acts linearly and isometrically on V with codimension one
regular orbits. It also preserves the complex structure Jo = Jy|V . Hence, we may identify
(V, Jo, gy|V ) with (C, Jo, 〈·, ·〉), where 〈·, ·〉 is the standard Euclidean product, so that the
representation of ρ : K → GL(V ) is such that ρ(K) = S1.

Consider the linear bundle π : G ×K C → S′ = G/K. It is known that there exists a
K-invariant neighborhood U ⊂ V of the origin such that the map

ϕ : G×K U −→ Mo , ϕ([g, v]K ) := expg·y(v) = g· expy(v) (3.12)

is a G-equivariant diffeomorphism between G ×K U and a neighborhood V = ϕ(G ×K U)
of S′ in Mo. By construction, the singular orbit S′ coincides with the image by ϕ of the
zero section G×K {0} and the action of eRZ on ϕ(U) corresponds to the action on G×K U
defined by

etZ ·[(g, ζ)]K := [(g, eitζ)]K .

This yields that the infinitesimal transformations Ẑ, JẐ = (̂iZ) determine on each fiber
{g} ×K U ≃ U ⊂ C of G×K U the (real) vector fields of C ≃ R2

Ẑ = iζ
∂

∂ζ
− iζ

∂

∂ζ̄
, JẐ = −ζ

∂

∂ζ
+ ζ

∂

∂ζ̄
.

The flow of JẐ in {g} ×K U ≃ U ⊂ C is then given by

ΦJẐ
t (ζ) = e−t|ζ|2 .

From this, we see that η corresponds to the curve on G×K U
η̌t := ϕ−1(ηt) = [(e, e−tζo)]K where ζo is such that [(e, ζo)]K = ϕ−1(xo) .

So, for each x = ϕ([(g, ζ)]K ), ζ 6= 0, in ϕ(U), we may choose (g(x), t(x)) as the pair

g(x) = g , t(x)(ζ) = −1

2
log

( |ζ|2
|ζo|2

)
.

Hence, for all points of V \ S′ ≃ ϕ(G×K (U \ {0})), the function τ is such that

τ(ϕ([(g, ζ)]K ) = C|ζ|2 with C :=
e

1

2

|ζo|2
and it is clearly smoothly extendible at all points of V ≃ ϕ(G ×K U), as claimed.

We now want to show that, in all cases, the map τ : Mo → [0,+∞) satisfies (1) and (2)
of Definition 2.1. For this, consider the distributions Z, H ⊂ T (Mo \ S′), defined by

Zx :=
〈
Ẑx, JẐx

〉
, Hx := Dx , x ∈ Mo \ S′ ,

where Z is the unitary element of g, appearing in (3.3), which is B-orthogonal to the isotropy
l = lx and to the space m ≃ Dx, corresponding to the CR structure of the orbit G·x. Note
that such Z ∈ g does depend on x and, for the sake of clarity, it will be later denoted by
Z(x).

A direct check shows that Z andH are ddcτ -orthogonal and that, for each x, the restricted
2-form ddcτx|Hx×Hx is (up to a multiple) the Levi form of the G-orbits G·x, hence strictly
positive. So, for (1) of Definition 2.1, we just need to show that ddcτ |Zx×Zx is positive at
each x ∈ Mo \ S′. For this, we first observe that the distribution Z is integrable and its
integral leaves are the orbits in Mo \ S′ of the complex Lie groups exp(CZ(x)). Hence

ddcτ |Zx×Zx = ddc(τ |exp(CZ(x))·x)
∣∣
x
. (3.13)
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By previous discussion,

τ |exp(ζZ(x))·x = C|ζ|2 or τ |exp(ζZ(x))·x = C(Im ζ)2 , (3.14)

the first occurring when M = Mo ∪ S has two complex singular G-orbits, the second in all
other cases. From (3.13) and (3.14), we get ddcτx|Zx×Zx > 0 in all cases, as desired.

