

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió *author's final draft* d'un article publicat a la revista *Advances in Water Resources.*

URL d'aquest document a UPCommons E-prints:

http://hdl.handle.net/2117/116280

Article publicat / *Published paper*.

Zambrano, M., Tondi, E., Mancini, L., Lanzafame, G., Trias, F. X., Arzilli, F., Materazzi, F., Torrieri, S. (2018) Fluid flow simulation and permeability computation in deformed porous carbonate grainstones. *Advances in water resources*, Maig 2018, vol. 115, p. 95-111. DOI: <<u>10.1016/j.advwatres.2018.02.016</u>>.

© <2018>. Aquesta versió està disponible sota la llicència CC-BY-NC-ND 4.0 <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

FLUID FLOW SIMULATION AND PERMEABILITY COMPUTATION IN DEFORMED **POROUS CARBONATE GRAINSTONES** M. Zambrano ^{1,2,*}, E. Tondi ^{1,2}, L. Mancini ³, F. Arzilli ^{3,4}, G. Lanzafame ³, M. Materazzi ¹, S. Torrieri ^{1,5}, F.X. Trias ⁶ 1. School of Science and Technology - Geology Division, University of Camerino, Italy. 2. Reservoir Characterization Project (www.rechproject.com) 3. Elettra-Sincrotrone Trieste S.C.p.A., Basovizza (Trieste), Italy 4. School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK 5. Shell Italia Exploration and Production, Italy. 6. Heat and Mass Transfer Technological Center, Polytechnic University of Catalonia. Terrassa (Barcelona) Spain. *Corresponding author: Miller Zambrano Corresponding author affiliation: School of Science and Technology - Geology Division, University of Camerino. Via Gentile III da Varano 1, 62032 Camerino, Italy. E-mail: miller.zambrano@unicam.it Abstract In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes varying the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluids reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate

grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo
 regions, Italy.

The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated by using the Darcy's law once steady conditions were reached. After the

simulations, the pore-network properties (porosity, specific surface area, and geometrical tortuosity)
were calculated using the lattice velocity 3D images. Which were segmented considering a velocity
threshold value higher than zero.

The study showed that DBs represents important heterogeneity features which generate significant permeability anisotropy. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.

37 Keywords: Deformation bands; tortuosity; porosity; synchrotron X-ray computed microtomography;
38 lattice-Boltzmann Method.

Highlights:

- An MRT-LBM was used for obtaining viscosity-independent permeability in deformed carbonates.
- The influence of the pore-network morphology on the permeability was investigated.
- Fault core shows important heterogeneity and permeability anisotropy in comparison to the host rock.

1. Introduction

During the evaluation and development of geofluid reservoirs (water or hydrocarbons), one of the most elusive aspects is obtaining relationships between porosity and permeability. The permeability-porosity cross plots typically show important variability, which may indicate that permeability depends not only on the porosity but also on textural and hydraulic properties of the pore network such as pores size distribution, pores shape, and tortuosity (Carman, 1937; Dullien, 1992; Lucia, 2007).

Different attempts have been made to relate the pore-network properties and the permeability in order to describe their control or estimate the value of permeability (e.g. Kozeny, 1927; Carman, 1937; Archie, 1942; Wyllie and Rose, 1950; Swanson, 1981; and Katz and Thompson, 1986). One of the most widely used indirect methods for estimating the permeability is based on the so-called Kozeny-Carman (K-C) equation (Kozeny, 1927; Carman, 1937):

$$k = \frac{\phi^3}{\beta \tau^2 S^2} \qquad (equation 1)$$

Where ϕ is the effective porosity, S is the specific surface area (depending on grain size and texture), τ is the tortuosity (here defined as the ratio of the actual length of fluid path divided by the Euclidean distance), and ?? is a pore shape factor normally rounded to 5.

The K-C equation is widely applied to estimate the permeability of realistic rock samples (e.g. Cerepi et al., 2001; Agosta et al., 2007) or fictitious rocks (Adler et al., 1990). Adler et al. (1990) described the flow in complex pore geometries in modelled porous media based on statistical analysis thin section of homogeneous sandstones. These authors also found that the permeability values estimated with the Kozeny-Carman equation was significantly lower than permeability measured in laboratory. According to Dullien (1992), the K-C equation is often not valid in the following cases: i) when grains strongly deviate from the spherical shape, ii) when grains show a broad size distribution, or ii) when the grains are consolidated. Therefore, the K-C equation may be not valid for instance to estimate the permeability in deformed or diagenetic carbonates. A possible source of

error in the implementation of the K-C equation is that its variables are often indirectly measured (Dullien, 1992; Wildenschild and Sheppard, 2013).

The direct flow simulations are currently widely used to calculate single phase flow and transport in complex porous media (Blunt et al., 2013; Bultreys et al., 2016, and references therein). Transport in rocks have been studied directly on realistic 3D pore space (obtained by X-ray tomographic, nuclear magnetic resonance), on reconstructed models from 2-D thin section images, and fictitious models. The three classical computational fluid dynamics approaches used for simulating fluid flow in porous media are: i) the finite difference method (Stapf et al., 2000; Øren and Bakke, 2002; Bijeljic et al., 2011; Mostaghimi et al., 2012; Bijeljic et al., 2013; Blunt et al., 2013), ii) the finite element method (Cardenas, 2008, 2009; Mostaghimi et al., 2013), and iii) the finite volume method (Zhang et al., 2012; Peng et al., 2014). In addition to these techniques, the lattice-Boltzmann method (LBM) is widely used for modeling flow in complex geometries (Dunsmuir et al, 1991; Chen and Doolen, 1998; Manz et al., 1999; Kang et al., 2006; Manwart et al., 2002; Sukop et al., 2008; Porter et al., 2009; Schaap et al., 2007; Pan et al., 2004; Pan et al., 2006; 213 86 Hao and Cheng, 2010; Boek and Venturoli, 2010; Landry et al., 2014; Yang et al., 2016).

The LBM describes the flow of a large number of particles interacting with the medium and among themselves following the Navier-Stokes equation at the macroscopic scale (Ladd, 1994). The LBM can handle complex pore geometry without any simplification and accurately describes fluid flow in porous media (Ladd, 1994; Keehm et al., 2001). Pan et al. (2006) guantitatively evaluated the capability and accuracy of the LBM for modeling flow through two porous media, a body-centered cubic array of spheres and a random-sized sphere-pack. Yang et al. (2016) applied LBM and three other approaches (standard finite volume method, smoothed particle hydrodynamics, pore-network 228 93 model) to simulate pore-scale velocity distributions and nonreactive solute transport. Sukop et al. 230 94 232 95 (2008) used a parallel implementation of the three-dimensional Shan-and-Chen multicomponent, multiphase LBM to simulate the equilibrium distributions of two immiscible fluids in a guartz sand porous medium using cone-beam X-ray microtomography.

²⁴³ 98 The LBM have been used to study the permeability on 3D images of rocks and soft sediments, 99 obtained by micro-CT imaging techniques (Andrä et al., 2013; Fredrich et al., 2006; Khan et al., ₂₄₈100 2012; Manwart et al., 2002; Li et al., 2005; Degruyter et al., 2010; Shah et al., 2015) and from reconstructed models (Jin et al., 2004; Keehm, 2004; Wu et al., 2006). The computed permeability 250101 using the LBM has shown a good agreement with laboratory measurements over a wide range of 252102 permeability values (Keehm et al., 2003, 2004). Manwart et al. (2002) compared the finite difference 254103 256104 and the lattice Boltzmann approaches for calculating the permeability. These authors showed that the 258105 computation times and numerical results of the two methods were similar, however LBM is more ²⁶⁰₂₆₁106 memory demanding.

²⁶²₂₆₃107 The simplest LBM is based on the Bhatnagar-Gross-Krook (BGK) collision operator, which 264 265108 consists in a single relaxation time approximation (Bhatnagar et al., 1954). Using three-dimensional 266 267109 (3D) images at high spatial resolution collected at different synchrotron facilities, Degruyter et al. 268 (2010) performed single phase gas simulations with the BGK-LBM and estimated the permeability 269110 270 in volcanic rocks by means of the software PALABOS (Latt, 2009). Ahrenholz et al. (2008) used the 271111 272 273112 BGK-LBM to solve the coupled Navier-Stokes equations for two phases, to describe the dynamics 274 ²⁷⁵113 of the fluid/fluid interface and to predict capillary hysteresis in a porous sand imaged with X-ray 276 ²⁷⁷ 278</sub>114 tomography. Despite its popularity, the BGK-LBM presents some drawbacks, for instance, the ²⁷⁹₂₈₀115 obtained permeability may be viscosity-dependent (Narvaez et al., 2010). A more accurate alternative 281 ₂₈₂116 is the implementation of multiple relaxation times (MRT) methods, which are more stable and solve 283 284117 the drawbacks of the BGK method (e.g. d'Humières, 1992; d'Humières, et al. 2002). Pan et al. (2006) 285 demonstrated that the MRT-LBM is superior to the BGK-LBM, and interpolation significantly 286118 287 improves the accuracy of the fluid-solid boundary conditions. MRT-LBM could be useful to 288119 289 290120 implement experiments of multiple-phase flows. Zhang et al. (2016) used multi-relaxation time 291 292121 MRT-LBM to study the effect of the geometrical characteristics of bi-dimensional (2D) artificial 293 ²⁹⁴ 295</sub>122 porous media on the relative permeability in immiscible two-phase flows.

296

241 242

244 245

246 247

249

251

253

255

257

- 297
- 298
- 299 300

³⁰³₃₀₄123 This work attempts to provide more evidence concerning the control exerted by the effective porosity, specific surface area and tortuosity on permeability in deformed carbonate rocks. This ₃₀₈125 objective has been reached by combining quantitative images analysis and computational fluid dynamics using synchrotron radiation computed microtomography (SR micro-CT) images of deformed carbonate rock samples. The SR micro-CT images were acquired at the Elettra -Sincrotrone Trieste laboratory (Basovizza, Italy) and processed and analyzed as described by Zambrano et al. (2017). Due to the heterogeneity of the studied samples, different volumes of interest, ³¹⁸130 containing pristine, deformed and diagenetized rocks, are analyzed to evaluate the effect of ³²⁰ 321</sub>131 deformation on permeability. The permeability of deformed porous carbonate rocks was estimated ₃₂₃132 via LBM, using the PALABOS open source library (Latt, 2009). The method and the code have been modified with respect to the work of Degruyter et al. (2010): the application of the MRT approach has been adopt in the present study rather than the BGK one in order to assure that values of permeability are viscosity-independent.

