
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjom20

Journal of Maps

ISSN: (Print) 1744-5647 (Online) Journal homepage: https://www.tandfonline.com/loi/tjom20

Intraformational unconformities as a record of
late Miocene eustatic falls of sea level in the Pisco
Formation (southern Peru)

Claudio Di Celma, Elisa Malinverno, Giulia Bosio, Karen Gariboldi, Alberto
Collareta, Anna Gioncada, Walter Landini, Pietro Paolo Pierantoni &
Giovanni Bianucci

To cite this article: Claudio Di Celma, Elisa Malinverno, Giulia Bosio, Karen Gariboldi, Alberto
Collareta, Anna Gioncada, Walter Landini, Pietro Paolo Pierantoni & Giovanni Bianucci (2018)
Intraformational unconformities as a record of late Miocene eustatic falls of sea level in the Pisco
Formation (southern Peru), Journal of Maps, 14:2, 607-619, DOI: 10.1080/17445647.2018.1517701

To link to this article:  https://doi.org/10.1080/17445647.2018.1517701

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group on behalf of Journal of Maps

View supplementary material 

Published online: 07 Oct 2018. Submit your article to this journal 

Article views: 817 View related articles 

View Crossmark data Citing articles: 5 View citing articles 



Science

Intraformational unconformities as a record of late Miocene eustatic falls of sea
level in the Pisco Formation (southern Peru)
Claudio Di Celma a, Elisa Malinverno b, Giulia Bosio b, Karen Gariboldi c, Alberto Collareta c,d,
Anna Gioncada c, Walter Landini c, Pietro Paolo Pierantoni a and Giovanni Bianucci c

aScuola di Scienze e Tecnologie, Università di Camerino, Camerino, Italy; bDipartimento di Scienze dell’Ambiente e della Terra, Università di
Milano-Bicocca, Milano, Italy; cDipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy; dDottorato Regionale in Scienze della Terra
Pegaso, Pisa, Italy

ABSTRACT
Field mapping and sedimentological study of outcrop sections exposed along the Ica River
valley permitted the establishment of a regional allostratigraphic framework for the upper
Miocene portion of the Pisco Formation. The stratigraphy of the studied interval is illustrated
using a new 1:20,000-scale geological map which reveals that this formation is a cyclical
sedimentary succession composed of three fining-upward allomembers. The bounding
surfaces defining each allomember are transgressively modified subaerial unconformities.
They converge and merge landward into a single composite surface representing the time-
transgressive lower boundary of the Pisco Formation. Accordingly, the extent of the
stratigraphic gap associated with the basal unconformity varies significantly throughout the
basin and increases toward the basin margins. The timing of allomember-bounding surfaces
coincides with that of major oxygen-isotope maxima in the deep-sea oxygen isotopic record
and matches the ages of eustatic sequence boundaries identified elsewhere, indicating
glacio-eustatic falls due to the growth of Antarctica ice sheets as a viable mechanism for
their development.
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1. Introduction

The upper Miocene to Pliocene Pisco Formation of
southern Peru is famous for its fossiliferous sites and
the very large number of high-quality fossil marine ver-
tebrates it contains (e.g. Bianucci, Di Celma, Urbina, &
Lambert, 2016; Collareta et al., 2015; Collareta et al.,
2017; Esperante, Brand, Chadwick, & Poma, 2015; Gion-
cada et al., 2016; Lambert et al., 2010, 2015; Lambert, Bia-
nucci, Urbina, & Geisler, 2017; Landini, Altamirano-
Sierra, et al., 2017; Landini, Collareta, et al., 2017; Marx,
Collareta, et al., 2017; Marx, Lambert, & de Muizon,
2017). Despite numerous significant paleontological dis-
coveries and the studies dedicated to the favourable diage-
netic conditions leading to the exceptional preservation of
bones (Brand, Esperante, Chadwick, Porras, & Alomía,
2004; Esperante, Brand, Nick, Poma, & Urbina, 2008;
Gariboldi et al., 2015; Gioncada, Gariboldi, et al., 2018;
Gioncada, Petrini, et al., 2018), so far this sedimentary
succession has been the subject of few modern sedimen-
tological or stratigraphic studies (Brand, Urbina, Chad-
wick, DeVries, & Esperante, 2011), which means that
the relative positions of its vertebrate fossil localities
remains tentative and, at least in part, still unknown.