In order to check (2) of Definition 2.1, we first observe that for any smooth function
f : (0,+∞) → R with nowhere vanishing differential df , we have ddc(f ◦ τ)|Hx×Hx > 0 at
each point x. Therefore, by (3.13), property (2) holds if and only if there is such an f with
harmonic restrictions f ◦ τ |exp(CZ(x)). By (3.14), we see that f(t) = log(t) and f(t) =

√
t

satisfy the request in the two cases. This concludes the proof of (i).

It remains to prove (ii). Let τ ′ : Mo → [0,+∞) be a G-invariant Monge-Ampère exhaus-
tion of Mo satisfying (α), (β) and (γ). Since ddcτ ′ and ddc(log ◦τ ′) are both positive on
the CR distributions of the regular G-orbits (which are level sets of τ ′ and f ◦ τ ′ and are

strongly pseudoconvex), due to (α) the restrictions log ◦τ ′|exp(CZ(x))·x or
√
τ ′|exp(CZ(x))·x are

necessarily harmonic. They are also constant along the sets exp(RZ(x))·x, which are the
intersections of (exp(CZ(x))·x) with the G-orbits.

Let us first prove that all this implies (ii) when M = Mo ∪ S has two ends. By the
proof of (i), we know that each orbit exp(CZ(x))·x is identifiable with C \ {0}, so that the
group {exp(ζZ(x)), ζ ∈ C} corresponds to the group {Dζ(z) := eiζ ·z, ζ ∈ C}. Under such
identification, the restriction log ◦τ ′|exp(CZ(x))·x is an harmonic function of C\{0} depending
only on the distance from the origin. It has therefore the form

log ◦τ ′(exp(ζZ(x))·x) = ax + 2bx log(|ζ|) for some constant ax, bx ∈ C , so that

τ ′(exp(ζZ(x))·x) = cx(|ζ|2)bx with cx := eax .

Condition (γ) and G-invariance imply that bx ≡ 1 and that the constant cx does not depend
on x. From (3.14), (ii) follows in this case.

We now prove (ii) holds when M has only one end. In this case, each orbit exp(CZ(x))·x
is identifiable with a quotient C/Γ with Γ group of real translations Γ = {Tk(z) := z +
2πkζ , k ∈ Z}. Under this identification, the group {exp(ζZ(x)) acts on such orbit as the

group of complex translations {T (z) := z + ζ , ζ ∈ C} and the restriction
√
τ ′|exp(CZ(x))·x

is identified with an harmonic function of C/Γ, which is constant on the lines {Im(z) = c},
c ∈ R. Hence

√
τ ′(exp(ζZ(x))·x) = ax + 2bx Im(ζ) for some constant ax, bx ∈ C .

Condition (γ) and G-invariance imply that ax ≡ 0 and that the constant bx does not depend
on x. From (3.14), claim (ii) follows also in this case.

4. Deformability versus Rigidity

As we already mentioned, Theorem 3.2 is a source of several new examples of Monge-
Ampère spaces. On the other hand, the previously known examples include two important
families of Monge-Ampère spaces, the manifolds of circular type and the Grauert tubes,
having the following contrasting properties: the first can be all considered as deformations
of Cn or Bn ([24, 26]), while the second are characterized by strong rigidity results ([18]).
Motivated by this, in this final section we investigate whether also the new examples enjoy
manifest deformability (or rigidity) properties. Let us begin by fixing the meaning of
“deformability” for a Monge-Ampère space.
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4.1. Riemann mappings and deformations of modeling spaces.

Let X be a Monge-Ampère space, which is a Remmert reduction π : X̃ → X of a complex

manifold X̃ with Monge-Ampère exhaustion τ : X̃ → [0, T ). Let also u = f ◦ τ : S̃ → R be
function satisfying the conditions 2i∂∂u ≥ 0 and (∂∂u)n = 0, and S = π(τ−1(0)) the soul

of X . We recall that X \ S is a complex manifold, naturally identifiable with X̃ \ τ−1(0),
so that both exhaustions τ and u are well defined and smooth on X \ S.