2. Methodology

367</sub>138

³⁶³₃₆₄137

2.1. Rock samples description

³⁶⁸139 The samples selected for this study are from outcrops located in Sicily, southern Italy (Favignana Island and San Vito Lo Capo Peninsula; Fig. 1a, c) and Abruzzo Region, central Italy (Maiella Mt.; Fig. 1b, d), hereafter called San Vito Lo Capo Grainstone (SVG), Favignana Island ₃₇₃141 Grainstone (FIG), and Orfento Fm. Grainstone (OFG), respectively. The studied rocks are different in terms of the grain composition, age and burial history. The SVGs (Early Pleistocene in age) are poor-to-medium consolidated grainstones with grains made up of fragments of carbonates, marls, and ³⁸¹145 shales with a diameter between 0.05 and 1.0 mm. The matrix, about 22% of the rock volume, is ³⁸³146 composed of bladed and sparry calcite cement with carbonate and marl fragments smaller than 0.05 ³⁸⁵ 386</sub>147 mm (Tondi, 2007). The Early Pleistocene FIGs consist of well-preserved bioclasts composed of ³⁸⁷ 388</sub>148 Vermetus, Serpula, bivalves, echinoids, red algae and corals ranging in size from submillimeter to ₃₉₀149 centimeter (Tondi et al., 2012). The host rock is poorly cemented with the cement limited to the grain contacts, around echinoids, or within intragranular pores (Tondi et al., 2012). The OFGs (Campanian to Maastrichtian in age) are composed of fragments of rudists (Mutti, 1995). The OFG experienced a maximum burial depth between 0.5 and 3 km (Ori et al., 1986; Graham et al., 2003; Rustichelli et al., 2016), while both SVG and FIG experienced a shallower maximum burial depth of approximated 30 m (Tondi et al., 2012; Antonellini et al., 2014).

Figure 1. - Geological maps and location of the studied outcrops of a) Favignana Island and San Vito Lo Capo peninsula, and b) the northern part of the Maiella Mountain (modified from Tondi *et al.*, 2016). Outcrop images of the studied rocks showing both c) FIG and d) OFG crosscut by normal faults and compactive shear bands.

The studied samples may contain deformation bands (DBs), where strain localization (Aydin, 1978; Antonellini *et al.*, 1994; Fossen *et al.*, 2007; Cilona *et al.*, 2012, 2014) and chemical processes such as pressure solution and cementation (Hellman *et al.*, 2002; Tondi *et al.*, 2006; Tondi, 2007; Gaviglio *et al.*, 2009) may take place. Tondi *et al.* (2006) defined three diagenetic/structural tabular zones within the DBs (Zones I, II, III; Fig. 2) with different textures. Zones I and II are defined as the

483,165 fault core of the deformation band (Tondi, 2007). Zone I (ZI), located at the inner part of the DB, includes the slip surfaces and a well-developed continuous zone of grain size and porosity reduction. ₄₈₈167 Zone II (ZII), which limits the ZI, is a compacted grain zone characterized by pressure dissolution at the grain contacts. Zone III (ZIII) surrounds the fault core and is characterized by porosity reduction due to precipitation of calcite cement. Within DBs, the porosity and permeability are reduced considerably likely buffering for geofluid migration (Fossen and Bale, 2007; Tondi, 2007; Antonellini et al., 2014; Tondi et al., 2016). ⁴⁹⁸172 Host Zone Zone Zone Zone Zone Ш Ш Ш rock

with different textures (see text for description) enclosed by the host rock; (a) microphotographs and (b) interpretation (after Tondi, 2007).

The permeability of the studied rocks has been previously assessed by Antonellini et al. (2014) ₅₂₂179 and Tondi et al. (2016) in both host rock and DBs (including Zones I, II and III) using a TinyPerm II Portable Air permeameter (with a reliable range of 10^{-17} to 10^{-12} m²). The surface was carefully ₅₂₄180 cleaned and a silicon ring (5 mm of diameter) was used to avoid air leaking from the mini permeameter nozzle. These authors reported meaningful variability of permeability and porosity between host rock and the different zones within the DBs (Fig. 3). Tondi et al. (2016) pointed out that the permeability between FIG and OFG differs in the range of two-to-three orders of magnitude ⁵³⁴185 despite their similar porosity. Zambrano et al. (2017) inferred that the permeability differences

⁵⁴³186 between the grainstones pertaining to the distinct locations may be related to significant differences 87 of connected porosity, specific surface area and connectivity.

577190 Figure 3. Scatterplot of porosity and permeability of the studied carbonate grainstones. Data of porosity for the SVG ⁵⁷⁸191 (triangles) from Tondi et al. (2007), for FIG (circles) from Tondi et al. (2012), and for OFG (squares) from Tondi et al. 579192 (2016). Data of permeability for the SVG Antonellini et al. (2014), and for both FIG and OFG from Tondi et al. (2016). 580193 Error bars correspond to the standard error of the mean. Both axes are in logarithmic scale. Meaning of acronyms are HR: ⁵⁸¹194 host rock, ZI: zone I, ZII: zone II, ZIII: zone III. ⁵⁸²195

584 ₅₈₅196 For the SR micro-CT experiments, five parallelepiped-shaped samples (with size of ~ 4 mm 586 x 4 mm x 30 mm) were selected from the studied SVG, FIG and OFG rocks (Fig. 4). From the SVG, 197 587 588 ₅₈₉198 the studied sample (SVG-S1) contains a compactive shear band composed of three different zones (I, 590 591199 II, III; sensu Tondi et al. 2006) surrounded by undeformed host rock. From the FIG two samples were 592 collected; one of the host rock (FIG-S2) and one belonging to a fault core of about 5 centimeters in 593200 594 595201 thickness (FIG-S3). From the OFG two samples were selected; one composed entirely of host rock 596 ⁵⁹⁷202 (OFG-S4) and the other includes a single DB (OFG-S5). 598

599

583

541 542

544 545

546 547

Figure 4. - Studied samples pertaining to deformed carbonate grainstones were obtained from outcrops located at northwestern Sicily (S1-S3) and Abruzzo (S4, S5) regions, Italy. a) Photograph of the original samples, the dotted areas ₆₃₁207 correspond roughly to the imaged and analyzed volumes after removing the irregular edges. The longest axis of the samples is subparallel to bedding and orthogonal to the fault/DB zones (dipping 50°-90°, Tondi et al., 2016).

2.2. Synchrotron radiation microtomography experiments

The SR micro-CT experiments and the image processing and analysis were performed following the methodology described by Arzilli et al. (2015) and Zambrano et al. (2017). The selected rock samples were imaged at the SYRMEP beamline of the Elettra laboratory. The X-ray beam delivered from a bending magnet source has a nearly-parallel geometry and a high spatial coherence ⁶⁴⁵215 (Abrami et al., 2005; Tromba et al., 2010) allowing to take advantage of phase contrast effects ⁶⁴⁷216 (Cloetens et al., 1996). This beamline is suitable for obtaining 3D images of carbonate rocks and ₆₅₀217 extracting valuable information about pores morphology, connectivity, and permeability at the pore ₆₅₂218 scale (e.g. Gharbi and Blunt, 2012; Blunt et al., 2013; Bijeljic et al., 2013; Cilona et al., 2014; Arzilli et al., 2015; Zambrano et al., 2017).

⁶⁶³₆₆₄220 Zambrano *et al.* (2017) obtained images at medium spatial resolution (voxel size = $9.0 \ \mu m$) ⁶⁶⁵₆₆₆221 and high spatial resolution (voxel size = $2.4 \ \mu m$) using the monochromatic and the white beam ⁶⁶⁷₆₆₈222 configuration of the beamline, respectively.

For the images acquired in the monochromatic beam configuration, the sample-to-detector 670223 671 distance was set to 180 mm (propagation-based phase-contrast mode) and an X-ray energy of 34 keV 672224 673 was selected by a double-crystal Si monochromator. Each sample was placed on a high-resolution 674225 675 676226 rotation stage, and a series of 1800 radiographs (projections) were acquired over a total angular range 677 ⁶⁷⁸227 of 180° with an exposure time/projection of 3.5 sec. Projections were acquired by using a water-679 ⁶⁸⁰₆₈₁228 cooled, 12-bit, 4008 x 2672 pixels CCD camera (VHR, Photonic Science) with an effective pixel size 682 683²²⁹ of 4.5 µm. The camera chip was coupled to a Gadox scintillator screen through a fiber optics taper in ⁶⁸⁴ 685</sub>230 order to convert the X-ray into visible light. Applying a 2x2 binning to the detector pixels, an output 686 pixel size of 9.0 µm x 9.0 µm was used for image acquisition. 687231

A white beam configuration mode was used to image samples belonging to DBs or fault rock 689232 690 (Baker et al., 2012) at higher spatial resolution, filtering the X-ray beam with 1.5 mm Si + 0.025 mm 691233 692 693234 of Mo. The sample-to-detector distance was set at 150 mm. For each sample, 1800 projections were 694 ⁶⁹⁵235 acquired over a total scan angle of 180° with an exposure time/projection of 2 s. The detector 696 ⁶⁹⁷₆₉₈236 consisted of a 16 bit, air-cooled, sCMOS camera (Hamamatsu C11440-22C) with a 2048 × 2048 pixel ⁶⁹⁹₇₀₀237 chip. The effective pixel size of the detector was set at 2.4 μ m × 2.4 μ m, yielding a maximum field 701 702238 of view of about $5.0 \text{ mm} \times 5.0 \text{ mm}$.

703 The tomographic slice reconstruction was performed using the SYRMEP Tomo Project software 704239 705 developed at Elettra (Brun et al., 2015) and powered by the ASTRA tomography toolbox (Palenstijn 706240 707 et al., 2011) and TomoPy (Gürsoy et al. 2014). To improve the reliability of quantitative 708241 709 710242 morphological analysis and enhance the contrast between solid and porous phase, a single-distance 711 712243 phase-retrieval algorithm was applied to the white beam projections (Fig. 4) using the Paganin's 713 ⁷¹⁴715²⁴⁴ algorithm (Paganin et al., 2002) based on the Transport of Intensity Equation (TIE).

716

661 662

669

- 717
- 718
- 719
- 720

In the present work, the medium spatial resolution images were selected for the computational simulation. The criteria of this decision were made mainly based on the computational limitations, even though it may imply to do not take into account micro-pores in the simulations. Suitable volumes of interests (VOIs) were selected to assess the pore-network properties and estimate the permeability in host rock and DBs. The size of VOIs (see Table 1) was determined by the dimension of each evaluated region (i.e. host rock, ZI, II and III) within the sample. The whole imaged sample was included in the study in order to increase the representativeness of the results. In wide zones, such as the host rock, a high number of VOIs were evaluated, whereas, in thin zones, such as DBs, fewer VOIs with similar dimension were extracted.