In the last few years, the stratigraphic architecture of
the Pisco Formation has been documented in local

studies (Di Celma et al., 2017; Di Celma, Malinverno,
Cantalamessa, et al., 2016; Di Celma, Malinverno, Gar-
iboldi, et al., 2016) and constrained with biostrati-
graphic and geochronologic studies (Bosio et al., in
press Gariboldi, 2016; Gariboldi et al., 2017). This
paper forms part of this ongoing attempt to create a
refined chronostratigraphic model for the vertebrate
fossil localities of the Pisco Formation (Bianucci, Di
Celma, Collareta, et al., 2016; Bianucci, Di Celma,
Landini, et al., 2016) and illustrates a high-resolution
outcrop-based allostratigraphic framework for upper
Miocene sediments of the Pisco Formation exposed
along the western bank of the Ica River. Such a detailed
stratigraphic analysis provides both the physical and
temporal framework within which a number of
broader issues concerning patterns of marine ver-
tebrate evolution, speciation, and extinction events
can be addressed.

Within strata of the Pisco Formation, some of the
most important shifts in composition and diversity of
the marine vertebrate community occur across a series
of basin-wide intraformational unconformities (Di
Celma et al., 2017). At present, the causes that drove
these turnover events are uncertain and a causal link
between them and the development of the
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unconformities has yet to be established. Here we
investigate the nature of the unconformities and
explore a possible relationship between them and
eustatic sea-level oscillations related to global cooling.
During the middle Miocene, indeed, Earth’s climate
transitioned from a prolonged phase of global warmth
(the middle Miocene Climatic Optimum) into a Middle
to late Miocene stepwise climate cooling phase (the
middle Miocene Climate Transition) (Flower & Ken-
nett, 1994; Holbourn, Kuhnt, Clemens, Prell, & Ander-
sen, 2013). This prominent cooling phase represents
one of the major steps in Cenozoic climatic evolution
(e.g. Zachos, Shackleton, Revenaugh, Pälike, & Flower,
2001) and was punctuated by several short-lived epi-
sodes of glaciations, the Mi-Events of Miller, Wright,
and Fairbanks (1991), and concomitant eustatic lower-
ings reflecting increased continental ice volume on
Antarctica.

The objectives of the present contribution are: (i) to
identify Miocene unconformities in the Pisco For-
mation; (ii) to trace them, and the sedimentary
packages in between, over the entire studied area; and
(iii) to assess the nature of the basin-wide discontinu-
ities that have been used to outline the Pisco allomem-
bers by comparing their ages with the timing of eustatic
sea-level lowstands inferred fromMiddle and late Mio-
cene oxygen isotope records.

2. Geological and stratigraphic setting

The Peruvian margin is generally recognised as a long-
lived convergent margin, with the oceanic Farallon/
Nazca Plate subducting below the western margin of
South America at least since the beginning of the Jur-
assic (Coira, Davidson, Mpodozis, & Ramos, 1982).
The subduction of normal oceanic lithosphere and col-
lision of the aseismic Nazca Ridge beneath this part of
the forearc zone have been associated with a wide range
of effects on the leading edge of the overriding South
America continent, including long-term subsidence
driven by basal tectonic erosion, rapid crustal uplift
and exhumation, and the development of a composite
transform-convergent margin dominated by exten-
sional and strike-slip tectonic activity (Bishop et al.,
2017; Clift, Pecher, Kukowski, & Hampel, 2003; Dun-
bar, Marty, & Baker, 1990; Hampel, Kukowski, Bialas,
Huebscher, & Heinbockel, 2004; Hsu, 1992; Kulm,
Resig, Thornburg, & Schrader, 1982; León, Aleman,
Torres, Rosell, & De La Cruz, 2008; Macharé & Ortlieb,
1992). According to Thornburg and Kulm (1981), two
trench-parallel structural highs were formed on the
continental shelf and upper slope of the Peruvian mar-
gin during late Cretaceous-early Paleogene time,
namely the Outer Shelf High and the Upper Slope
Ridge. These two structural highs subdivided the Peru-
vian offshore into a chain of fault-bounded

sedimentary basins, which formed in response to pro-
longed extension and subsidence since the middle-late
Eocene (Viveen & Schlunegger, 2018) and may be sep-
arated into an inner set of shelf basins and a seaward
set of slope basins (Figure 1). In southern Peru, the
onshore (East) Pisco Basin is separated from the adja-
cent West Pisco Basin, which is situated on the slope,
by the Outer Shelf High.