We now observe that all local properties of exhaustions τ and u on the manifold X \ S,
which have been proven in the literature for some specific cases (as, for instance, when X
is a manifold of circular type or a Morimoto-Nagano spaces – see e.g. [34, 23, 25, 27]) are
valid for any Monge-Ampère space X . In particular, one can directly check that there is
always a well defined vector field Z on X \ S that satisfies the condition

ddcτ(JZ, JX) = X(τ) for any vector field X ∈ T (X \ S) . (4.1)

For the spaces of Theorem 3.2, this vector field verifies Zx = ±Ẑ(x)x at each x ∈ Mo \ S′.
By J-invariance of the 2-form ddcτ and integrability of the complex structure J , the vector
field Z is tangent to each level set τ−1(c), c ∈ (0, T ), and Z and JZ generate a J-invariant,
integrable 2-dimensional distribution Z ⊂ T (X \ S), called Monge-Ampère distribution. A
direct computation shows that it coincides with the distribution defined by Zx = ker ddcu|x
at each x ∈ X \ S.

The foliation F , given by the integral leaves of Z, is called the Monge-Ampère foliation
of (X , τ). The closures in X of these leaves sometimes form a regular foliation, sometimes

not. However, in all known examples, the closures of their lifts on the manifold X̃ always

form a regular foliation of X̃ . For brevity, when this property occurs we say that the

Monge-Ampère foliation is X̃ -regular. For the spaces in Theorem 3.2, the Monge-Ampère
foliation F consists of orbits in Mo \ S′ of the 1-dimensional complex groups exp(CZ(x))
and, in all such cases, F is Mo-regular.

It is clear that if ϕ : X → X ′ is a biholomorphism between two Monge-Ampère spaces
(X , τ), (X ′, τ ′) with τ = τ ′ ◦ ϕ, then ϕ maps biholomorphically each leaf of the Monge-
Ampère foliation foliation of X into a corresponding leaf of the Monge-Ampère foliation of
X ′ . In certain cases this property admits an inverse, in the sense that if ϕ : X → X ′ is
an homeomorphism with τ = τ ′ ◦ ϕ and mapping biholomorphically each Monge-Ampère
leaf of X into a corresponding leaf of X ′, then ϕ is a biholomorphism provided that certain
additional hypothesis are satisfied. Stoll’s characterization of Cn and Lempert and Szöke
rigidity theorems for Grauert tubes can be considered as examples of such kind of property.
All this motivates the next notion.

Consider a fixed Monge-Ampère space (Xo, τo), which we call model from now on. Let

also π : X̃o → Xo be the Remmert reduction that determines the Monge-Ampère space Xo

and denote by So and Fo the soul and the Monge-Ampère foliation of Xo, respectively. We

assume that Fo is X̃o-regular, as it occurs in all considered examples.

Definition 4.1. Let (X , τ) be a Monge-Ampère space, Remmert reduction of a complex

manifold X̃ , with soul S and X̃ -regular Monge-Ampère foliation F . We say that (X , τ) is
modeled on (Xo, τo) if there is a homeomorphism ϕ : Xo → X such that τo = τ ◦ ϕ and:

i) ϕ|Xo\So
: Xo \ So → X \ S is a diffeomorphism mapping biholomorphically each leaf

of Fo into a leaf of F ;

ii) the restriction ϕ|Xo\So
lifts to a diffeomorphism ϕ̃ : X̃o \ π−1(So) → X̃ \ π−1(S)

which smoothly extends to a diffeomorphism between the X̃o and X̃ .
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Any such homeomorphism ϕ : Xo → X is called Riemann mapping of X . The spaces that
are modeled on (Xo, τo), but are not biholomorphic to Xo, are called non-trivial deformations
of the model.