The investigated VOIs images have a multiphase composition due to the content of voids, calcite grains, calcite cement, and silica grains (Zambrano *et al.*, 2017). For that reason, a 3D image segmentation was performed by the automatic multiphase k-means clustering algorithm (Hartigan, 1975; Hartigan and Wong, 1979), setting 3 to 4 classes of objects, depending on the sample. The segmentation was performed by using the *Pore3D* software library developed at Elettra (Brun *et al.*, 2010; Zandomeneghi *et al.*, 2010). Then, a 3D bilateral filter (Tomasi and Manduchi, 1998) was applied to the reconstructed data for smoothing the images and preserving edges. Results are binary images composed of voids and grains. After this, the tool 'Find Connected Structures' of the Fiji software (Schindelin *et al.*, 2012) was used for dividing the pore space into two components: i) connected pores and ii) isolated pores. For the simulations, only the connected pore networks were used for easing the computation.

⁷⁸³ ₇₈₄ 266	Table 1.	VOIs di	mensio	ons and des	cription	
785		Sample	VOIs	Vol. [mm^3]	Volume [Voxels]	Description
/86			1HR	23 33	400 x 400 x 200	Host rock
/8/			2HR	23.33	400 x 400 x 200	Host rock
788			3HR	23.33	400 x 400 x 200	Host rock
789		~~~~~~~	47III	25.55	400 x 400 x 200	Zone III highly cemented
790		SVG-S1	5EC	34.99	400 x 400 x 240	Fault core with a slip surface
791			6ZIII	17 50	400 x 400 x 150	Zone III highly cemented
792			7HR	23 33	400 x 400 x 200	Host rock
793			8HR	23.33	400 x 400 x 200	Host rock
794			onix	23.33	400 X 400 X 200	HOSTICER
795			1HD	13 71	500 x 400 x 300	Host rock
796			1ПК 2НР	43.74	500 x 400 x 300	Host rock
797			211K 211D	43.74	500 x 400 x 300	Host rock
798		FIG-S2		43.74	500 x 400 x 300	Host rock
799			5HR	43.74	500 x 400 x 300	Host rock
800			1CEM	39 37	400 x 450 x 300	Fault core highly cemented
801			TCEM	57.51	100 X 150 X 500	i duit core, inginy comented
802			2CEM	39 37	400 x 450 x 300	Fault core highly cemented
803			3MIX	39.37	400 x 450 x 300	Fault core, nartially cemented
804			4MIX	39.37	400 x 450 x 300	Fault core, partially cemented
905		FIG-S3	5CEM	39.37	400 x 450 x 300	Fault core highly cemented
000			6CEM	39.37	400 x 450 x 300	Fault core, highly comented
000			7MIX	39.37	400 x 450 x 300	Fault core, partially cemented
807			8DISS	39.37	400 x 450 x 300	Fault core, affected by dissolution
808						
809			1HR	11 29	450 x 450 x 300	Host rock
810		OFG-S4	211R	44.20	450 x 450 x 200	Host rock
811			201	44.29	430 x 430 x 300	HOSt TOCK
812			1 LID	24.00	400 x 400 x 200	Host rock
813				34.99	400 x 400 x 300	Dost Tock
814		OFG-85	2011A	34.99	400 x 400 x 300	Highly comented zone
815		010-05	AMIV	34.22	400 x 400 x 500	Partially comented zone
816			5MIX	34.99	400 x 400 x 300	Partially cemented zone
817207			5101174	57.77	100 A 100 A 300	
₀₁₀ 20/						

Table 1. VOIs dimensions and description

2.3. Lattice-Boltzmann method and permeability calculation

⁸²²269 Lattice-Boltzmann simulations were performed by means of the open-source computational fluid dynamics software PALABOS (Latt, 2009) using a modified version of the methodology 827 271 previously described by Degruyter et al., (2010). The methodology consists in imposing a simple-829²⁷² phase fluid flow through the segmented 3D images by maintaining a fixed pressure gradient between ₈₃₁273 the inlet and outlet faces of the volume, the rest of the faces were padded. The interface pores-voids was converted to bounce-back boundary conditions. The main difference with the methodology proposed by Degruyter et al. (2010) is the replacement of the collisional operator BGK by an MRT (d'Humières et al., 2002) with a D3Q19 lattice.

⁸¹⁹268

 The simulation ended once the imposed steady state condition was reached (standard deviation of the average energy<10⁻⁴ after 1000 steps, Degruyter *et al.*, 2010). After that, the permeability component parallel to the imposed flow was calculated applying the Darcy's law,

$$\frac{\delta P}{\delta x} = \frac{\mu}{k} U,$$
 (equation 2)

where, $\delta P/\delta x$ is the pressure gradient, μ the fluid kinematic viscosity, and U the average fluid velocity per unit of area. The permeability was calculated, using the same procedure, in three orthogonal directions two parallel to the DBs (k_x and k_y) and the third one perpendicular to the DB (k_y). All the variables are handled in lattice units before the permeability calculation, results are transformed to real world units multiplying by the effective length of the voxel side in meters. To guarantee a flow in the laminar regime, and therefore the validity of Darcy's law, it was evaluated that the permeability keeps stable among different pressure gradients (Degruyter *et al.*, 2010). The obtained permeability values are not considered as absolute due to the possible source of error caused by the resolution of the micro-CT images and the few number of samples evaluated during the experiments.

2.4. Analysis of the effective pore-network properties

After the simulations, the resulting lattice velocity volumes were segmented with a single threshold (lattice velocity >0) for obtaining the effective pore space contributing to the flow. The 3D visualization of the output images was obtained by the volume rendering procedure, using the commercial software VGStudio MAX 2.0 (Volume Graphics) and the software Paraview (Ahrens *et al.* 2005). The assessment of the segmented pore space was made using the *Pore3D* software library, which has been optimized for quantitative examination of X-ray micro-CT images of porous media and multiphase systems and includes several modules, such as filtering, morphological, anisotropy and skeleton analysis. The analyzed properties were the effective porosity, the specific surface area, and the tortuosity in three directions (x, y, z) corresponding to the fluid flow experiments.

The effective porosity (Φ) here is defined as the ratio of the pore volume with a non-zero velocity and the total volume of the sample. The specific surface area (S) is defined as the ratio of the surface in contact with fluid and the total volume. The tortuosity (τ) has a vast number of definitions based on geometrical, hydraulic, electrical, and diffusion parameters (Ghanbarian *et al.*, 2012 and references therein). In this work, the method used to evaluate the tortuosity is based on the direct measurement of the shortest distance between two points in the pores (Gommes *et al.*, 2009). The geometrical tortuosity is calculated as $\tau = Lg/Le$, where Lg is the geodesic length defined as the shortest path connecting two points in the pore space, and Le is the Euclidean length (Soille, 1999; Dunsmuir *et al.*, 1991).

2.5. Representativeness evaluation of results

The representative elementary volume (REV) is defined as the volume in which the variability of a property (e.g., porosity, specific surface area, tortuosity, permeability) tends to decay significantly, enclosing a representative amount of the sample heterogeneity (Bear, 1972; Zandomeneghi *et al.*, 2010). The REV must be sufficiently larger to include a considerable number of pores to permit the meaningful statistical average required in the continuum concept (Bear, 1972). Several authors have studied the existence and the dimensions of a REV for different porous materials (Zhang *et al.* 2000; Al-Raoush and Papadopoulos 2010; Mostaghimi *et al.* 2013). Zhang *et al.* (2000) introduced the term of a 'statistical REV' for heterogeneous media, which is defined as the volume beyond which the mean becomes approximately constant and the coefficient of variation (Cv, defined as the ratio of the arithmetic mean divided by the sample standard deviation) is lower than a threshold value (e.g. Cv < 0.2). Al-Raoush and Papadopoulos (2010) proposed that the determination of the REV should be determined using the porosity distribution over different volumes. Mostaghimi *et al.* (2013) investigated the existence and size of REV for samples of sandstones and carbonate rocks using permeability, specific surface area, and porosity. These authors estimated that the necessary

958

size of REV for the permeability evaluation should be larger than that for porosity and specific surface
area. In this work, the statistical REV approach proposed by Zhang *et al.* (2000) is used.

2.6. Single cylindrical-shape pore experiments

In order to quantify the effect of resolution on the evaluated properties, a cylindrical-shape fictitious pore of radius, r, was considered. Downscaling the resolution, the porosity, specific surface area and permeability were calculated from the images and compared with the analytical values. The permeability is analytically derived from combining the Poiseuille's Equation for flow through a cylinder pipe with the Darcy's Law for flow in porous media,

$$k = \frac{\pi r^2}{8} \qquad (equation 3)$$

The results are normalized by the analytical values and plotted against the pore radius expressed in terms of number of voxels. In this way the observations could be applicable to any pore radius.

3. Results

1021 1022

The results of the MRT-LBM simulations are the calculated permeability and the lattice velocity volumes (Fig. 5- 7). From the lattice velocity volumes additional properties were quantitatively analyzed including the effective porosity, specific surface area and tortuosity of the pore network contributing to the permeability of the host rock and DBs. The multidirectional (axes x, y, and z) results of both quantitative pore network analysis and permeability calculated with LBM simulation are summarized in Table 2. As it was stated in the methods section, for each zone (i.e. HR, ZI, ZII, ZIII) the average values corresponded to the arithmetic mean, in the case of k_z and k_y , or the to the harmonic mean, in the case of k_z . In specific cases, only one measurement was obtained due to the dimension of the analyzed zone. The results of the effective porosity, specific surface area, and tortuosity were plotted with the corresponding value of calculated (LBM) permeability (Fig. 8) with the intention of evaluating their respectively control on permeability. Data is divided in pristine rocks and fault zones to individuate the effect of deformation and diagenesis on the pore network and permeability within DBs. The combined control of these properties was evaluated considering the Kozeny-Carman equation (Fig. 8d), however the intention was not to test the accuracy of this equation.

3.1.MRT-LBM simulations

In the case of host rocks, the SVG (Fig 5b, d) and FIG (Fig. 6d) showed a combination of both wide and narrow conduits. In both velocity volumes, it is shown how the wider diameter of conduits allows the fluid to reach higher velocities in comparison to the narrow conduits. Differently, in the host rock pertaining to the OFG the pore-network is represented by a high number of very thin fluid conduits (Fig. 7c, e). The dimension of the pore diameter seems to be related to the specific surface area (Table 2), where the lower values correspond to the FIG and the higher values to OFG host rocks. For sample SVG-S1, velocity volumes indicated that the fluid conduits within the DB are

significantly fewer than those of the host rock. Within the cemented zone, ZIII, the fluid flow

1079

experiments failed due to the absence of a connected pore-network. Within the fault core (Fig. 5c), the fluid flow is negligible in a direction perpendicular to the DB. However, the fluid flow is present through the space generated by the distribution of asperities within the slip surfaces. This porenetwork is characterized by wide and anastomose conduits that concentrated the fluid flow through the sharp discontinuity. Solution-enlarged stylolites may also represent secondary pathways for flow.