The Pisco Basin contains a sequence of Eocene to
Pliocene sedimentary strata, nonconformably over-
lying Precambrian to lower Cretaceous basement
rocks (Kulm et al., 1982; León et al., 2008; Mukasa &
Henry, 1990; Thornburg & Kulm, 1981). From its
base upward, the sedimentary fill consists of the Para-
cas Formation, the Otuma Formation, the Chilcatay
Formation, and the Pisco Formation (DeVries, 1998;
DeVries & Jud, 2018; DeVries, Urbina, & Jud, 2017;
Dunbar et al., 1990). These formations are bounded
by regionally bevelling, conglomerate-mantled uncon-
formities that are locally accompanied by angular dis-
cordances and, therefore, they would be better
defined as alloformations (NACSN, 2005).

The basin fill is variously folded and faulted and defor-
mation is generally less intense as one moves upward
through the sedimentary succession. In the Pisco For-
mation faults display dip angles mostly comprised
between 75° and 85°. Kinematic indicators suggest that
all of the faults are either pure normal faults or have a
minor strike-slip component (Rustichelli, Di Celma,
Tondi, & Bianucci, 2016). These faults display two
main ranges of orientation, with the large majority of
them having a NW–SE orientation and the remainder
generally strikingNE. Along these faults the displacement
is generally minimal (metres to tens of metres) and also
varies along strike, occasionally tipping out into a fracture
with no displacement. Most of the fault zones are marked
by an abundance of gypsum filled veins (Rustichelli, Di
Celma, Tondi, Baud, & Vinciguerra, 2016).

3. Methods

The stratigraphic architecture of the study interval is
illustrated using a new geological map (Main Map),
which encompasses an area of about 200 km2, and
two northwest-southeast and south-north trending
geological cross-sections. Field mapping has been car-
ried out at 1:10,000 scale, however the final map has
been compiled at 1:20,000 scale. The allostratigraphic
approach employed for the purpose of the present
study is based on recommendations of the North
American Commission on Stratigraphic Nomenclature
(NACSN, 2005). However, the allomembers defined
herein are considered to be informal stratigraphic
units, designated by letters and numbers rather
than formally defined names. By emphasizing the
importance of chronostratigraphically significant
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discontinuities, the allostratigraphic approach has
facilitated correlation of discontinuity-bounded stratal
units and permitted an appreciation of the genetic
relationships between coeval depositional settings.
The bounding discontinuities that have been used to
define the Pisco allomembers are represented by com-
posite subaerial unconformity/marine-generated trans-
gressive surfaces that, in general, are characterised by
an abrupt transition from finer-grained offshore diato-
mites to coarser-grained shoreface sandstones. Age
control for Pisco strata and bounding unconformities
relies on the integration of recently published biostrati-
graphic data and 40Ar/39Ar age estimates (Gariboldi
et al., 2017).

The allostratigraphic scheme presented in this paper
builds upon the original allostratigraphy established by
Di Celma, Malinverno, Cantalamessa, et al. (2016) and
Di Celma, Malinverno, Gariboldi, et al. (2016) for the
Pisco Formation at Cerro Colorado and Cerro Los
Quesos. In order to identify the depositional settings,
to define stratigraphic surfaces, and to delineate genetic
units, four detailed sedimentary sections (totalling
some 710 m of measured stratigraphy) were logged at
the decimetre scale through the exposed succession.
For every single bed, lithology, colour, composition,
texture, sedimentary structures, amount and type of
bioturbation, palaeocurrent directions, and macrofossil
content have been described. These four sections were
successfully correlated by walking out a series of dis-
tinctive physical stratigraphic markers and bounding
erosion surfaces in the field, by visually tracing them
along outcrop photopanels, and by using high-resol-
ution Google Earth imagery.

4. Description of map units

The study area is located along the eastern, internal
margin of the basin, where the infilling sedimentary
succession becomes stratigraphically incomplete and
only the Miocene Chilcatay and Pisco formations
occur at the surface, resting directly on the eroded sur-
face of the pre-Cenozoic basement. The Eocene-Oligo-
cene strata of the Otuma Formation are widely exposed
outside of the southern and south-southeastern bound-
aries of the map area, but their extension in the subsur-
face of the mapped area is virtually unknown and
remains tentative. As a consequence, the description
provided below will focus only on the exposed strati-
graphic units.