4.2. Soul rigidity, soul semi-rigidity and free deformability.

Looking at the known examples, there are models with a lot of non-trivial deformations
and others with no deformation with sufficiently regular Riemann mappings. For instance,
the results in [5, 16, 24] show that any smoothly bounded strictly convex domain in Cn, not
biholomorphic to Bn, is a non-trivial deformation of the standard unit ball (Bn, Jo, ‖·‖2).
On the other hand, Stoll’s characterization of Cn ([34, 8, 26]) shows that there exists no non-
trivial deformations of (Cn, Jo, ‖·‖2) in the class of Monge-Ampère manifolds with Riemann
mappings of class C2. Known rigidity results for Grauert tubes give uniqueness for the
Riemann mappings from Morimoto-Nagano spaces ([13, 18, 27]). For clarifying similarities
and differences between all such results, we now introduce the following notions.

Let ϕ : Xo → X be a Riemann mapping from a model Xo and denote by ϕ̃ : X̃o → X̃
the corresponding lifted diffeomorphism between the manifolds, which project onto the two

spaces by Remmert reductions πo : X̃o → Xo and π : X̃ → X . Denoting by Jo, J the

complex structures of X̃o, X̃ , respectively, the diffeomorphism ϕ̃ is a biholomorphism if and

only if for any tangent vector v ∈ TxX̃o, x ∈ X̃o,

ϕ∗(Jo(v)) = Jϕ∗(v) . (4.2)

It is now convenient to consider the following weaker conditions. We say that ϕ is:

1) a biholomorphism at the blow ups of the souls if it satisfies (4.2) for any vector
v ∈ Txπ

−1
o (So) in a tangent space of the preimage π−1(So) of the soul So;

2) a biholomorphism between the souls if it satisfies (4.2) for any vector v ∈ Txπ
−1
o (So)

in a tangent space of π−1(So) which projects onto a non trivial tangent vector of
So.

The second condition is manifestly weaker than the first since it does not requires that (4.2)
holds for vectors that are in ker π∗|y, y ∈ π−1(So). Moreover, note that:

a) When Xo is the Remmert reductions of some Mo = M \S, with M almost homoge-
neous with two ends, condition (2) is trivial, since in this case the soul is an isolated
point and there are no non-trivial tangent vector for such soul.

b) When Xo, X are Grauert tubes over two Riemannian manifolds (Mo, go), (M,g),
respectively, condition (2) coincides with condition (1) and it is equivalent to require
that the Riemann mapping ϕ induces an isometry between (Mo, go) and (M,g).

c) When Xo and X are manifolds of circular type, as e.g. two strictly convex domains
in Cn, (2) is a trivial condition because of (a), while (1) is equivalent to require that
the Riemann mapping induces an isometry between the Kobayashi indicatrices at
the centers.

We now say that a model Xo is

• soul rigid if any Riemann mapping ϕ : Xo → X which is a biholomorphism between
the souls is a biholomorphism between the two Monge-Ampère spaces;

• soul semi-rigid if it is not soul rigid, but nonetheless for any Riemann mapping ϕ :
Xo → X which is a biholomorphism at the blow ups of the souls is a biholomorphism
between the two Monge-Ampère spaces;

• fully deformable if it is not of the previous two types.
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The quoted rigidity results for Morimoto-Nagano spaces and Grauert tubes can be stated
saying that those manifolds are soul rigid. On the other hand, the results of [8, 23] show
that (Cn, ‖·‖2) is soul semi-rigid, while the examples in [5, 24, 26] show that the standard
unit ball (Bn, Jo, ‖·‖2) is a fully deformable model with a lot of non-trivial deformations.

4.3. New examples of semi-rigid and fully deformable models.

The following theorem gives a common framework for the so far known rigidity results
on Monge-Ampère spaces. It also indicates a new interesting class of semi-rigid examples
and, by the examples in §4.3.2 below, suggests the existence of a large new family of fully
deformable Monge-Ampère spaces.