The obtained permeability shows significant differences between the HR and the different zones composing the DB (Zones III, II, I). The HR exhibited high and isotropic values of permeability. In the cemented zones, the permeability is negligible in all directions (e.g. SVG-S1, OFG-S5) due to the absence of connected pores (Fig. 10). Within the fault cores, the permeability decreases by nearly two orders of magnitude and sometimes presents important anisotropy. In the case of the fault core of SVG-S1 (composed by ZIII and I), the permeability component perpendicular to the DB is zero, whereas the permeability components parallel to the DB are possible thanks to the presence of channelized pore-network. In the case of FIG-S3, the fault core is characterized by alternation of zones affected by cementation and dissolution creating a highly heterogeneity and anisotropy. In the studied samples, the permeability component perpendicular to the DB is null for the fault cores.

Figure 5.- a) Sample SVG-S1 with the volume rendering of the (i) raw reconstructed SR micro-CT images (voxel size = 9 μ m) and (ii) segmented pores space (connected pores in yellow and unconnected pores in red, after Zambrano *et al.* 2017). Detail of lattice velocity volumes from the b) and d) host rock, and c) fault core. In the fluid velocity volumes, high velocities in lattice units are represented by warm colors. The z-axis of the volumes is perpendicular to the DB.

1184⁰⁴

386

Figure 6.- a) Sample FIG-S3 with the rendering of the (i) raw reconstructed SR micro-CT images (voxel size = 9 μ m) and (ii) segmented pores space (connected pores in yellow and unconnected pores in red, after Zambrano *et al.* 2017). Detail of lattice velocity volumes from the b) and c) fault core, and d) host rock from the sample FIG-S2. In the fluid velocity volumes, high velocities in lattice units are represented by warm colors. The z-axis of the volumes is perpendicular to the DB orientation.

Figure 7.- a) Sample OFG-S5 (DB) and b) OFG-S4a (host rock) with the rendering of the (i) raw reconstructed SR micro-CT images (voxel size = 9 μ m), and (ii) segmented pores space (connected pores in yellow and unconnected pores in red, after Zambrano *et al.* 2017). Detail of lattice velocity volumes from the c) host rock (near to the DB), e) host rock (far from DB), and d) transition between DB and host rock. In the fluid velocity volumes, high velocities in lattice units are represented by warm colors. The z-axis of the volumes is perpendicular to the DB orientation.

1300⁹⁷ 130<u>3</u>98

1302¹ 130**399**

1304 130**ჭ00**

 $^{1306}_{1307}$ 401

 $^{1308}_{1309}02$

Table 2. Results of the quantitative pore network analysis and permeability calculation with

LBM.

 $1323 \\ 403 \\ 1324$

 $^{1325}_{1326}$

Sample	Zones		Φ _x [%]	Φ _y [%]	Φ _z [%]	S_x [mm ⁻²]	S _y [mm ⁻²]	S _z [mm ⁻²]	τ _x [-]	τ _y [-]	τ_z [-]	k _x [m ²]	k _y [m ²]
		Mean	12.87	14.13	12.07	45.9	47.0	42.5	2.9	2.7	3.7	9.5x10 ⁻¹³	2.4x10 ⁻¹²
	Host Rock	SE	0.69	0.28	0.52	4.6	5.7	3.4	0.4	0.1	0.4	3.1x10 ⁻¹³	8.7x10 ⁻¹³
SVG-S1		Cv	0.09	0.03	0.07	0.17	0.21	0.14	0.30	0.06	0.25	0.57	0.64
510-51	Zone III	Value	0.0	0.0	0.0	0.0	0.0	0.0	-	-	-	0.0	0.0
	Fault Core	Value	2.00	2.00	0.0	39.6	40.3	0.0	3.1	2.9	-	3.0x10 ⁻¹³	3.2x10 ⁻¹³
		Moon	26.15	26 55	28 10	200	28 6	20.6	16	1.0	1.0	2.0×10^{-11}	6.0v10-11
FIG-S2	Host Rock	SE	20.15	20.55	26.10	20.0	28.0	29.0	0.2	0.3	0.2	1.3×10^{-11}	3.7×10^{-11}
110-52	1105t Rock	Cv	0.06	0.08	0.08	0.03	0.06	0.05	0.20	0.33	0.20	0.77	1.08
		Moon	5 10	5 26	2 1 1	25.1	25 4	7 2	2 1	20	2.2	2.2×10^{-13}	2.1×10^{-13}
FIG-S3	Fault Core	SE	2 13	2.13	2.11	14.5	14 7	7.2	0.1	0.2	1.6	1.0×10^{-13}	3.7×10^{-14}
110-55	i duit core	Cv	1.09	1.07	2.65	1.02	1.02	2.65	0.10	0.12	1.03	0.81	0.46
		Mean	12 48	12.73	11 90	78.2	77.2	77.6	32	32	4.0	4.0×10^{-13}	3 6x10 ⁻¹³
OFG-S4	S4 Host Rock	SE	0.91	0.97	0.53	1.7	2.0	1.7	0.1	0.2	0.2	1.5×10^{-13}	6.8x10 ⁻¹⁴
		Cv	0.145	0.13	0.09	0.043	0.045	0.044	0.045	0.15	0.11	0.73	0.33
		Mean	6.32	6.16	6.58	57.5	58.0	55.8	3.8	3.5	3.7	2.6x10 ⁻¹³	7.4x10 ⁻¹³
OFG-S5	DB-	SE	1.88	1.84	1.38	0.9	1.0	2.5	0.3	0.3	0.3	1.2x10 ⁻¹³	2.6x10 ⁻¹³
		Cv	0.67	0.67	0.47	0.033	0.034	0.10	0.16	0.20	0.17	1.01	0.79

3.2. Pore-network properties

All the evaluated host rocks showed a high effective porosity. The greatest effective porosity values in the host rock correspond to the FIG with a mean of 26.93 ± 0.75 %, followed by the SVG with a mean porosity of 13.02 ± 0.4 %, whereas the host rock of FIG showed a mean effective porosity of 12.33 ± 0.43 %. Within the DB hosted in SVG, the zones with high cementation, ZIII, are likely ¹³⁶412 to have zero effective porosity, whereas, in the fault core with pore network composed of enlarge $^{1364}_{1365}$ stylolites and slip surfaces, ZII and ZI respectively, the effective porosity is relative higher (about 1367 14 2.0%). In the case of the fault core of FIG-S3, there is a high variability of effective porosity (Cv>1.0) due to the alternation of volumes affected by cementation or dissolution. VOIs is highly affected by cementation showed null porosity values, whereas in VOIs highly affected by dissolution the porosity could reach 15.1 %. Volumes partially cemented indicated a null porosity in the z-direction (perpendicular to the fault), whereas is about 7.26 ± 0.29 % for the other directions. Considering all the VOIs, the mean porosity tensor for the fault core sample FIG-S3 is Φ (5.19 ± 2.13 %; 5.36 ± 2.33

 $^{1383}_{1384}20$ %; 2.11 ± 2.11 %). In the case of OFG-S5, some spot (with dimension lower than the VOIs) where $^{1385}_{1386}$ well-cemented and presented null porosity. The mean porosity tensor for the OFG-S5 is Φ (1.88 ± 1387 1388⁴22 0.67 %; 1.84 ± 0.67 %; 1.38 ± 0.47 %). The coefficient of variation (Cv) showed values up to 0.67 1389 for the porosity of this sample, which indicates an important heterogeneity. The scatter plot porosity-139#23 1391 permeability (Fig. 8a) indicates an important control of the porosity on permeability and a clear 139#24 1393 differentiation between undeformed host rock and deformed/cemented zones. 139425

139426 The specific surface area indicates higher values for the host rock pertaining to OFG (77.71 1397 1398427 \pm 0.28 mm⁻¹) in comparison to the host rocks of SVG (45.15 \pm 0.80 mm⁻¹) and FIG (29.03 \pm 0.19 mm⁻¹ 1399 $^{1400}_{1401}$ 428 ¹). In the case of DBs, the specific surface area could increase within the host rock in zones affected $^{1402}_{1403}$ 29 by dissolution and cataclasis as in FIG-S3 (about 60.0 mm⁻¹). Also, this could decrease is the 1404 140530 dominant process is the cementation as in OFG-S5 (57.01 \pm 0.28 mm⁻¹) or, in the extreme case, SVG-1406 S1-ZIII characterized by high cementation and null effective porosity. As it was expected, the specific 140#31 1408 surface area seems to be inversely related to the permeability (Fig. 8b). However, there is not a clear 140**9**32 1410 differentiation of deformed and pristine rock possible related to the effect of deformation and 141433 1412 1412434 diagenetic processes involved. 1414

Concerning the geometrical tortuosity (Table 2), the values in the host rocks are 1.79 ± 0.04 for FIG, 3.07 ± 0.05 for SVG, and 3.46 ± 0.04 for OFG-S4. In the case of DBs, the geometric tortuosity could increase in the case of FIG-S3 (3.22 ± 0.08) and OFG-S5 (3.67 ± 0.04). The tortuosity seems to be inversely related to the permeability (Fig. 8c).

1381 1382

1395

1438 1439 1440

Figure 8. - Relationship between LBM permeability and a) effective porosity b) specific surface area c) geometrical tortuosity, and d) permeability estimated with the K-C equation. Host rock data is represented by blue circles, whereas deformed rock data is in red squares. In (d) the dotted line represents the equally between calculated (LBM) and estimated (K-C) permeability. The axis containing permeability data are in logarithmic scale.

3.3. Single cylindrical-shape pore experiments

The effect of resolution on the evaluated properties was assessed considering a single fictitious cylindrical-shape pore. Both porosity and specific surface are related to the resolution by a non-linear function (Figs. 9). For a pore with diameter represented by 10 voxels, both properties are less than 20% lower than the theoretical value. The permeability does not show significant variation (<10%) until the diameter of the pore is about 10 voxels (Fig. 9).

Figure 9. – Effect of image resolution (diameter of pore in number of voxel) on the evaluated pore properties: porosity (squares), specific surface area (triangles), and LBM permeability (circles). The properties are normalized by the corresponding analytical values. The vertical dotted line indicates a threshold value of the resolution below which the difference of the measured permeability with the analytical value is higher than 10%.

