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The field of optomechanics provides us with several examples of quantum photon-phonon interface. In this
paper, we theoretically investigate the generation and manipulation of quantum correlations in a microfabricated
optomechanical array. We consider a system consisting of localized photonic and phononic modes interacting
locally via radiation pressure at each lattice site with the possibility of hopping of photons and phonons be-
tween neighboring sites. We show that such an interaction can correlate various modes of a driven coupled
optomechanical array with well-chosen system parameters. Moreover, in the linearized regime of Gaussian
fluctuations, the quantum correlations not only survive in the presence of thermal noise, but may also be gener-
ated thermally. We find that these optomechanical arrays provide a suitable platform for quantum simulation of
various many-body systems.

I. INTRODUCTION

The impressive experimental progress in fabricating mi-
cromechanical and nanomechanical devices have opened a
route towards the exhibition of quantum behavior at macro-
scopic scales. The interaction between micro- or nanome-
chanical oscillators and the optical field via the radiation pres-
sure force is the basis of a wide variety of optomechanical
phenomena. Despite their variety in the system sizes, param-
eters, and configurations, optomechanical systems (OMSs)
share common features. Almost all OMSs are described by
the same physics. OMSs offer further insights into the issues
concerning the development of quantum memory for quantum
computers [1], high precision position, mass or force sensing
[2–6], quantum transducers [7], classical and quantum com-
munication [8], ground state cooling of mechanical oscillators
[9, 10], nonclassical correlations between single photons and
phonons [11], generation of nonclassical states [12] and test-
ing of the foundations of quantum mechanics [13–16]. For a
recent review and current areas of focus of quantum optome-
chanics see Refs. [17, 18].

The extension to multimode systems is an attractive route
for quantum optomechanics. A group of mechanical oscilla-
tors interacting via the radiation pressure with a common opti-
cal mode [19–26], or a group of mechanical oscillators locally
interacting with a single optical mode involving the tunneling
of photons and phonons between neighboring sites [27–38]
are the two realizations of multimode optomechanics. The
former is realized in a single optical cavity containing multi-
ple membranes while the latter is realized experimentally in
the so-called optomechanical crystals (OMCs) in one and two
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dimensions.
Cooperative behaviors, emerging due to the mutual cou-

pling, are beneficial to investigate many-body physics of pho-
tons or phonons in OMCs. An OMC is usually fabricated from
a thin film of silicon membranes where an engineered defect
in the crystal is used to localize an optical and a mechanical
mode. OMCs usually have a large single photon optomechan-
ical coupling [39–42]. Several aspects of the array of coupled
OMSs have already been investigated in the literature, involv-
ing synchronization dynamics [26–28, 43, 44], slowing and
stopping light [32], long-range collective interactions [19],
correlated quantum many-body states [33], reservoir engi-
neering and dynamical phase transitions [25], squeezing, en-
tanglement and state transfer between modes [34, 45], trans-
port in a one-dimensional chain [35, 46, 47], superradiance
and collective gain [48], graphene-like Dirac physics [36],
creation of artificial magnetic fields for photons on a lattice
[37], quantum simulation of the propagation of the collective
excitations of the photon fluid in a curved spacetime [49], and
topological phases of sound and light [38].

Quantum correlations, in particular entanglement, have
many applications in superdense coding, quantum teleporta-
tion [50] and protocols of quantum cryptography [51]. The
generation and manipulation of entanglement in many-body
systems are of great importance for quantum information
processing. Furthermore, quantum correlations are valuable
in characterizing various phases and corresponding quantum
phase transitions in quantum many-body systems [52–54]. Bi-
partite entanglement plays an important role in characterizing,
classifying and simulating quantum many-body systems [55].
Physical systems such as Bose-Einstein condensates [56–58],
cold or thermal atoms [59, 60], and trapped ions [61, 62]
represent promising platforms for the investigation of many-
particle quantum entanglement. In the past decade, much of
the attention has been devoted to entanglement in OMSs. En-
tanglement is one of the consequences of the coherent photon-
phonon interaction in OMSs [8, 63–69]. For instance, contin-
uous variables entanglement between two mechanical modes
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FIG. 1. Schematic illustration of a one-dimensional OMC. Localized
photonic and phononic modes couple locally via the optomechanical
interaction with strength g0 at each lattice site. Photon and phonons
hop between near neighbor sites with rates J and K, respectively. A
laser at frequency ωL and amplitude η j drives each site.

has recently been realized [70, 71]. Since it is a possible re-
source for quantum technologies, quantum discord in many-
body systems also requires attention.