4.1. Basement

All the pre-Cenozoic units are grouped together under
this title. Within the study area, the basement rocks
consist of a complex assemblage of lower Palaeozoic
gabbroic to granitoid rocks forming the San Nicolás
batholiths (Mukasa & Henry, 1990), intruding a Pre-
cambrian metamorphic complex known as the Are-
quipa massif and covered by Jurassic volcano-
sedimentary rocks of the Guaneros Formation. The
Guaneros Formation consists of volcaniclastic rocks
with andesitic to rhyolitic composition deriving from
a Jurassic calcalkaline volcanic arc, interbedded with
calcareous sediments (León et al., 2008). In the
study area, exposures of the basement rocks are lim-
ited and only occur between Cerro la Bruja and
Cerro Blanco.

Figure 1. Location maps of the present study. (a) Regional geographic context; (b) annotated air photo image (red box in (a) show-
ing locations of the study area (red frame) and location of the four stratigraphic sections measured at Cerro las Tres Piramides (CTP),
Cadenas de los Zanjones (CZ), Cerro la Bruja (CLB), and Cerro Blanco (CB). The areas in the black frame (Cerro Colorado, CC) and in
the white frame (Cerro los Quesos, CLQ) have been mapped by Di Celma, Malinverno, Gariboldi, et al. (2016) and Di Celma, Mal-
inverno, Cantalamessa, et al. (2016), respectively.
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4.2. Chilcatay Formation

Sediments of the Chilcatay Formation rest either with
angular unconformity on the Otuma Formation or
directly on the undulatory surface of the basement
rocks. Over much of the study area, Chilcatay strata
dip gently to the northeast and are subdivided by an
intraformational unconformity into two distinctive
sediment wedges (Figure 2; Di Celma et al., 2018). The
lower unit displays a stratigraphic thickness in excess
of 65 m and comprises a package of massive or weakly
bedded, heavily bioturbated, sandy siltstones with dis-
perse comminuted skeletal debris. These sandy silt-
stones underlie and landward interfinger (from
southwest to northeast) with a package of seaward-dip-
ping, 20 m-thick clinoformed grainstones. The clinos-
tratified beds display decimetric thickness and,
generally, their dip directions indicate a distinct mode
southwestward. Reworked barnacle plates, pectinids
and oysters account for a large portion of the highly
degraded skeletal fraction, emphasising the non-tropi-
cal character of these mixed siliciclastic-carbonate
rocks (compositional mixing sensu Chiarella, Longhi-
tano, & Tropeano, 2017) and suggesting their develop-
ment within a shallow-marine carbonate factory.
Similar heterozoan carbonate wedges with seaward dip-
ping, steep clinoforms have been documented by Pomar
and Tropeano (2001) and Massari and D’Alessandro
(2012). These authors interpreted the clinoforms as
the product of offshore-directed storm waves and cur-
rents that shed off the skeletalmaterials froma shoreface
carbonate factory and accumulated them along a steep
clinoformed ramp, within an offshore-transition set-
ting. In this scenario, the underlying and laterally adja-
cent sub-horizontal sandy siltstones are interpreted to
reflect deposition of the suspended load within a prox-
imal offshore setting.

The clinostratified body of mixed siliciclastic-car-
bonate rocks is unconformably overlain by a fining-
upward sedimentary succession that is about 10 m
thick at Cerro las Tres Piramides and about 25 m
thick at Cerro Yesera de Amara. This sedimentary
unit comprises a 3.5 m-thick package of massive, med-
ium-grained sandstones overlain by a package of mas-
sive siltstones that represent shoreface and outer shelf
depositional settings, respectively. A volcanic ash
layer sampled in the upper portion of massive silt-
stones, just 1 m below the erosional contact with the
overlying Pisco Formation, provided an 40Ar/39Ar age
of 18.02 ± 0.07 Ma, whereas biostratigraphic data
from the same stratigraphic interval seem to indicate
a slightly younger age (Di Celma et al., 2018).

4.3. Pisco Formation

The Pisco Formation is a regionally extensive stratal
unit recording the final widespread marine incursion

into the Pisco Basin. Within the study area, its strata
form a northeastward dipping monocline and consists
mainly of marine diatomites with subordinate silt-
stones and sandstones. The base of the Pisco For-
mation has a composite nature and includes at least
three regionally mappable unconformities (Figure
3a), termed PE0.0 through PE0.2 in ascending order,
which converge and merge landward (i.e. to the north-
east) to form a single diachronous surface (PE0). The
stratal configuration below and above this composite
surface varies with position within the basin and is
most commonly that of an angular unconformity
where it overlies older sediments of the Chilcatay For-
mation, or it is a nonconformity where it rests directly
on crystalline basement rocks (i.e. along the basin mar-
gins). A high-resolution allostratigraphic approach,
based on mapping of three basin-wide unconformities,
revealed that the investigated interval is composed of
three allomembers (named alphanumerically P0, P1,
P2 from older to younger). The three allomembers
are thought to be equivalent to depositional sequences
separated by transgressively-modified subaerial uncon-
formities, associated with shifts in base level (Di Celma
et al., 2017).