4. Discussion

4.1. Permeability variability

Within the studied DBs different processes could take places such as cementation, pressure solution, cataclasis, and shearing along sharp discontinuities. The DB hosted in SVG presents welldifferentiated tabular zones where pore-network varies due to different processes. The cementation process generally occurs in the outer zone of the band, ZIII, characterized by the precipitation of cement and absence of pore-throat collapsing (Tondi, 2007). According to the observations, the permeability is negligible due to the isolation caused by the cementation. The only porosity in this

 $^{1563}_{1564}$ 66 zone reported by Zambrano et al. (2017) corresponds to isolated pores such as chambers within the $^{1565}_{1566}$ 467 bioclast, which do not contribute to the fluid flow. In the case of ZII, the compaction may cause the 1567 reduction of the primary pore-connectivity by collapsing the pore-throats. However, the same process 1568681569 also generates stylolites by pressure solution at the grain-to-grain contact (Tondi, 2007). It was 157869 1571 observed that these stylolites, possible enlarged by dissolution, create thin pore conduits preferably 157**4**70 1573 connected to the DB. Due to the cataclastic nature of ZI, connected pores, if are present, may be 157471 1575 157472 below the resolution of the images and therefore not detected. However, if this is the case, the 1577 1578773 contribution to the permeability should of minor importance. Within the ZI, the fluid flow is possible 1579 ¹⁵⁸⁰474 1581 through the space generated by the distribution of asperities within the slip surfaces. This pore ¹⁵⁸² 1583 1583 network is characterized by wide and anastomose conduits that concentrate the fluid flow through the 1584 158376 sharp discontinuity. The contribution to the permeability of the sharp discontinuity is very important 1586 in parallel direction of the DB. In fact, the total permeability of the FC reaches values just one order 158777 1588 of magnitude less than the porous host rock in that direction. The permeability in an orthogonal 158978 1590 direction to the DB is negligible due to the presence of ZI and ZII. Basically, the hydraulic behavior 159479 1592 1592480 of the DB could be considered as a fracture surrounded by tight walls. This characteristic may have 1594 1592481 some implications to the modeling of those structures during the reservoir characterization. 1596

1597482 1598 In the case of the fault core sample of FIG (FIG-S3), there are not differentiated zones like in $^{1599}_{1600}$ the DB form SVG. However, in this fault core there is an alternation of zones affected by cementation 1601 160284 and dissolution, which are oriented subparallel to the main fault direction. The variability is well 1603 160485 represented by great values of coefficient of variation especially in the z-direction (Cv=2.8), which 1605 indicates a high heterogeneity (Zhang et al., 2000). This variability may be caused by localized 160486 1607 cementation, compaction, dissolution and cataclasis. Moreover, the sample presents a high 160487 1609 161488 permeability anisotropy due to the fact that the fluid flow is only allowed subparallel to the fault and 1611 1612489 inhibited in the perpendicular direction. Comparing to the host rock (FIG-S2), the permeability values 1613 ¹⁶¹490 1615 in the parallel direction are reduced by about two orders of magnitude.

1616

- 1617
- 1618
- 1619 1620

In the samples from FIG, there is a slight variation of permeability in the deformed areas with respect to the pristine rock. There is neither an important anisotropy in the permeability. However, the values of the coefficient of variation are slightly higher in the FIG-S5 in comparison to FIG-S4 indicating a greater heterogeneity of the permeability. The interpretation of these results is that the deformation band is incipient with a minor effect on the permeability distribution.

In the host rocks the permeability is mostly isotropic. Some minor differences among permeability components related to changes in the texture of the pores and grain size composing the rocks. Considering the open discussion made by Tondi (2016), we may confirm that the permeability is controlled by the grains/pores size and the tortuosity of the

4.2. Dependency of permeability on connected pore-network properties

As it was expected, results indicated that the permeability seems proportional to the effective porosity and inversely proportional to both the specific surface area and the tortuosity (Fig.8a-c). The specific surface area has a very important effect on the permeability due to a greater surface in contact with the fluid that causes more friction to fluid motion. The dependency of permeability on the aforementioned pore-network properties has been previously stated by several authors (e.g. Kozeny, 1927; Carman, 1937; Archie, 1942; Wyllie and Rose, 1950; Swanson, 1981; and Katz and Thompson, 1986). In a closer case, the control exerted by these properties have been claimed by Tondi *et al.* (2016) to explain permeability differences in three orders of magnitude between porous carbonate grainstones pertaining to FIG and OFG.

Even though our intention was not to prove the validity of the Kozeny-Carman equation, the estimated permeability with this method was plotted against the LBM permeability (Fig. 8d). In general, the data shows an important scatter and seems not to fit properly to the equality line $(k_{LBM}=k_{KC})$. It was noticed that this scatter seems to be higher in the VOIs pertaining to deformed/diagenetized zones than in the host rocks VOIs and follow a different trend (Fig. 8d).

4.3. Validity and representativeness of results

The heterogeneity of the analyzed rocks has been described by the coefficient of variability (Cv). Zhang et al. (2000) indicated that a low Cv indicates that the results could be considered as representative statistically, which made it a good substitute of the well-known concept of REV. Considering the nature of the simulation experiments, the use of a statistical approach to find representative results is less straightforward and faster than to consider bigger volumes. The heterogeneity varies in function of the measured properties and the type of rock (i.e. HR and DB). In general, the permeability presents more variability with respect to the porosity, specific surface area and tortuosity. This stands to reason, because the permeability is depending of such properties (eq. 1). Mostaghimi et al. (2013) found comparable results, in which they concluded that the representativeness of a volume depends upon the evaluated property. As it was expected, the DB samples are more variable than the pristine rocks. This is related to the presence of bands or zones dominated by cementation, cataclasis or dissolution. The alternation of such bands may cause a high variability in all properties, especially in the permeability in the z-direction (perpendicular to the DB/fault plane). Considering these results, we consider that a larger number of samples are necessary to provide representative results for applications in reservoir simulation. However, for the scope of this work the variability was useful to characterize the heterogeneity and its implications at the pore scale.

Figure 10.- DBs volumes at high resolution (voxel size = $2.4 \,\mu$ m) pertaining to a) Sample SVG-S1, b) Sample FIG-S3, and c) Sample OFG-S5. For each volume it is shown the (i) raw reconstructed SR micro-CT images and (ii) segmented pores space (connected pores in yellow and unconnected pores in red, after Zambrano et al. 2017). The z-axis of the volumes is perpendicular to the DB.

This study did not aim at providing exact values of permeability or to prove the accuracy of the LBM. However, permeability results are similar (one order of magnitude of difference) to the data ¹⁷⁸⁴45 obtained in situ by Antonellini et al. (2014) and Tondi et al. (2016) using an air permeameter. Nevertheless, it is necessary to take into consideration that these authors provided an important number of measurements and covered a total volume significantly greater than in the present work. ₁₇₉\$48 On the other hand, the permeability obtained using an air permeameter may be also inaccurate. Filomena et al. (2014) reported that this technique applied to unconfined rock volumes (e.g. outcrop measurements) may be overestimated (about 37%) due to the shorter flow trajectories and a reduced rock volume in comparison with confined volume methods.

A key point for the validity of the results is the resolution of the images (voxel size = $9 \mu m$) used for simulations. Even though higher resolution images (voxel size = $2.4 \mu m$) were available, not connected pores were detected in the cemented zones within the DBs (Fig. 10). While, in both host rocks and zones affected by dissolution pores the pores are significantly wide (more than 100 µm). In agreement with Arzilli et al. (2015), studying similar grainstones of the Bolognano Fm., it is assumed that the contribution of the micropores to the permeability may be negligible if compared to the one of macropores. Nevertheless, the shape of imaged pores may be pixelated due to the resolution of the images affecting the measured properties (i.e. porosity, specific surface area, and permeability). In fact, these properties varied significantly in function of the resolution as it was found for a single pore evaluation (Fig. 9). The permeability seems to be constant and close to the theoretical value until certain threshold is reached (about 10 voxels of diameter). This result may be explained as a sort of compensation of the contrary effect on permeability exerted by the porosity and the specific surface area. Therefore, our results could infer that the presence of pores with a diameter lower than 100 µm may cause an underestimation of the permeability. Based on these evidence, the measured properties, including the permeability, may be slightly underestimated. However, the method used in this study and the results obtained allowed us to obtain textural and petrophysical properties of realistic rocks with a tensorial approach. In addition, it was put in evidence the control exerted by the textural properties on permeability within deformed rocks.

5. Conclusions

1864 71

1866

1868 73

187074

187§75

The presented study used the lattice-Boltzmann method (LBM) for obtaining permeability values of deformed carbonate grainstones using segmented 3D images obtained by synchrotron X-ray microtomography. The experiments consisted of inducing pressure-driven flow through the virtual rock samples and deriving the permeability by means of the Darcy's law.

The permeability and effective porosity decrease within deformation bands (DBs) due to the combination of grain translation, rotation, compaction, cataclasis, and cementation processes. Pore-throats are collapsed and occluded by processes mentioned above. The remaining porosity does not **3**80 contribute to fluid flow as it is mostly isolated. In the zone III, the cement could fully occlude the 1885 pore network resulting in a local barrier for fluid flow in the direction perpendicular to the DB/fault. 1887 82 In the zone II, the compaction likely causes intergranular pore collapsing but when pressure dissolution takes places the resulting stylolites may contribute to the fluid flow, especially in the 189\$84 directions subparallel to the DB/fault. Concerning the zone I, the grain size reduction contributes to the occlusion of the intergranular pores. These processes could lead to negligible permeability values within the cataclastic zone. However, if sharp discontinuities are present, the distribution of asperities within the wall surfaces could cause a local enhancement of permeability parallel to the DB/fault and ¹⁸⁹⁹388 1900 negligible to the orthogonal direction. In consequence, the permeability is highly anisotropic allowing 1902 89 the fluid flow only parallel to the DB similar to a fracture.

190**4**90 Our results indicate that permeability depends on the different evaluated properties (i.e. effective **§**91 porosity, specific surface area and tortuosity). Permeability is directly related to the effective porosity, and inversely related to the specific surface area and the tortuosity. In the case of DBs, where rock volumes are affected by cementation and cataclasis, the permeability obtained by the LBM differs to the K-C.

Acknowledgements

This research was supported by the FAR Project 2014 "Characterization and modelling of natural reservoirs of geofluids in fractured carbonate rocks", funded by the University of Camerino, Principal investigator E. Tondi and the Reservoir Characterization Project (www.rechproject.com). It is acknowledged the EXTREMA COST Action MP 1207 for networking support. Authors acknowledge the four anonymous reviewers for a very fair and critical revision of this manuscript. We also appreciate the patience showed by the editor and the reviewers during the revision taking into account the special circumstances. Finally, we thanks Alan Pitts and Hannah Riegel (University of Camerino) for the support during the revision of the manuscript.