Despite considerable efforts to understand the quantum cor-
relations in OMSs [8, 63–68, 70, 71], a full picture of the
behavior of entanglement and of quantum discord in OMCs
remain elusive. Based on the above motivations, in this pa-
per, we consider the dynamics of coupled OMSs with a view
towards quantum correlations. Employing the Heisenberg-
Langevin (HL) approach and linearizing HL equations, we
separate the deterministic dynamics and the quantum fluc-
tuation dynamics. We then use HL equations to obtain the
covariance matrix (CM) in order to study quantum correla-
tions. With the CM in hand, we can investigate the degree of
steady-state entanglement and the Gaussian quantum discord
between different optical and mechanical modes under differ-
ent conditions. We study the influence of the presence of a
thermal reservoir and we show a nonmonotonic behavior of
quantum correlations as a function of the heat bath tempera-
ture.

The paper is organized as follows. In Sec. II, we begin
with describing the system under consideration, i.e., an OMC.
In Sec. III, we derive the HL equations of motion. We then
discuss the classical equations of motion and the linearized
quantum equations. In Sec. IV, we discuss the presence of
entanglement and Gaussian discord in OMCs. Finally, in Sec.
V, we present our concluding remarks.

II. ARRAY OF COUPLED OMSs

As depicted in Fig. 1, the system under consideration is a fi-
nite one-dimensional OMC where each site consists of a local-
ized photonic and phononic mode coupled locally via the stan-
dard optomechanical interaction. The modes of nearby sites
are connected via photon and phonon tunneling. The Hamilto-

nian of such a system is then given by (h̄ = 1) [28, 35, 38, 46]

H = H0 +Ht +Hp , (1)

where

H0 = ∑
j

[
ωca†

ja j +ωmb†
jb j−g0a†

ja j(b
†
j +b j)

]
, (2a)

Ht =−∑
〈 j,l〉

(
Ja†

jal +Kb†
jbl
)
, (2b)

Hp = ∑
j

(
iη je−iωLta†

j − iη∗j eiωLta j
)
. (2c)

Here, H0 includes the free energy of each optical mode with
frequency ωc, denoted by the photon operators a j and a†

j , the
harmonic motion of each mechanical modes with frequency
ωm, denoted by phonon operators b j and b†

j , and the usual
optomechanical interaction with strength g0. Further, Ht rep-
resents the hopping of photons and phonons between adjacent
lattice sites with hopping strengths J and K, respectively. The
notation ∑〈 j,l〉 denotes the summation over all adjacent lat-
tice sites. Finally, Hp denotes that each lattice site is optically
driven by a laser with frequency ωL and amplitude η j.

III. HEISENBERG-LANGEVIN EQUATIONS

The HL equations of motion for the optical and mechanical
modes in the frame rotating at the laser frequency are, respec-
tively, given by

ȧ j = (i∆−κ)a j + ig0(b
†
j +b j)a j + iJ

(
a j−1 +a j+1

)
+η j−

√
κain

j (t) , (3)

ḃ j =−(iωm + γ)b j + ig0a†
ja j + iK(b j−1 +b j+1)−

√
γbin

j (t) ,
(4)

where we have defined the laser detuning ∆ = ωL−ωc. Be-
sides, κ and γ characterize, respectively, the dissipation of op-
tical and mechanical modes. The zero-mean value operators
ain

j (t) and bin
j (t) that describe, respectively, the vacuum opti-

cal input noise and the mechanical noise operator, satisfy the
commutation relations

[ain
j (t),a

in,†
j′ (t ′)] = [bin

j (t),b
in,†
j′ (t ′)] = δ j j′δ (t− t ′), (5)

and the Markovian correlation functions

〈bin,†
j (t)bin

j′ (t
′)〉= n̄mδ j j′δ (t− t ′), (6)

〈ain
j (t)a

in,†
j′ (t ′)〉= δ j j′δ (t− t ′), (7)

where we have assumed that each cavity is at zero tempera-
ture and n̄m = [exp(h̄ωm/kBT )−1]−1 is the mean number of
thermal phonons of each mechanical mode at temperature T ,
with kB being the Boltzmann constant.
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FIG. 2. Stability domain as a function of the normalized input power
η/J and normalized detuning ∆/J. The white and blue areas cor-
respond to the unstable and stable correlated regimes, respectively.
The normalized parameters are set with respect to J, κ/J = 0.1,
g0/J = 10−4, γ/J = 0.002, ωm/J = 0.1 and K/J = 0.05. Temper-
atures of the photonic and phononic heat baths are considered to be
zero.