Internally, each allomember preserves a record of
water-depth change during deposition and displays
an overall fining-upward trend of facies associations
marking a gradual vertical shift from shoreface to
offshore deposits. None of the allomember-bounding
discontinuities shows evidence of subaerial exposure,
although each marks an abrupt shallowing and sea-
ward shift in facies. These surfaces are penetrated by
a Thalassinoides-dominated Glossifungites ichnofacies
(Figure 3b), indicating the erosional exposure of sedi-
mentary firmgrounds that were subsequently colo-
nised by burrowing animals (e.g. MacEachern,
Raychaudhuri, & Pemberton, 1992). Directly overlying
the Glossifungites-demarcated surfaces is a relatively
thin (up to 0.4 m thick), coarse-grained layer includ-
ing a variable mixture of pebble-size phosphatic
nodules, well-rounded pebble- to boulder-size base-
ment clasts, cobble-size clasts of dolomite-cemented
mudstone showing bivalve borings, internal moulds
of gastropods and articulated bivalves, shark teeth,
and polished bone fragments (Figure 3a and b). This
coarse-grained layer is regarded as a condensed trans-
gressive lag produced in the shoreface by low net sedi-
mentation rates during shoreline retreat (e.g.
Boessenecker, Perry, Schmitt, & Farke, 2014; Di
Celma, Ragaini, Cantalamessa, & Curzio, 2002; Föllmi,
2016; Grimm, 2000). A sand-prone facies association
is invariably found immediately above the aforemen-
tioned transgressive lag. It comprises yellow-weather-
ing, intensely bioturbated, fine- to very fine-grained
sandstones containing elongated, U-shaped, sand-
filled gutter casts (Figure 3c). These structures charac-
terise sedimentation during storms and are of
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particular sedimentological significance for the
interpretation of nearshore depositional environments
(i.e. Chiocci & Clifton, 1991; Leckie & Walker, 1982;
Myrow, 1992). The basal sandstones grade up into
finely laminated gray-white diatomaceous mudstones
recording deposition by suspension settling of diatom
frustules in a low-energy offshore setting (Figure 3d).
Subordinate lithologies include volcanic ash layers,
more resistant dolomite-cemented mudstones, fine-
to medium-grained sandstones, and phosphatic
nodule beds forming laterally continuous ledges in
steep slopes. Traced northeastward to outcrops
between Cerro la Bruja and Cerro Blanco, the diato-
maceous mudstones gradually give way to laterally
adjacent storm-influenced shoreface sandstones, dis-
playing swaley cross-stratification, large-scale uni-
directional cross-bedding, and small-scale, gravel-
filled gutter casts oriented perpendicular to the
palaeoshoreline (Figure 3e–g).

4.3.1. P0 allomember
The P0 allomember is bounded at the base by PE0.0
and at the top by PE0.1 (Figure 4a and b). This stratal
unit is confined to the southern part of the study area,
where it attains its greatest thickness (about 40 m) at
Cerro las Tres Piramides. Based on physical strati-
graphic relationships, it pinches out toward the north
and the west accompanied by the merging of the
PE0.0 and PE0.1 bounding surfaces.

At present, due to the lack of direct biostratigraphic
and radiometric data, the age of P0 is constrained by
the 40Ar/39Ar radiometric ages for volcanic ash beds
in the youngest sediments of the underlying Chilcatay
Formation at Cerro Yesera de Amara (18.02 ± 0.07 Ma,
Di Celma et al., 2018) and for the onset of deposition of
the overlying P1 allomember strata at Cerro Colorado
(9.10 ± 0.04 Ma, Gariboldi et al., 2017) and at Cerros
Cadenas de los Zanjones (9.00 ± 0.02 Ma, Di Celma
et al., 2017).