1982	
1983 198 6 07	References
1985	
198008	
1987 198 609	Abrami, A.; Arfelli, F.; Barroso, R. C.; Bergamaschi, A.; Billè, F.; Bregant, P.; Zanini, F., 2005.
1989 1996/10	Medical applications of synchrotron radiation at the SYRMEP beamline of ELETTRA. Nucl.
1991	
199 611 1993 1994	Instrum. Methods Phys. Res. 548, 221-227.
199 6 12 1996	Adler P.M., Jacquin, C.G., and Quinlier, J.A., 1990. Flow in simulated porous media. Int. J.
199 613 1998	Multiphase Flow, 16, 691
1999 200014	Agosta, F., Prasad, M., Aydin, A., 2007. Physical properties of carbonate fault rocks, Fucino basin
2001 200 6 15	(Central Italy): implications for fault seal in platform carbonates. Geofluids 7, 19-32.
2003 200 6 16	http://dx.doi.org/10.1111/j.1468-8123.2006.00158.x.
2005 2006 2007	Ahrenholz, B., Tölke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M., and Durner, W., 2008.
2008 2009 18	Prediction of capillary hysteresis in a porous material using lattice Boltzmann methods and
2010 201619	comparison to experimental data and a morphological pore network model, Adv. Water
2012 201 6 20 2014	Resour. 31, 1151-1173, doi:10.1016/j.advwatres.2008.03.009.
²⁰¹⁵ 621 2016	Ahrens, J., Geveci, B., Law, C., 2005. ParaView: An End-User Tool for Large Data Visualization,
2017 2018 2019	Visualization Handbook, Elsevier, ISBN-13: 978-0123875822
202 623 2021	Al-Raoush, R., Papadopoulos, A., 2010., Representative elementary volume analysis of porous media
202 6 24 2023	using X-ray computed tomography. Powder Technol 200:69-77
2024 202 9 25 2026	American Petroleum Institute (API), 1998. Recommended Practices for Core Analysis,
202 ©26 2028	Recommended Practice 40, 2nd edn. API, Dallas, TX.
2029 2030 2030	Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Zhan, X., 2013.
2031 2032 2032	Digital rock physics benchmarks-part II: computing effective properties. Comput. Geosci.
2033 203 @29 2035	50, 33-43. http://dx.doi.org/10.1016/j.cageo.2012.09.008.
2036 2037	
2038 2039	

2041	
2042	
$2043 \\ 630 \\ 2044 $	Antonellini, M., Aydin, A., 1994. Effect of faulting on fluid flow in porous sandstones: petrophysical
2045 2046 31	properties. AAPG Bulletin 78, 355-377. doi:10.1016/0148-9062(96)83981-7.
204 6 32 2049	Antonellini, M., Cilona, A., Tondi, E., Zambrano, M., Agosta, F., 2014. Fluid flow numerical
205833 2051	experiments of faulted porous carbonates, Northwest Sicily (Italy). Marine and Petroleum
2052 2053	Geology, 55: 185-201, doi:10.1016/j.marpetgeo.2013.12.003.
2054 205 635 2056	Archie, G. E., 1942. The Electrical Resistivity Log as an Aid in Determining Some Reservoir
205 636 2058	Characteristics. Trans., AIME, 146, 54-62.
2059 206 9 37	Arzilli, F., Cilona, A., Mancini, L., Tondi, E., 2015. Using synchrotron X-ray microtomography to
2061 206 6 38	characterize the pore network of reservoir rocks: a case study on carbonates. Advances in
206 639 2065	Water Resources. doi:10.1016/j.advwatres.2015.07.016.
²⁰⁶⁶ 2067	Aydin, A., 1978. Small faults formed as deformation bands in sandstone. Pure and Applied
2068 206 9 41 2070	Geophysics 116, 913-930. doi:10.1007/BF00876546.
2010	
207 * 42 2072	Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York.
207 * 42 2072 207 * 643	Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York.Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small
207642 2072 207643 2074 207644 207644	Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York.Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525
207 6 42 2072 207 6 43 207 6 207 6 207 6 207 6 207 6 207 6 207 8	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly hattaneous media. Phys. Rev. 94, 51204502
207642 2072 207643 207644 207644 2076 207645 207846 207846	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502
207642 2072 207643 207644 207644 20762 207645 207645 207846 207946 208047 208047	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport
207642 2072 207643 207644 2076 207645 207645 207846 207946 208047 208648 208648	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev.E 97(1), 012011. Let 10.1102/PL. P. E 97.012011
207642 2072 207643 207644 2076 207645 207645 207846 207946 2080 208047 208648 2083 208649 2085	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev.E 87(1), 013011. doi:10.1103/PhysRevE.87.013011
207642 2072 207643 207644 2076 207645 207645 207846 207846 2080 208047 208648 2083 208649 2085 208650	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev.E 87(1), 013011. doi:10.1103/PhysRevE.87.013011 Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland,
207642 2072 207643 207644 2076 207645 207645 207846 207946 208047 208647 208648 2083 208649 2085 208650 208751 2088	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev.E 87(1), 013011. doi:10.1103/PhysRevE.87.013011 Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C. H., 2013. Pore-scale imaging and modeling. Adv. Water Resour., 51, 197–216.
207642 2072 207643 207644 2076 207645 207645 207846 2080 208047 208648 2083 208649 2085 208650 208751 208851 208852 208952	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev.E 87(1), 013011. doi:10.1103/PhysRevE.87.013011 Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C. H., 2013. Pore-scale imaging and modeling. Adv. Water Resour., 51, 197–216. Boek E.S., Venturoli M., 2010. Lattice-Boltzmann studies of fluid flow in porous media with realistic
207642 2072 207643 207644 2076 207645 207645 207645 207846 208047 208647 208648 2083 208649 2085 208650 208751 208851 208852 2090 209653 2092	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev.E 87(1), 013011. doi:10.1103/PhysRevE.87.013011 Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C. H., 2013. Pore-scale imaging and modeling. Adv. Water Resour., 51, 197–216. Boek E.S., Venturoli M., 2010. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl.; 59 (7): 2305-2314.
207642 2072 207643 207644 2076 207645 207645 207846 2080 208047 208647 208648 2083 208650 208650 208751 208851 208852 2090 209653 209653 209654 2094	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011. doi:10.1103/PhysRevE.87.013011 Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C. H., 2013. Pore-scale imaging and modeling. Adv. Water Resour., 51, 197–216. Boek E.S., Venturoli M., 2010. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl.; 59 (7): 2305-2314. Brun, F., Mancini, L., Kasae, P., Favretto, S., Dreossi, D., Tromba, G., 2010. Pore3D: a software
207642 2072 207643 207644 2076 207645 207645 207645 207846 208047 208647 208648 2083 208649 2085 208650 208751 208851 208852 2090 209653 209653 2094 209654 209455	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev.E 87(1), 013011. doi:10.1103/PhysRevE.87.013011 Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C. H., 2013. Pore-scale imaging and modeling. Adv. Water Resour., 51, 197–216. Boek E.S., Venturoli M., 2010. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl.; 59 (7): 2305-2314. Brun, F., Mancini, L., Kasae, P., Favretto, S., Dreossi, D., Tromba, G., 2010. Pore3D: a software library for quantitative analysis of porous media. Nucl. Instrum. Meth A 615, 326-332.
207642 2072 207643 207644 2076 207645 207645 207846 208047 208648 2083 208647 208648 2083 208650 208650 208751 208851 208652 209053 209653 2092 209654 2094 20955 209656 2097	 Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Bhatnagar, P.L., Gross E.P., Krook M., 1954. A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511-525 Bijeljic B, Mostaghimi P, Blunt M.J., 2011. The signature of non-Fickian transport in highly heterogeneous media. Phys Rev Lett 107:204502 Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J., 2013. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev.E 87(1), 013011. doi:10.1103/PhysRevE.87.013011 Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C. H., 2013. Pore-scale imaging and modeling. Adv. Water Resour., 51, 197–216. Boek E.S., Venturoli M., 2010. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl.; 59 (7): 2305-2314. Brun, F., Mancini, L., Kasae, P., Favretto, S., Dreossi, D., Tromba, G., 2010. Pore3D: a software library for quantitative analysis of porous media. Nucl. Instrum. Meth A 615, 326-332. http://dx.doi.org/10.1016/j.nima.2010.02.063.

2101	
2102	
2103 2104 57	Brun, F., Pacilè, S., Accardo, A., Kourousias, G., Dreossi, D., Mancini, L., Tromba, G., Pugliese, R.,
2105 2106 58	2015. Enhanced and Flexible Software Tools for X-ray Computed Tomography at the Italian
2107 210 859 2109	Synchrotron RadiationFacility Elettra. Fundamenta Informaticae 141(2015) 233-243.
²¹¹ 860 2111	Bultreys, T., de Boever, W., and Cnudde, V. 2016. Imaging and image-based fluid transport modeling
²¹¹² 61 2113	at the pore scale in geological materials: A practical introduction to the current state-of-the-
2114 2115 2110	art. Earth Sci. Rev. 155:93-128. doi:10.1016/j.earscirev.2016.02.00
211 6 63 2118	Cardenas, M. B., 2008. Three-dimensional vortices in single pores and their effects on transport.
211 864 2120	Geophys. Res. Lett., 35, L18402, doi:10.1029/ 2008GL035343.
2121 212 6 65	Cardenas, M. B., 2009. Direct simulation of pore level Fickian dispersion scale for transport through
212 666 212 666 2125	dense cubic packed spheres with vortices. Geochem. Geophys. Geosyst., 10, Q12014,
212 667 2127	doi:10.1029/2009GC002593.
2128 212968	Carman, P.C., 1937. Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150.
213 669 2132	Cerepi, A., Humbert, L., Burlot, R., 2001. Petrophysical properties of porous medium from
²¹³³ 670 2134	Petrographic Image Analysis data. Colloids and Surfaces. A: Physicochemical and
²¹³⁵ 2136 2137	Engineering Aspect, 187-188, 233-256.
213 672 213 672 2139	Chen, S., and Doolen, G. D., 1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech.;
214 673 2141	30:329-364.
2142 214 9 74	Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A., Spiers, C.J., 2012.
214 6 75 214 6 75	Deformation bands in porous carbonate grainstones: field and laboratory observations. Journal
214 676 2148	of Structural Geology, 45, 137-157.
2149 2150 77	Cilona, A., Faulkner, DR., Tondi, E., Agosta, F., Mancini, L., Rustichelli, A., Baud, P., Vinciguerra,
2151 215 6 78 2153	S., 2014. The effects of rock heterogeneity on compaction localization in porous carbonates.
215 679 2155	J Struct Geol, 67: 75-93, doi:10.1016/j.jsg.2014.07.008.
2156	
2157	
2158	
2159	