A. Classical dynamics

We now employ the mean-field approximation to linearize
the dynamics around the classical solutions by decomposing
the quantum field operators as a j = α j + c j and b j = β j + d j
where α j and β j are the steady-state mean fields describing,
respectively, the classical behavior of the optical and mechan-
ical modes, and c j and d j are the quantum fluctuations with
zero-mean value. For the aim of this paper, it is enough
to consider only the translational symmetry α j = α j±1 and
β j = β j±1, which is obtained with an approximately uniform
optical driving η j ' η which therefore excites a background
with a small wave vector k ≈ 0. Using this assumption, the
system dynamics is then simplified to the single-site case. The
equations of motion for the steady-state classical mean fields
can be obtained by averaging Eqs. (3) and (4) over classical
and quantum fluctuations

α j = α ' iη
(∆+ iκ +2J+2g0Rβ )

, (8)

β j = β ' g0|α|2

(ωm− iγ−2K)
, (9)

where R denotes the real part.

B. Linearized quantum dynamics

We study the quantum statistical properties of the system
through the small fluctuations of the operators around the
steady-state classical mean values given by Eqs. (8) and (9).
Using the standard definition of the optical and mechanical
mode quadratures X j = (c j + c†

j)/
√

2, Yj = (c j− c†
j)/i
√

2,

x j = (d j +d†
j )/
√

2 and y j = (d j−d†
j )/i
√

2, the equations of

motion for the quantum fluctuations are given by

Ẋ j =−(∆+2g0Rβ )Yj−κX j−2g0Iαx j

− J
(
Yj−1 +Yj+1

)
−
√

κX in
j (t) , (10)

Ẏj = (∆+2g0Rβ )X j−κYj +2g0Rαx j

+ J
(
X j−1 +X j+1

)
−
√

κY in
j , (11)

ẋ j =−γx j +ωmy j−K
(
y j−1 + y j+1

)
−
√

γxin
j , (12)

ẏ j =−ωmx j− γy j +2g0 (RαX j +IαYj)

+K
(
x j−1 + x j+1

)
−
√

γyin
j , (13)

where I denotes the imaginary part. We now express the lin-
earized HL equations in the following compact matrix form

u̇(t) = Au(t)+n(t) , (14)

where we have defined the vector of fluctuation operators
u =

[
· · ·v j−1,v j,v j+1, · · ·

]T with v j = [X j,Yj,x j,y j] and the
corresponding vector of noises n =

[
· · ·m j−1,m j,m j+1, · · ·

]T
with m j = [

√
κX in

j ,
√

κY in
j ,
√

γxin
j ,
√

γyin
j ], in which

X in
j = (ain

j +a†,in
j )/
√

2, Y in
j = (ain

j −a†,in
j )/i

√
2,

xin
j = (bin

j +b†,in
j )/
√

2 and yin
j = (bin

j −b†,in
j )/i

√
2 are

the input noise quadratures of the optical and mechanical
modes. Furthermore, we define the drift matrix A as

A =



. . . . . . 0 0 0

. . . B C 0 0
0 C B C 0

0 0 C B
. . .

0 0 0
. . . . . .


, (15)

with the blocks

B =

 −κ −(∆+2g0Rβ ) −2g0Iα 0
(∆+2g0Rβ ) −κ 2g0Rα 0

0 0 −γ ωm
2g0Rα 2g0Iα −ωm −γ

 ,

(16)

C =

 0 −J 0 0
J 0 0 0
0 0 0 −K
0 0 K 0

 . (17)

IV. STEADY-STATE QUANTUM CORRELATIONS

Due to the Gaussian nature of the quantum noises and to the
linearized dynamics, the steady state of the quantum fluctua-
tions of the OMCs is a continuous variable 2N-partite Gaus-
sian state, which is completely determined by its 4N × 4N
CM. The formal solution of Eq. (14) is

u(t) = M(t)u(0)+
t∫

0

M(t− s)n(s)ds , (18)
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with M(t) = exp[tA]. The CM defined as

Vpq(t) =
1
2
〈
up(t)uq(t)+uq(t)up(t)

〉
, (19)

contains all information about the quantum correlation be-
tween various mechanical and optical modes where up(t) is
the pth component of the vector u(t).