Theorem 4.2. Let M be one of the almost homogeneous manifolds in canonical form,
described in §§ 3.2.1, 3.2.2, 3.2.3, and τo : Mo = M \ S → [0,+∞) the Monge-Ampère
exhaustion of Theorem 3.2. Let also Mo be the corresponding Remmert reduction of Mo,
equipped with the exhaustion induced by Mo, which, for simplicity of notation, we also
denote by τo. For any c ∈ (0,+∞], let Mo(c) := {x : τo(x) < c} be the Monge-Ampère
subspace with exhaustion τo|Mo(c). Then:

i) if M has two ends, the space (Mo(∞), τo) = (Mo, τo) is soul semi-rigid; on the other
hand, there is an M with two ends for which all Monge-Ampère spaces (Mo(c), τo)
with c < ∞ are fully deformable;

ii) if M is a compactification of a Morimoto-Nagano space, each Monge-Ampère space
(Mo(c), τo), 0 < c ≤ ∞, is soul rigid;

iii) if M has one end and is of mixed type, then each Monge-Ampère space (Mo(c), τo),
0 < c ≤ +∞, is soul semi-rigid.

The proof is crucially based on some properties of “deformation tensors” of certain com-
plex structures and on some known counterexamples to soul rigidity or semi-rigidity. Before
proving this theorem, we need to review such results in some detail.

4.3.1. Deformation tensors of deformed Monge-Ampère spaces. As usual, let X be a Monge-

Ampère space, which is Remmert reduction of a complex manifold X̃ with Monge-Ampère

exhaustion τ : X̃ → [0, T ). Denoting by S the soul of X , we observe that on X \ S (which

always identifiable with the complementary set X̃ \π−1(S)) one can consider the J-invariant
distribution H, called normal distribution, defined by

Hx = { X ∈ TxM : ddcτ(Z,X)x = ddcτ(JZ,X)x = 0 } . (4.3)

By non-degeneracy of ddcτ on X \ S, we have that TxM = Zx ⊕ Hx at each x ∈ X \ S.
Moreover, for each level set τ−1(c), c ∈ (0, T ), the restriction H|τ−1(c) coincides with the
J-invariant distribution of the induced CR structure (D = H|τ−1(c), J) of such level set.

Consider now a Monge-Ampère space (X , τ) modeled on a manifolds (Xo, τo), and denote

by Jo, J the complex structures of the complex manifolds X̃o, X̃ , of which Xo and X
are Remmert reductions, respectively. Fix also a Riemann mapping ϕ : Xo → X , with

associated lifted diffeomorphism ϕ̃ : X̃o → X̃ . As direct consequence of definitions, ϕ̃ sends
the Monge-Ampère and normal distributions of Xo \So into the corresponding distributions
of X \ S.

We denote by J := ϕ̃−1
∗ (J) the pull-back on Xo of the complex structure J . Clearly ϕ is

a biholomorphism if and only if Jo = J.

We recall that, being a Riemann mapping, the map ϕ̃ is a biholomorphism along each leaf
of the Monge-Ampère foliation. This mean that Jo|Z = J|Z and that differences between Jo
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and J might occur only when they are restricted on the normal distributionH. On the other
hand, at each point x, both complex structures Jo|Hx , J|Hx : Hx → Hx are determined by
their (−i)-eigenspaces in the complexification HC

x . Let us denote these eigenspaces by H01
x

andH′01
x , respectively, and indicate byH01,H′01 ⊂ HC the involutive complex distributions,

determined by such (−i)-eigenspaces. Their conjugate distributions (which are generated

by the (+i)-eigenspaces) are denoted by H10 = H01 and H′10 = H′01.
We now observe that, for a fixed x, if the standard projection p : HC

x = H10
x +H01

x → H01
x

satisfies the condition p(H′01
x ) = H01

x , then the space H′01
x has the form

H′01
x =

{
v = w + φx(w) , w ∈ H01

x

}
(4.4)

for some appropriate tensor φx ∈ (H01
x )∗⊗H10

x . The set U ⊂ X (c) of points x, for which the
condition p(H′01

x ) = H01
x holds, is open and we call it the regularity set of J. The tensors φx

combine to a smooth tensor field φ on U , called the deformation tensor of J ([5, 24, 26]).
The biholomorphicity condition can be now expressed in terms of the deformation tensor

φ saying that ϕ is a biholomorphism if and only if the regularity set U of J coincides with

X̃o and φ ≡ 0.