Figure 2. Schematic stratigraphic section of Pisco Formation and adjacent rocks. For simplicity, erosion surfaces have been desig-
nated ‘E’ with a preceding letter indicating the relevant formation (C = Chilcatay, P = Pisco) and numbers designating successively
higher stratigraphic surfaces. Accordingly, PE0.0, PE0.1, PE0.2 indicate successively younger erosion surfaces in the Pisco Formation.
These three unconformities converge and merge landward into a single surface (informally referred to as PE0) representing the
composite lower boundary of the Pisco Formation. The resulting allomembers (Amb) have been named for their lower bounding
surface. Thus, the P0 allomember refers to strata lying between the PE0.0 unconformity and the next higher unconformity (PE0.1).
The vertical scale is only indicative of thickness of sediment packages between unconformity surfaces.
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Figure 3. (a) Detail of the unconformity between the P0 and P1 allomembers at Cerro las Tres Piramides (black dotted line). This
surface places coarse-grained sediments composed of tightly packed phosphate pebbles, basement clasts, shark teeth, and polished
bones surrounded by a sandy matrix (above) in direct and erosive contact with diatomite mudstones (below); (b) below the surface,
frequent Thalassinoides burrows are filled with small phosphate nodules; (c) close up of sand-filled gutter casts in the nearshore
facies at the base of the P2 allomember. They occur parallel to each other as discrete scours that are usually less than 1.50 m
in width and 0.5 m deep. In cross section, these erosional structures display a gently (concave up) curved base and outlines
that flare upward. Internally, they are filled with slightly sagging sandy laminae that either drape the margins concordantly or
pinch out discordantly against them (Cadenas de los Zanjones); (d) finely laminated diatomites (P2, Cerro Hueco la Zorra); (e)
close up view of multiple gravel-filled gutter casts at the base of a gravel bed in nearshore facies. Typically, these linear features
are 0.20–0.25 m wide and 0.15 m deep and laterally connected. Lateral spacing is regular, at distances of about 0.3 m. Their cross-
sectional shape is generally symmetrical and some have walls with stepped outlines. Gutters show a strongly preferred NE orien-
tation, nearly perpendicular to the inferred shoreline trend. The infill consists of pebble-size phosphatic nodules set in a well-sorted,
medium- to coarse-grained sand (base of P2, Cerro Blanco); (f) swaley cross-stratification in fine-grained sandstone produced by
storm-induced oscillatory and combined flows (base of P2, Cerro Blanco); (g) oblique view of trough cross-stratification produced
in medium- to coarse-grained bioclastic sandstones by migration of lunate bedforms (base of P1, Cerro la Bruja).
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4.3.2. P1 allomember
The P1 allomember is bounded at the base by PE0.1 and
at the top by PE0.2 (Figure 4b–d). The geological map-
ping suggests that this unit onlaps onto the underlying
P0 strata and basement rocks and progressively over-
steps them from southwest to northeast. The P1 allo-
member is exposed throughout the entire study area
and is about 100 m thick at Cerros Cadenas de los

Zanjones, where a continuous stratigraphic section can
be measured. To help stratigraphically subdividing this
unit, two marker beds, namely P1-1 and P1-2, have
been correlated across part of the study area (Figure 4d).

4.3.3. P2 allomember
This allomember, which is more than 210 m thick at
Cerro la Bruja, has 10 ledge-forming marker beds

Figure 4. Annotated panoramic photographs of Pisco outcrops showing: (a) eastward view of the upper part of the Chilcatay For-
mation overlain along an unconformably contact by the marine deposits of the P0 allomember at Cerro los Tinajones (circled geol-
ogist for scale); (b) the vertically staked marine deposits of P0 and P1 at Cerro Submarino (circled car for scale); (c) outcrop view of
sediments in the vicinity of the unconformity surface between allomembers P1 and P2 (PE0.2) at Cadenas de los Zanjones; (d) crys-
talline basement nonconformably overlain by P1 strata and ledge-forming marker beds within P1 and P2 (Cerro la Bruja); (e) crystal-
line basement nonconformably overlain by P2 strata and ledge-forming marker beds serving as formidable correlation tools over
wide areas within P2 (Cerro Hueco la Zorra).
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(designated P2-1 through P2-10 in ascending order,
Figure 4d and e) being traceable across most of the cen-
tral and northern portions of the study area and, at
least in part, westward into the sedimentary succession
exposed at Cerro los Quesos (Di Celma et al., 2017).
Careful mapping of these marker beds between Cerro
la Bruja and Cerro Blanco shows that the shallow-
water strata of the P2 sequence extend beyond the
northern limit of the present study area and onlap an
unconformity surface cut across the P1 sequence,
which they overstep north of Cerro el Brujito to
onlap onto basement crystalline rocks. Lateral tracing
of the same marker beds in the southern portion of
the study area, between Cerros Cadenas de los Zan-
jones and Cerro la Mama y la Hija, is hampered by
the distance of these localities and the presence of
extensive sediment cover.