The system reaches its steady state when M(∞) = 0. Our
analysis is restricted to the stable regime where all the eigen-
values of the drift matrix have negative real parts. In Fig. 2,
we plot the region of stability as a function of the normalized
laser pump intensity and detuning. For large laser drive, the
system enters the unstable region. In the steady state, one gets
the CM elements as

Vi j = ∑
k,l

∞∫
0

ds
∞∫

0

ds′Mik(s)M jl(s′)Φkl(s− s′), (20)

where

Φkl(s) =
1
2
〈
nk(s)nl(s′)+nl(s′)nk(s)

〉
= Dklδ (s− s′), (21)

where D = diag[· · ·F,F,F, · · · ]T with F =
diag[κ,κ,γ(2n̄m +1),γ(2n̄m +1)]. When the stability
conditions are satisfied so that M(∞) = 0, the steady-state
CM, V, can be obtained by solving the linearized HL
equation (14) for the quantum fluctuations, which fullfil the
following Lyapunov equation

AV+VAT =−D . (22)

With these classical and quantum steady-state solutions in
hand, we next employ the CM formalism to calculate the
steady-state quantum correlations. We check the presence of
the quantum correlations between the mechanical and optical
modes on the same site, as well as between the mechanical
or optical modes with different site indices. Considering the
following reduced CM of the two modes

VR =

[
VA VC
VT

C VB

]
, (23)

one can calculate the quantum correlations. Here, VA, VB and
VC are 2×2 matrices where VA and VB account for the local
properties of modes A and B, respectively, while VC describes
intermode correlations. A and B may stand for two different
modes.

A. Steady-state entanglement

We quantify the degree of entanglement in terms of the
logarithmic negativity, which is an entanglement mono-
tone, and it is given by EN = max{0,− ln2ν̃−} with ν̃− =

2−1/2
(

Σ−−
√

Σ2
−−4detVR

)1/2
being the smallest of the

two symplectic eigenvalues of the partially transposed trans-
posed CM and Σ± = detVA +detVB±2detVC.
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FIG. 3. The degree of entanglement between optical and mechanical
modes in terms of the logarithmic negativity for various values of the
laser detuning: (a) ∆/J =−2.5, (b) ∆/J =−2.1, (c) ∆/J =−1.7 and
(d) ∆/J =−1.3 for 101 coupled OMSs. (e) The logarithmic negativ-
ity between the two optical and mechanical modes with the same site
index j =−50 or j = 50 (blue solid line) and j = 0 (red dashed line)
versus the laser detuning. We set normalized parameters with respect
to J, κ/J = 0.1, η/J = 15, g0/J = 10−4, γ/J = 0.002, ωm/J = 0.1
and K/J = 0.05. Temperatures of the photonic and phononic heat
baths are considered to be zero.

1. Photon-phonon entanglement

The degree of entanglement between optical and mechan-
ical modes in terms of the logarithmic negativity for various
laser detuning at zero temperature of both the photonic and
phononic heat baths is shown in Fig. 3 (a)-(d). We can see
that one has mostly on-site optomechanical entanglement, i.e.,
between modes at the same sites, and that there is no long-
range photon-phonon entanglement. However, as suggested
by the zoomed insets, one has that, due to the combined ac-
tion of the on-site optomechanical interaction and of tunnel-
ing of the photons and phonons between lattice sites, there
is some amount of off-site entanglement between optical and
mechanical modes. For instance, the optical mode at the site
j = 0 is entangled with the neighbor mechanical modes at sites
| j|< 1, | j|<, | j|< 3, and | j|< 4 for ∆/J =−2.5, ∆/J =−2.1,
∆/J = −1.7 and ∆/J = −1.3. It is also evident the detuning
has a significant effect on the optomechanical entanglement.
We address this issue in Fig. 3 (e) where we have plotted the
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FIG. 4. The degree of entanglement between optical and mechani-
cal modes in terms of the logarithmic negativity for various values
of the laser intensity: (a) η/J = 50, (b) η/J = 150, (c) η/J = 250
and (d) η/J = 350 for 101 coupled OMSs. We set ∆/J = 1.5, other
parameters are the same as Fig. 3. Panels (e) and (f) show the log-
arithmic negativity between the two optical and mechanical modes
with the same index j = −50 or j = 50 (blue solid line) and j = 0
(red dashed line) versus the laser-drive intensity for two values of the
laser detuning: (e) ∆/J =−1.5 and (f) ∆/J = 1.5.