We conclude this section recalling a crucial property of the distributions Z and H. We
remark that the normal distribution H is invariant under the flows of the vector fields Z
and JZ(= JZ), defined in (4.1). Due to this and the fact that Z01+H′01 is involutive (due
to the integrability of J), for each vector field in Y ∈ H01|U

[Z01, Y + φ(Y )] = [Z01, Y ] + φ([Z01, Y ]) , where Z01 := Z + iJZ . (4.5)

So, if we denote by L an integral complex leaf of Z and by (eα, eβ̄ := eβ) is a frame field

for HC = H10 +H01 on a neighborhood of L, invariant under the complex flows of Z, and

if ζ is a complex coordinate on L with ∂
∂ζ = (Z − iJZ) = Z01, then (4.5) yields that the

components φβ
ᾱ|L of φ|L in the frame (eα, eβ̄) are holomorphic functions of ζ, i.e.

∂φβ
ᾱ

∂ζ

∣∣∣∣
x

= 0 at each x ∈ L .

4.3.2. Counterexamples to soul rigidity and soul semi-rigidity. Assume that M is an al-
most homogeneous manifold as in (i) or (iii) of Theorem 4.2. Then M is a fiber bun-
dle p : M → G/K over a flag manifold (G/K, JG/K ), with fiber F equal either to CP 1

or to a compactification of a Morimoto-Nagano space. In all these cases, the projec-
tion p is holomorphic with respect to the G-invariant complex structures J of M and
JG/K of G/K. Now, given an open set U ⊂ G/K, for which there exists a holomorphic

trivialization p−1(U) ≃ U × F , we may consider a non-trivial non-biholomophic diffeo-
morphism h : G/K→G/K mapping U into itself and satisfying the triviality condition
h|G/K\U = Id |G/K\U on the complement of U . Since p−1(U) is holomorphically trivializ-
able, we may construct a fiber preserving diffeomorphism ϕ̃ : M → M such that:

A) it projects onto h and is such that ϕ̃|M\p−1(U) = IdM\p−1(U);

B) it is holomorphic on each fibre of p : M → G/K and maps the level sets τ−1(c)∩Fx

of each fiber Fx = p−1(x), x ∈ U , into the corresponding level sets τ−1(c)∩Fh(x) of

the fiber Fh(x) = π−1(h(x)).

Since all fibers Fx, x ∈ U , are identifiable one to the other by means of a holomorphic
trivialization π−1(U) ≃ U × F , a map that satisfies (A) and (B) can be easily determined.
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By construction, such diffeomorphism ϕ̃ : M → M leaves invariant all submanifolds
Mo(c) := π−1(Mo(c)), c ∈ (0,+∞], and its restrictions to them are all Riemann mappings.
But no such restriction is a biholomorphism. On the other hand, by construction, it is a
biholomorphism between the souls, since it satisfies (4.2) for any vector v ∈ Tπ−1(x)(π

−1(So))
which projects onto some non trivial tangent vectors of the soul So, this being diffeomorphic
to each of the zero level sets τ−1(0) ∩ Fx of all fibers of the fibration p : M → G/K

Assume now that M is the blow up p : C̃Pn → CPn of CPn at some point xo. As we
already mentioned, this is an almost homogeneous manifold with two ends, acted on by
G = SUn and such that the manifold Mo = M \ S is naturally identifiable with the blow

up p : C̃n → Cn of Cn at the origin. In this case, the Monge-Ampère spaces (Mo(c), τ),
0 < c < +∞, are identifiable with the balls Bn

c ⊂ Cn of radius c and center at 0, equipped
with the standard exhaustion ‖·‖2. By [26], Cor. 6.2 and Thm. 5.2, we know that there
are Monge-Ampère spaces, biholomorphic to strictly convex domains, which are non-trivial
deformations of (Bn

c , ‖·‖2) with Riemann mappings that induce the identity map on the pre-
images of the souls. This means that all such Monge-Ampère spaces are fully deformable
models. We expect that this property holds for all models (Mo(c), τ), 0 < c < +∞, that
are determined by the almost homogeneous manifolds with two ends in canonical form.