- 2161 2162 $^{2163}_{2164}80$ Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.P., Schlenker, M., 1996. Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys, 29: 133-146, doi:10.1088/0022-216681 2166 216982 3727/29/1/023 2168 216983 Coelho, D., Thovert, J.-F., and Adler P. M., 1997. Geometrical and transport properties of random 2170 packings of spheres and aspherical particles. Phys. Rev. E, 55, 1959–1978. 217684 2172 ²¹⁷³ 85 2174 Degruyter, W., Burgisser, A., Bachmann, O., Malaspinas, O., 2010. Synchrotron X-ray 2175 686 2176 microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices. 2177 217<mark>6</mark>87 Geosphere, v. 6, no. 5, p. 470-481, doi: 10.1130/GES00555.1. 2179 218688 d'Humières, D., 1992. Generalized Lattice-Boltzmann equations, in: Rarefied Gas Dynamics: Theory 2181 218289 and Simulations, Prog. Astronaut. Aeronaut., vol. 159, edited by B. D. Shizgal and D. P. 2183 ²¹⁸⁴ 2185 Weave, pp. 450-458, AIAA, Washington, D. C. 2186 d'Humières, D., Ginzburg, I., Krafczyk, M., Lallemand P., and Luo., L-S., 2002. Multiple-Relaxation-218691 2188 218892 Time Lattice Boltzmann Models in Three Dimensions, Phil. Trans. R. Soc. A, 360, 437-451. 2190 2191 Dullien, F. A. L., 1992. Porous Media: Fluid Transport and Pore Structure, 574 pp., Academic, San 219693 2193 Diego, Calif. 219694 2195 ²¹⁹⁶ 2197 2197 Dunsmuir, J.H., Ferguson, S.R., D'Amico, K.L., Stokes, J.P., 1991. X-ray microtomography: a new 2198 219**9**96 tool for the characterization of porous media, paper SPE 22860. Proceedings of the 1991 SPE 2200 ₂₂₀697 Annual Technical Conference and Exhibition, Dallas, October 6-9. 2202 220298 Filomena, C., Hornung, J., and Stollhofen, H., 2014. Assessing accuracy of gas-driven permeability 2204 ²²⁰599 measurements: a comparative study of diverse Hassler-cell and probe permeameter devices. 2206 2207 2208 00 Solid Earth 5, 1-11. doi: 10.5194/se-5-1-2014 2209 221001 Fossen, H., & Bale, A., 2007. Deformation bands and their influence on fluid flow. AAPG Bulletin 2211 2212/02 91, 1685-1700. 2213 2214
- Fossen, H., Schultz, R.A., Shipton, Z.K., Mair, K., 2007. Deformation bands in sandstone: a review.
 J. Geol. Soc. 164, 755e769. http://dx.doi.org/10.1144/0016-76492006-036.
- 2218 2219
- 2220

2221	
2222	
²²²³ 705 2224	Fredrich, J.T., DiGiovanni, A.A., Noble, D.R., 2006. Predicting macroscopic transport properties
2225 2226 200	using microscopic image data. J. Geophys. Res. 111, B03201. http://dx.doi.org/10.
2227 222807	1029/2005JB003774
2229 223 9 08 2231	Gaviglio, P., Bekri, S., Vandycke, S., Adler, P.M., Schroeder, C., Bergerat, F., Darquennes, A., &
²²³² 709 2233	Coulon, M. 2009. Faulting and deformation in chalk. Journal of structural geology, 31, 194-
²²³⁴ 2235	207.
2236 2237/11 2238	Ghanbarian, B., Hunt, A.G., Ewing, R.P., and Sahimi. M., 2013. Tortuosity in porous media: A
223912 2240	critical review. Soil Sci. Soc. Am. J. 77:1461-1477, doi:10.2136/sssaj2012.0435
2241 224713	Gharbi, O., and Blunt, M.J., 2012, The impact of wettability and connectivity on relative permeability
224 7 14 2245	in carbonates: A pore network modelling analysis, Water Resour. Res., 48, W12513,
224Ø15 2247	doi:10.1029/2012WR011877.
2248	Gommes, C. J., Bons, A.J., Blacher, S., Dunsmuir, J.H. and Tsou, A.H., 2009. Practical methods for
2249	in the test of neuron metricle from his and the test test to be the test of test o
2251 2257 2257	reconstructions. AIChE J., 55: 2000-2012. doi:10.1002/aic.11812.
2253	
²²⁵⁴¹⁹ ²²⁵⁵ ²²⁵⁶ ²²⁵⁶	within a compressive environment, Geology, 31, 11-14.
225721	Gürsov D. De Carlo F. Xiao X. Jacobsen C. 2014 TomoPy: a framework for the analysis of
2258 ²¹ 225922	synchrotron tomographic data, Journal of Synchrotron Radiation, 21(5), 1188-1193.
226723	Hao, L., Cheng, P., 2010. Pore-scale simulations on relative permeabilities of porous media by lattice
2262 2263724	Boltzmann method. Int. J. Heat Mass Transfer;53(9–10):1908–1913.
2263 2263 2266	Hartigan, J.A., 1975. Clustering Algorithms. Wiley, New York.
226 7 26 2268	Hartigan, J.A., Wong, M.A., 1979. A K-means clustering algorithm. Appl. Stat. 28, 100-108.
226927	Hellmann, R., Renders, P. J. N., Gratier J. P., and Guiguet, R., 2002. Experimental pressure solution
2270 2271 2271 28	compaction of chalk in aqueous solutions Part 1, Deformation behavior and chemistry, in: R.
227729	Hellmann, S. A. Wood, Water-Rock Interaction, Ore Deposits, and Environmental
2273 227 4 30	Geochemistry: A Tribute to David A. Crerar, The Geochemical Society, Special Publication
2275731	7, 129-152.
2276 2277	
2278	

2281	
2282	
²²⁸³ 2284 2284	Jin, G., Patzek, T.W., Silin, D.B., 2004. Direct prediction of the absolute permeability of
228533	unconsolidated consolidated reservoir rock. In: Proceedings of the SPE annual technical
²²⁸⁶ 228734	conference exhibition, Houston, TX. (SPE 90084)
2288 2289335	Kang, Q., Lichtner, P.C., Zhang, D., 2006. Lattice Boltzmann pore-scale model for multicomponent
²²⁹⁹ 36 2291	reactive transport in porous media. J Geophys Res;111:B05203.
²²⁹² 737 2293	Katz, A. J., and Thompson, A. H., 1986. Quantitative Prediction of Permeability in Porous Rock.
²²⁹⁴ 738 2295	Phys. Rev. B, 34, 8179-81.
2296	
229739 2298	Keehm, Y., 2003. Computational rock physics: Transport properties in porous media and applications,
229 940 2300	Ph.D. Dissertation, 135 pp., Stanford Univ., Stanford, Calif.
2307 2302 2303	Keehm, Y., Mukerji, T., Nur A., 2001. Computational rock physics at the pore scale: Transport
230 7 42 2305	properties and diagenesis in realistic pore geometries, The Leading Edge, 20, 180-183.
²³⁰⁶ 2307 2307	Keehm, Y., Mukerji, T., Nur, A., 2004. Permeability prediction from thin sections: 3D reconstruction
2308 2309 44	and Lattice-Boltzmann flow simulation. Geophys. Res. Lett., 31, L04606,
2310 231745 2312	doi:10.1029/2003GL018761.
²³¹ 7 46 2314	Khan, F., Enzmann, F., Kersten, M., Wiegmann, A., Steiner, K., 2012. 3D simulation of the
²³¹⁵ 747 2316	permeability tensor in a soil aggregate on basis of nanotomographic imaging and LBE solver.
2317 2318 2310	J. Soils Sediments 12, 86–96. http://dx.doi.org/10.1007/s11368-011-0435-3.
232 749 2321	Kozeny J., "Uber Kapillare Leitung des Wassers im Boden, Sitzungsber," Akad. Wiss. Wien, Math.
232 9 50 2323	Naturw Klasse, Abt.II A, 1927, 136, 271-306.
2324 232351	Ladd, A. J. C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann
232 752 2328	equation: Part 2. Numerical results, J. Fluid Mech., 271, 311-339.
2329 2330 2330	Landry, C.J., Karpyn, Z.T., Ayala, O., 2014. Relative permeability of homogenous-wet and mixed-
2331 2332 2332 2332	wet porous media as determined by pore-scale lattice Boltzmann modeling. Water Resour.
2333 233 7 55 2335	Res. 50, 3672–3689. http://dx.doi.org/10.1002/2013WR015148.
²³³⁶ 756 2337	Latt, J., 2009, Palabos, Parallel Lattice Boltzmann Solver: http://www.lbmethod.org/palabos/
2338 2339	

2341	
2342	
²³⁴³ 2344 2344	Li, Y., LeBoeuf, E. J., Basu, P. K., & Mahadevan, S., 2005. Stochastic modeling of the permeability
2345 2346 2347	of randomly generated porous media. Advances in Water Resources, 28(8), 835-844.
234 9 59 2349	Lucia, F.J., 2007. Carbonate Reservoir Characterization: an Integrated Approach. Springer Science
235 9 60 2351	& Business Media.
2352 235 3 61 2354	Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., and Timonen J., 2002. Lattice-Boltzmann and
235 562 2356	finite-difference simulations for the permeability for three-dimensional porous media, Phys.
235 7 63 2358	Rev. E, 66, 016702, doi:10.1103/ PhysRevE.66.016702.
2359 2360 2361	Manz, B., Gladden, L. F., and Warren, P. B., 1999. Flow and dispersion in porous media: Lattice
236 2 65 2363	Boltzmann and NMR studies, AIChE J., 45, 1845-1854.
²³⁶⁴ 766 2365	Mostaghimi, P., Bijeljic, B., and Blunt, M. J., 2012. Simulation of flow and dispersion on pore-space
2365 2367 2368	images, SPE J., 17(4), 1131–1141.
236968	Mostaghimi P Blunt M J Bijelijc B 2013 Computations of absolute permeability on micro-CT
2370 2371769	images. Math. Geosci., 45, pp. 103-125
2372 237370	Mutti, M., 1995. Porosity development and diagenesis in the Orfento supersequence and its bounding
237 7 71 2375 237672	unconformities (Upper Cretaceous, Montagna Della Majella, Italy). American Association of Petroleum Geologists Special Publications 141-158
2377	
237873 2379 774	Narvaez, A., Zauner, T., Raischel, F., Hilfer, R., and Harting, J., 2010. Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations
2380 238775 2382	J. Stat. Mech., 11, P11026.
238976 2384	Øren, P.E., and Bakke, S., 2002. Process based reconstruction of sandstones prediction of transport
238577 2386	properties. Transp Porous Media 46:311–343
238778 238870	Ori, G.G., Roveri, M., Vannoni, F., 1986. Plio-Pleistocene sedimentation in the Apennine–Adriatic
2389 ⁷⁷ 239 7 80	Blackwell, Oxford, pp. 183–198.
2391 239 7 81	Palenstijn, W., Batenburg, K., Sijbers, J., 2011. Performance improvements for iterative electron
2393 239 4 82	tomography reconstruction using graphics processing units (GPUs), Journal of Structural
239 <mark>5</mark> 83 2396 2397	Biology, 176(2), 2011, 250-253.
2398 2399	