logarithmic negativity between the two optical and mechan-
ical modes with the same site index j = −50 or j = 50 and
j = 0 versus the laser detuning. Our choices for the detun-
ing and laser-drive intensity correspond to the stable region of
Fig. 2. Furthermore, since we did not consider the periodic
boundary conditions one can see a non-uniform behavior at
the lattice edges.

In Fig. 4 (a)-(d), we show how the photon-phonon entan-
glement varies as a function of the laser pump intensity for a
fixed laser detuning, ∆/J = 1.5. By increasing the laser in-
tensity the entanglement first tends to increase and then to de-
crease as we approach the unstable region. Therefore, there is
a non-monotonic behavior of on-site entanglement. We show
this fact in Figs 4(e) and 4(f) where we have plotted the log-
arithmic negativity between the two optical and mechanical
modes with the same site index at the lattice edge ( j = −50
or 50) and at the lattice center ( j = 0) versus the laser-drive
intensity for two values of the laser detuning.

Finally we have also studied the eventual presence of
photon-photon or phonon-phonon entanglement between dif-

0 0.05 0.1 0.15 0.2
0

0.5

1
·10−2

n̄m

E
N

FIG. 5. Steady-state photon-phonon entanglement for the site index
j =−50 or j = 50 versus the thermal phonon number n̄m for two val-
ues of the normalized laser detuning ∆/J =−2 (red dashed line) and
∆/J = −2.1 (blue solid line) for 101 coupled OMSs. We have con-
sidered here mechanical resonators with frequency ωm/2π = 9 GHz
and the other parameters are the same as in Fig. 3.

ferent sites. We have verified that for all choices of the param-
eters this kind of inter-site entanglememt is always zero.

2. Thermal effects on the generated entanglement

Usually, quantum correlations and entanglement in partic-
ular are fragile with respect to thermal noise. Therefore, the
investigation of the effect of thermal fluctuations on the bipar-
tite quantum correlations in OMCs is of particular relevance
for applications.

In Fig. 5, we show how the on-site photon-phonon entan-
glement changes with increasing thermal phonon number n̄m.
Evidently, the on-site photon-phonon entanglement decays
for increasing temperatures and it persists at ultra-cryogenic
temperatures achievable in dilution refrigerators (for example
n̄m ' 0.06 for mechanical resonance frequencies ωm/2π =
9 GHz at a temperature of T = 0.15K).

B. Steady-state Gaussian quantum discord

It is also interesting to examine if quantum discord [72, 73],
a measure of the quantumness of correlations, is present in the
steady state of the system. The Gaussian quantum discord is
an asymmetric quantity and the Gaussian quantum A-discord
of the Gaussian state of two modes, A and B, is given by [74,
75]

D→ = f
(√

β

)
− f (υ−)− f (υ+)− f

(√
ε
)

(24)

where

f (x)=
(

x+1
2

)
log10

(
x+1

2

)
−
(

x−1
2

)
log10

(
x−1

2

)
,

(25)

υ± =

√√√√Σ+±
√

Σ2
+−4detVR

2
(26)
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FIG. 6. Steady-state symmetrized Gaussian quantum discord be-
tween optical and mechanical modes for various laser detuning val-
ues: (a) ∆/J = −2.5, (b) ∆/J = −2.1, (c) ∆/J = −1.7 and (d)
∆/J = −1.3 for 101 coupled OMSs. Panel (e) shows the sym-
metrized Gaussian quantum discord between the two optical and me-
chanical modes with the same index j = 0 (blue solid line) and j = 50
(red dashed line) versus the laser detuning. The heat bath tempera-
tures for mechanical and optical modes are considered to be zero.
Other parameters are the same as Fig. 3.