4.3.3. Proof of Theorem 4.2. Let ϕ : Mo(c) → X be a Riemann mapping between one of
the models (Mo(c), τo) considered in (i) - (iii) and a Monge-Ampère space (X , τ). As usual,

we denote by ϕ̃ : Mo(c) → X̃ the associated lifted diffeomorphism and by J = ϕ̃−1
∗ (J) the

pull-back on Mo(c) of the complex structure J of X̃ . We first want to prove that, for all
models in (ii) and (iii), if ϕ satisfies (4.2) at all tangent spaces of π−1(So), then the regular
set U of J coincides with the whole Mo(c) and the corresponding deformation tensor φ
vanishes identically, meaning that ϕ is a biholomorphism.

We recall that the distributionsZ andH are both Jo and J-invariant and that the complex
structures Jo and J agree on the vector fields in Z. Note also that for each Mo(c), the
Jo-invariant distributions Z and H, taken as distributions on Mo(c) \ π−1(S) = Mo(c) \ S′,
extend smoothly at all points of Mo(c). These property imply that ϕ satisfies (4.2) at all
tangent spaces of π−1(So) if and only if Jo|Hx = J|Hx at all points x ∈ π−1(So) = S′.
If this is the case, then the regular set U of the complex structure J clearly includes the
submanifold π−1(So) = S′, the deformation tensor φ of J is well defined on a tubular
neighborhood W of π−1(So) and the restriction φ|π−1(So) is identically equal to 0.

Assume now that M = Mo ∪ S is either a compactification of a Morimoto-Nagano
manifold or an almost homogeneous manifold with one end and of mixed type. In these
two cases, the leaves of the Monge-Ampère foliation of Mo(c) ⊂ Mo are (contained in) orbits
of the 1-dimensional Lie groups exp(CZ(x)) described in §4.1, and intersect the pre-image
π−1(So) = S′ of the soul along sets, which have Hausdorff dimension 1. This fact, together
with the holomorphicity of the components of φ in the complex coordinate ζ of each leaf
L = {exp(ζZ(x))·x, ζ ∈ C}, implies that if the Riemann mapping ϕ is a biholomorphism at
the blow ups of the souls, then the restriction φ|L is identically equal to 0 along each such
leaf L. This means that the regular set U of J contains all leaves of the Monge-Ampère
foliation, hence the whole U = Mo(c), and that φ vanishes identically on Mo(c) as claimed.

We claim that the same conclusion holds also if M is as in (i) and the considered model
is (Mo(c), τ) with c = ∞. In this case the closure in Mo(∞) = Mo of a leaf L intersects
the pre-image π−1(So) in a single point. So, the previous argument cannot be used to infer
that the deformation tensor vanishes identically. On the other hand, the same argument in
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Prop. 4.2 (iv) in [24] implies that the deformation tensor φ is bounded in the ddcτ -norm
along each leaf L. By holomorphicity of the component of φ|L and Liouville Theorem, this
implies that the components of φ|L are constant along each leaf, hence identically vanishing
if ϕ satisfies (4.2) at the tangent spaces of π−1(So).

We have now all ingredients to prove the three claims of the theorem. Let us start with
(ii). In this case, for each model (Mo(c), τ) the Remmert reduction π : Mo(c) → Mo(c) is
the identity map and the assumption that ϕ satisfies (4.2) at the tangent spaces of π−1(So)
coincides with the condition that ϕ is a biholomorphism between the souls. By the above
discussion, this occurs if and only if ϕ is a biholomorphism, proving that (Mo(c), τ) is soul
rigid.

For the models considered in (i) and (iii), by the counterexamples in §4.3.2 we know
that none of them is soul rigid. Nonetheless, the above discussion shows that when M is of
mixed type or it has two ends and c = +∞, if ϕ is a biholomorphism at the blow ups of the
souls, then it is a biholomorphism. This shows that in those cases, the model Mo(c) is soul
semi-rigid, proving (iii) and the first claim of (i). The second claim in (i) is a consequence
of the discussion at the end of §4.3.2.
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