2402	
240 3 2404	Pan, C., Hilpert, M., Miller, C.T., 2004. Lattice-Boltzmann simulation of two-phase flow in porous
240 5 85 2406	media. Water Resour Res; 40:W01501.
240786	Pan, C., Luo, L.S., & Miller, C.T., 2006. An evaluation of lattice Boltzmann schemes for porous
2400 2403 87	medium flow simulation. Computers & fluids, 35(8), 898-909.
2410 241788	Peng, S., Marone, F., Dultz, S., 2014. Resolution effect in X-ray microcomputed tomography imaging
241 2 789 2413	and small pore's contribution to permeability for a Berea sandstone. J. Hydrol. 510, 403–411.
241 790 2415	http://dx.doi.org/10.1016/j.jhydrol.2013.12.028.
241891	Porter, M.L., Schaap, M.G., Wildenschild, D., 2009. Lattice-Boltzmann simulations of the capillary
2417 2418 2418	pressure-saturation-interfacial area relationship for porous media. Adv Water Resour;
241 993 2420	32(11):1632–40.
242 794 2422	Rustichelli, A., Torrieri, S., Tondi, E., Laurita, S., Strauss, C., Agosta, F., Balsamo, F., 2016. Fracture
²⁴²³ 95 2424	characteristics in cretaceous platform and overlaying ramp carbonates: an outcrop study from
2425 2426 2426	Maiella mountain (central Italy). Mar. Petroleum Geol. 76, 68-87.
2427	

- 242897Schaap, M.G., Porter, M.L., Christensen, B.S.B., Wildenshild, D., 2007. Comparison of pressure-2429243798243798saturation characteristics derived from computed tomography and lattice Boltzmann2431simulations. Water Resour Res ; 43:W12S06.
- Schindelin, J., Arganda-Carreras, I., Frise, E., *et al.*, 2012. Fiji: an open-source platform for
 biological-image analysis. Nat. methods 9 (7), 676-682.
- Shah, S.M., Gray, F., Crawshaw, J.P., Boek, E.S., 2015. Micro-computed tomography porescale
 study of flow in porous media: effect of voxel resolution. Adv. Water Resour. 000, 1–12.
 http://dx.doi.org/10.1016/j.advwatres.2015.07.012.

Soille, P., 1999. Morphological Image Analysis, Principles and Application. Berlin: Springer.

- Spanne, P., Thovert, J. F., Jacquin, C. J., Lindquist, W. B., Jones, K. W., & Adler, P. M., 1994.
 Synchrotron computed microtomography of porous media: topology and transports. Physical
 Review Letters, 73(14), 2001.

2461	
2462	
²⁴⁶³ 2464	Stapf, S., Packer, K. J., Bèkri, S., and Adler, P. M., 2000. Two-dimensional nuclear magnetic
2465 2466 10	resonance measurements and numerical simulations of fluid transport in porous rocks. Phys.
2467 246811 2469	Fluids, 12(3), 566–580, doi:10.1063/1.870262.
²⁴⁷ 812 2471	Sukop, M.C., Huang, H., Lin, C.L., Deo, M.D., Oh, K., & Miller, J.D., 2008. Distribution of
²⁴⁷² 813 2473	multiphase fluids in porous media: Comparison between lattice Boltzmann modeling and
²⁴⁷⁴ 2475 2476	micro-x-ray tomography. Physical Review E, 77(2), 026710.
247 8 15 2478	Swanson, B.F., 1981. A Simple Correlation Between Permeabilities and Mercury Capillary Pressures.
²⁴⁷ 816 2480	J. Pet. Tech., 1, 33, 2498-2504.
2481 248 8 17 2483	Tessier, J. J., Packer, K. J., Thovert, JF., and Adler, P. M., 1997. NMR measurements and numerical
248 8 18 2485	simulation of fluid transport in porous solids, AIChE J., 43, 1653–1661.
²⁴⁸⁶ 2487	Tomasi, C., Manduchi, R., 1998. Bilateral filtering for gray and color images. Sixth International
2488 248 9 20 2490	Conference on Computer Vision, New Delhi, India, 839-846.
²⁴⁹ 821 2492	Tondi, E., 2007. Nucleation, development and petrophysical properties of faults in carbonate
249822 2494	grainstones: evidence from the San Vito Lo Capo peninsula (Sicily, Italy). Journal of
249823 2496 2497	Structural Geology, 29, 614-628, doi:10.1016/j.jsg.2006.11.006.
249 824 2499	Tondi, E., Antonellini, M., Aydin, A., Marchegiani, L., Cello, G., 2006. The role of deformation
250 <u>825</u> 2501 2502	bands, stylolites and sheared stylolites in fault development in carbonate grainstones of
2503 2503 2504	Majella Mountain, Italy. J Struct Geol, 28: 376-391, doi:10.1016/j.jsg.2005.12.001.
250 827 2506	Tondi, E., Rustichelli, A., Cilona, A., Balsamo, F., Storti, F., Napoli, G., Agosta, F., Renda, P.,
250828 2508 250829	Giorgioni, M., 2016. Hydraulic properties of fault zones in porous carbonates, examples from
2510 251 § 30	10 3301/LIG 2015 08
2512 2513	Tondi E Cilona A Agosta E Audin A Rustichalli A Ronda D Giunta C 2012 Growth
251 9 51 2515 251 8 32	processes dimensional parameters and scaling relationships of two conjugate sets of
2517 2518 2519	processes, annensional parameters and seaming relationships of two conjugate sets of

2521	
2522	
2523 2524 2524	compactive shear bands in porous carbonate grainstones, Favignana Island, Italy. J Struct
²⁵²⁵ 2526 34	Geol, 37: 53-64, doi: http://dx.doi.org/10.1016/j.jsg.2012.02.003.
2527 252835	Tromba, G., Longo, R., Abrami, A., Arfelli, F., Astolfo, A., Bregant, P.,, Castelli E., 2010. The
253836 2531	SYRMEP Beamline of Elettra: Clinical Mammography and Bio-medical Applications. AIP
2532 2533 2533	Conference Proceedings, 1266: 18-23.
2534 253 838 2536	Voltolini, M., Zandomeneghi, D., Mancini, L., Polacci, M., 2011. Texture analysis of volcanic rock
253 839 2538	samples: quantitative study of crystals and vesicles shape preferred orien- tation from X-ray
253 840 2540	microtomography data. J Volcanol Geoth Res; 202:83-95
²⁵⁴ 841 2542	http://dx.doi.org/10.1016/j.jvolgeores.2011.02.003.
2543 254 842 2545	Wildenschild, D., & Sheppard, A.P., 2013. X-ray imaging and analysis techniques for quantifying
254 843 2547	pore-scale structure and processes in subsurface porous medium systems. Advances in Water
254 §44 2549	Resources, 51, 217-246. doi: 10.1016/j.advwatres.2012.07.018.
2550 255845	Wu, K., Dijke, M.I.J., Couples, G.D., Jiang, Z., Ma, J., Sorbie, K.S., Crawford, J., Young, I., Zhang,
2552 255 8 46 2554	X., 2006. 3D stochastic modelling of heterogeneous porous media - applications to reservoir
255 847 2556	rocks. Transp. Porous Media 65, 443–467. http://dx.doi.org/10.1007/ s11242-006-0006-z.
2557 2558 48	Wyllie, M. R. J., and Rose, W., 1950. Some Theoretical Considerations Related to the Quantitative
2559 256849	Evaluation of the Physical Characteristics of Reservoir Rock for Electrical Log Data. Trans.,
256 250 256 250	AIME, 189, 105-118.
²⁵⁶⁴ 2565	Yang, X., Mehmani, Y., Perkins, W. A., Pasquali, A., Schönherr, M., Kim, K., & Richmond, M.
2566 2567 52	C., 2016. Intercomparison of 3D pore-scale flow and solute transport simulation methods.
2568 256953 2570	Advances in Water Resources, 95, 176-189.
257 85 4 2572	Yao, J., Thovert, JF., Adler, P. M., Tsakiroglou, C. D., Burganos, V. N., Payatakes, A. C., Moulu,
²⁵⁷⁸ 55 2574	J. C., and Kalaydjian, F., 1997. Characterization, reconstruction and transport properties of
2575 2576 2577	Vosges sandstones. Rev. Inst. Fr. Pet., 52(1), 3–21.
2578	
2579	

2581	
2582	
2583 2584 2584	Zambrano, M., Tondi, E., Mancini, L., Arzilli, F., Lanzafame, G., Materazzi, M., & Torrieri, S., 2017.
2585 2586 58	3D Pore-network quantitative analysis in deformed carbonate grainstones. Marine and
2587 2588 2588 2580	Petroleum Geology, 82, 251-264.
259860 2591	Zandomeneghi, D., Voltolini, M., Mancini, L., Brun, F., Dreossi, D., Polacci, M., 2010. Quantitative
²⁵⁹ 861 2593	analysis of X-ray microtomography images of geomaterials: Application to volcanic rocks.
2594 2595 862	Geosphere, 6: 793-804, doi: 10.1130/GES00561.1.
2596 259 8 63	Zaretskiy, Y., Geiger, S., Sorbie, K., and Förster, M., 2010. Efficient flow and transport simulations
2598 259864 2600	in reconstructed 3D pore geometries. Adv. Water Resour., 33(12), 1508-1516.
2601 260 <u>8</u> 65	Zhang, D., Papadikis, K., & Gu, S., 2016. A lattice Boltzmann study on the impact of the geometrical
2603 260 866	properties of porous media on the steady state relative permeabilities on two-phase immiscible
2605 260 867	flows. Advances in Water Resources, 95, 61-79.
2607 2608 260868	Zhang, D., Zhang, R., Chen, S., and Soll, W.E., 2000. Pore scale study of flow in porous media: Scale
2610 261 869	dependency, REV, and statistical REV, Geophys. Res. Lett., 27, 1195-1198,
2612 261 870	doi:10.1029/1999GL011101.
2614 2615-1	
2616 2617	Zhang, S., Klimentidis, R.E., Barthelemy, P., 2012. Micron to millimeter upscaling of shale rock
261872 2619	properties based on 3D imaging and modeling. Int. Symp. Soc. Core Analysts. Society of
262873 2621	Core Analysts.
2622	
2623	
2624	
2625	
2627	
2628	
2629	
2631	
2632	
2633	
2634	
2635 2636	
2637	
2638	
2639	
2640	