are the two symplectic eigenvalues of the two-mode CM and

ε =


2γ2+(β−1)(δ−α)+2|γ|

√
γ2+(β−1)(δ−α)

(β−1)2 , (δ−αβ )2

(β+1)γ2(α+δ )
≤ 1;

αβ−γ2+δ−
√

γ4+(δ−αβ )2−2γ2(δ+αβ )
2β

, otherwise,
(27)

where α = detVA, β = detVB, γ = detVC and δ = detVR are
the symplectic invariants. One can obtain the Gaussian quan-
tum B-discord D← by swapping the roles of the two modes,
A and B, which is equivalent to swap α and β in the above
formulas. Since we are interested in quantum correlations in
general between the different modes in the one-dimensional
array, from now on we will consider the symmetrized quan-
tum discord, DG = max{D←,D→}.

1. Photon-phonon steady-state Gaussian quantum discord

Fig. 6 shows the behavior of the symmetrized quantum dis-
cord DG for various laser detuning values at zero tempera-
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FIG. 7. Steady-state Gaussian quantum discord between optical and
mechanical modes for various laser intensity values: (a) η/J = 50,
(b) η/J = 200, (c) η/J = 350 and (d) η/J = 500 for 101 coupled
OMSs. Here, we set ∆/J = 1.5, and other parameters are the same
as Fig. 3. Panels (e) and (f) show the Steady-state Gaussian quan-
tum discord between the two optical and mechanical modes with the
same site index j = 50 or j =−50 (red dashed line) and j = 0 (blue
solid line) versus the laser-drive intensity for two values of the laser
detuning: (e) ∆/J =−1.5 and (f) ∆/J = 1.5.

ture of both photonic and phononic modes. Similarly to what
occurred for entanglement, changing the laser detuning has
a significant effect on the photon-phonon Gaussian quantum
discord, and again we have a similar behavior with that of
entanglement with the above choice of parameters, with the
presence of larger on-site discord between the mechanical and
the optical mode and which extends for few sites. One starts
to see a different behavior between Gaussian discord and en-
tanglement when looking at the dependence upon the driving
power and specifically if we consider increasing values of the
laser drive η . In Fig. 7, we show how steady-state photon-
phonon Gaussian quantum discord varies with the laser inten-
sity for a fixed laser detuning, ∆/J = 1.5. In contrast with the
behavior of entanglement, we have that by increasing the laser
intensity one has a significant increase of Gaussian quantum
discord between optical and mechanical sites (see Figs. 7(e)
and 7(f)). Moreover, at larger values one can see a long-range
correlation between optical and mechanical modes appearing
(see Fig. 7(d)).
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FIG. 8. Steady-state Gaussian quantum discord between (a)-(c) op-
tical modes and (e)-(f) mechanical modes for various values of the
laser intensity: (a) and (d) η/J = 80, (b) and (e) η/J = 100, and
(c) and (f) η/J = 120 for 101 coupled OMSs. The normalized laser
detuning is set ∆/J =−1.5. Other parameters are the same as Fig. 2.

2. Photon-photon and phonon-phonon steady-state Gaussian
quantum discord

The appearance of long-range quantum correlations occurs
also when considering either only optical modes or only me-
chanical modes, at each site of the OMC, in clear contrast with
the case of entanglement which is instead completely absent,
even between neighboring sites. This fact is shown in Fig. 8.
As can bee seen, for a fixed laser detuning, by increasing the
laser intensity the steady-state Gaussian quantum discord be-
tween modes of the same nature increases.