5. Discussion

5.1. Origin and timing of erosional
unconformities and correlation to global events

Diatom biostratigraphy combined with available
40Ar/39Ar radiometric ages indicate that strata of the
P1 allomember in the study area were deposited
between about 9.5 and 8.9 Ma, whereas those of the
P2 allomember are younger than 8.5 Ma (Gariboldi
et al., 2017). A comparison between the estimated
ages of allomember-bounding unconformities in the
Pisco Formation and a glacio-eustatic proxy afforded
by deep-sea oxygen isotopic records indicates that,
within the resolution of our age model, PE0.2 approxi-
mates the drop in sea level recognised as the Mi7 event
of Miller et al. (1991), an isotopic maximum dated at
8.7 Ma by Miller et al. (1998) and Westerhold, Bickert,
and Röhl (2005). The PE0.1 unconformity correlates
reasonably well with the Mi6 oxygen isotope maximum
dated at 10.3 Ma by Miller et al. (1998) and astronomi-
cally dated at 10.4 Ma by Turco, Hilgen, Lourens,
Shackleton, and Zachariasse (2001) and Westerhold
et al. (2005). Assuming that this correlation between
the studied PE0.1 and PE0.2 unconformities and the
eustatic curve derived from deep-sea oxygen isotope
records is correct and, therefore, that these breaks in
deposition have an eustatic (global) rather than tec-
tonic (local) origin, we speculate that the PE0.0 uncon-
formity reflects the Mi5 event, an isotopic maximum
dated at 11.7 Ma by Miller et al. (1998) and astronomi-
cally at 11.4 and 11.7 Ma by Turco et al. (2001) and
Westerhold et al. (2005), respectively (Figure 5). In
this frame, intermittent periods of subaerial exposure
during deposition of the Pisco Formation were likely
produced by recurring third-order (0.5–3 m.y.) eustatic
oscillations with the rate of eustatic fall exceeding that
of long-term tectonic subsidence. As a main result, the
several hundred metres thick sediments of the Pisco

Formation reflect accommodation space produced by
a combination of moderate subsidence rates and
eustatic sea-level fluctuations.

An additional support to the eustatic origin for these
allomember-bounding surfaces would be the similar
timing of the unconformities in different ocean basins.
Comparison of ages of depositional breaks in the Pisco
Formation with ages of seismic sequence boundaries
identified and dated in the Bahamas (Eberli, Ansel-
metti, Kroon, Sato, & Wright, 2002; ODP Leg 166)
indicates that the timing of the PE0.1 and PE0.2 uncon-
formities is remarkably similar with the timing of
eustatic sequence boundaries lettered H (9.4 Ma) and
G (8.7 Ma) along the Bahamas Transect, respectively.

Considering the above assumption and available
chronological constraints, the time represented by the
erosional unconformity interposed between the young-
est sediments of the Chilcatay Formation (18.02 ±
0.07 Ma) and the oldest sediments of the Pisco For-
mation (11.7 Ma) is about 6.3 m.y. This long hiatus
in the stratigraphic record indicates a prolonged
phase of subaerial exposure and erosion of this mar-
ginal basin and possibly reflects a widespread pulse of
uplift and compression related to the Quechua 1 tec-
tonic event (Viveen & Schlunegger, 2018) exacerbating
the effects of the long-term global lowering of sea level
recorded during the the middle Miocene Climate Tran-
sition. The most recent estimates for the amplitude of
the eustatic changes during this period indicate that
the sea-level fell about 53–69 m between 16.5 and
13.9 Ma (John et al., 2011) and 50 ± 5 m between
13.6 and 11.4 Ma (John, Karner, & Mutti, 2004). As
such, the Pisco Formation records a subsequent, wide-
spread marine transgression and re-flooding of the
forearc basin.