3. Thermal effects on the steady state Gaussian quantum discord

It is relevant to study the robustness of the Gaussian quan-
tum discord with respect to temperature as we did it already
for entanglement. The steady-state Gaussian quantum discord
under different heat-bath phonon number for normalized laser
detuning ∆/J = 1.5 and laser intensity η/J = 500 is depicted
in Fig. 9. One can see a non-monotonic behavior in Gaussian
quantum discord by increasing the thermal phonon number.
It first tends to increase, then decreases and finally increases
again. This behavior is somehow unexpected and it can be
regarded as the evidence of thermally induced Gaussian quan-
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FIG. 9. Steady-state Gaussian quantum discord under different
heat bath phonon number for normalized laser detuning ∆/J = 1.5,
driving η/J = 500, and mechanical resonance frequency ωm/2π =
9 GHz: (a) n̄m = 0.1 (T = 0.18K), (b) n̄m = 0.5 (T = 0.39K), (c)
n̄m = 2.5 (T = 1.28K), and (d) n̄m = 12.5 (T = 5.59K) for 101 cou-
pled OMSs. Legend bar is the same for (a)-(c). Parameters are the
same as Fig. 2. See Fig. 7(d) for zero heat-bath temperature. Panel
(e) shows the Steady-state Gaussian quantum discord between the
two optical and mechanical modes with the same site index j = 50
or j = −50 (red dashed line), j = 0 (blue solid line) and with the
different site index j = 0 and j = 50 (green dotted line) versus heat
bath phonon number.

tum discord in OMCs. This is not completely novel however
in quantum many-body systems; for instance, the transverse-
field XY model, also shows non-monotonic behavior of its
quantum correlations (for instance see [76] and references
therein). We remark however that our model is not exactly
the same as XY model for what concerns the effects of the
thermal environment because in the latter the involved excita-
tions has similar frequencies and therefore similar thermal ef-
fects, while in our case, due to the large difference in frequen-
cies between optical and mechanical modes, only the phonon
modes are appreciably affected by a nonzero reservoir temper-
ature. The phenomenon investigated here shares instead some
similarity with what has been already underlined in [77, 78]
where it has been shown that for continuous-variable bipartite
systems, quantum discord can increase for increasing thermal
noise because they represent nonclassical correlations which
are induced and maintained thanks to the mediating action of
the local dissipative bath.
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V. CONCLUSIONS

In conclusion, our investigation clearly demonstrates the
presence of appreciable quantum correlations in an OMC
where each site consists of two localized, optical and mechan-
ical, modes coupled locally via the optomechanical interac-
tion. The modes of nearby sites are connected via both photon
and phonon tunneling. In particular, the generation of on-site
or short-range entanglement between optical and mechanical
modes that rely on the optomechanical interactions in OMCs
seems feasible at ultracryogenic temperatures. The generated
entanglement is very fragile with respect to thermal noise. We
have also shown that there is no long-range entanglement be-
tween optical and mechanical modes. Moreover, there is no
photon-photon or phonon-phonon entanglement in the sys-
tem. For what concerns the absence of strong entanglement
between modes of the same nature, this is due to the quantum
dynamics realized by the chosen model Hamiltonian). In fact,
it does not contain terms of the form of a†

ja
†
j±1 + a ja j±1 for

the photonic modes (or b†
jb

†
j±1+b jb j±1 for phononic modes).

It only contains hopping terms which cannot directly entangle
modes of the same nature.

We have then examined a weaker form of quantum corre-
lation, i..e., Gaussian quantum discord, and we have studied
if quantum discord is present in the steady-state of the sys-
tem for various control parameters. The Gaussian quantum
discord behavior is completely different, one has long-range
features in all the three possible cases of correlations, i.e.,
photon-phonon, photon-photon, and phonon-phonon, at vari-
ance with what occurs with entanglement. A further interest-

ing aspect is the thermal activation of quantum discord, i.e.,
the fact that photon-phonon discord increases with increasing
temperature. In our opinion this is a manifestation of the trans-
fer of nonclassical correlations mediated by the thermal reser-
voir, as already discussed for continuous variable systems in
[77, 78].

The present study which paves the way toward the investi-
gation of many-body entanglement, can be considered as the
first step toward controlled quantum correlations between dif-
ferent quantum processors across the lattice sites with poten-
tial applications in quantum information possessing and stor-
age. The proposed scheme also provides a suitable platform
for quantum simulation of various many-body systems with
optomechanical crystals by tuning the system parameters.

It should be noted that we did not consider the disorder ef-
fect in our study. As an outlook, the system under consid-
eration can be generalized to a more realistic case where the
lattice disorder is also present in the system. Another outlook
may be the generalization to the case of two-dimensional lat-
tices of coupled optomechanical systems.
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entanglement between two micromechanical oscillators, Nature
556, 473 (2018).

[71] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen,
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