5.2. Allomember stacking pattern

The evidence of an eustatic origin for the allomember-
bounding unconformities in the Pisco Formation does,
obviously, not imply that the regional tectonic activity
did not affect the overall stratigraphic architecture of
this unit. Within the study area, the PE0.1 and PE0.2
surfaces onlap onto the older PE0.0 surface in a broadly
northeasterly direction, merging into a composite PE0
unconformity. Accordingly, the intervening P0, P1,
and P2 allomembers taper progressively to the north-
east and overstep each other to lap out against the
pre-Cenozoic crystalline basement, forming a set of ret-
rogradationally stacked stratal wedges. This architec-
tural pattern, suggesting a steady increase in the
accommodation space, is indicative of deposition
during a long-term period of relative sea-level rise
punctuated by repeated sea-level falls and is interpreted
as the product of third-order eustatic sea-level changes
superimposed on prolonged extension and relatively
uniform subsidence (Viveen & Schlunegger, 2018).
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6. Conclusions

A systematic analysis of the sedimentological and stra-
tigraphic features of the outcrop belt exposed along the
western bank of the Ica River valley permitted the
establishment of a regional allostratigraphic framework
for the upper Miocene portion of the Pisco Formation.
Coplanar subaerial unconformity/marine-generated

transgressive surfaces, designated PE0.0, PE0.1 and
PE0.2, can be traced throughout the entire study area
and provide a basis for defining the presence of three
informal allomembers, designated P0 through P2, in
the order of a few tens to hundreds of metres thick.
These allomembers display repetitive vertical facies
successions representing a spectrum of storm-

Figure 5. (a) Schematic, dip-oriented stratigraphic diagram for the Pisco Formation (not in scale) showing the position of the strati-
graphic sections on which the diagram is based (vertical black lines). Geochronologic data from these sections were supplemented
by additional 40Ar/39Ar radiometric ages from Cerro los Quesos (CLQ, vertical dashed line). The Pisco Formation exhibits pronounced
thinning to the northeast with component allomembers onlapping onto the basal composite surface PE0 and arranged in a retro-
gradational pattern, progressively offset to the northeast. The marine erosion surfaces that bound Pisco sequences, namely PE0.0,
PE0.1, and PE0.2, were formed as a result of wave erosion in a transgressing shoreline following sea-level lowstands and, therefore,
will be close to planar and inclined slightly seaward. Red lines indicate chronostratigraphic markers; (b) correlation of Pisco allo-
members with late Miocene sea-level fluctuations by using integrated biostratigraphic and geochronologic data from Gariboldi
et al. (2017). Diatom biostratigraphy revised following most recent publications on Equatorial Pacific diatom biostratigraphy (mostly
Barron, 2003). Calculated sea-level curve from Westerhold et al. (2005).
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influenced shoreface to offshore environments laid
down during the relative rise of sea-level cycles.

In the study area, the Pisco Formation forms a
northeastward-thinning wedge and its composite
lower boundary steps up-section from the base of the
P0 allomember in the southwest, through that of
the overlying P1, to coincide with the base of P2 to
the northeast (paleolandward). Accordingly, the extent
of the stratigraphic gap associated with the basal
unconformity varies significantly throughout the
basin and increases toward the basin margins.

At this stage, the underlying control on these fluctu-
ations of sea level is in part speculative. However, com-
bined biostratigraphic and geochronologic age
constraints indicate that at least two bounding uncon-
formities developed near discrete glacial intervals
inferred from deep-sea oxygen isotope records,
suggesting a causal link between the observed deposi-
tional cyclicity and third-order late Miocene changes
in global sea level caused by the waxing and waning of
theAntarctic ice sheet. On the basis of available age con-
trol, unconformities PE0.1 and PE0.2 appear to corre-
late with isotopic maxima observed at about 10.4 and
8.7 Ma, respectively. We speculate that the PE0.0
unconformity at the base of the P0 allomember might
correlate with the isotopicmaxima observed at 11.7 Ma.

As a consequence of third-order glacio-eustatic
fluctuations in sea-level acting in concert with rela-
tively uniform subsidence rates, the study area was
alternatively exposed and submerged, leading to devel-
opment of bounding subaerial unconformities during
glacial lowerings of sea level and deposition of allo-
members during interglacial sea-level rises. Over the
long-term, this combination of eustatic fluctuations
and basin subsidence resulted into a punctuated rela-
tive sea-level rise, with P0, P1 and P2 allomembers
stacked in a retrogradational, onlapping configuration
onto the underlying Chilcatay Formation and the
pre-Cenozoic basement.

Software

The geological map and associated geological sections
were compiled by scanning hand drafts as black and
white TIF files, and then digitising the linework using
the Corel Draw X3 graphics package. By using the
GIS Data processing application Global Mapper 12,
contour lines for the 1:10,000 scale topographic base
map were generated from digital elevation models
(DEMs) based on the Shuttle Radar Topography Mis-
sion 26 (SRTM) as released by the United States Geo-
logical Survey (SRTM3 USGS version 2.1).
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