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The effective theory of the Anton-Schmidt cosmic fluid within the Debye approximation is investigated.
In this picture, the Universe is modeled out by means of a medium without cosmological constant. In
particular, the Anton-Schmidt representation of matter describes the pressure of crystalline solids under
deformations imposed by isotropic stresses. The approach scheme is related to the fact that the Universe
deforms under the action of the cosmic expansion itself. Thus, we frame the dark energy term as a function
of scalar fields and obtain the corresponding dark energy potential VðφÞ. Different epochs of the Universe
evolution are investigated in terms of the evolution of φ. We show how the Anton-Schmidt equation of state
is capable of describing both late and early epochs of cosmic evolution. Finally, numerical bounds on the
Anton-Schmidt model with n ¼ −1 are derived through a Markov Chain Monte Carlo analysis on the
combination of data coming from type Ia Supernovae, observations of Hubble parameter, and baryon
acoustic oscillations. Statistical comparison with theΛCDMmodel is performed by the Akaike information
criterion and Bayesian information criterion selection criteria. Results are in excellent agreement with the
low-redshift data. A further generalization of the model is presented to satisfy the theoretical predictions at
early-stage cosmology.
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I. INTRODUCTION

Dark energy is characterized by a negative equation of
state which violates the Zeldovich limit and turns out to
be highly different from standard matter [1–3]. Several
approaches have been used to model dark energy in terms
of first principles [4–8] or through modification of
gravity [9–11]. An interesting case is to consider stan-
dard matter with a nonvanishing pressure which provides
a different equation of state depending on the stages of
the Universe’s evolution [12,13]. In other words, is it
possible that matter passes from ωm ¼ 0 to ωm < 0? To
enable the process that permits matter to pass from a
pressureless equation of state to a negative pressure, we
consider that matter bids to Anton-Schmidt’s equation of

state [14] and satisfies the Debye approximation [15].
This is allowed since the Universe is expanding, so that
the thermodynamics associated with the matter fluid
changes with time and is not perfectly a thermodynamics
of equilibrium. In fact, the Anton-Schmidt representation
of matter describes the pressure of crystalline solids
under deformations imposed by isotropic stresses. So
that if one considers the Universe to deform under the
action of cosmic expansion, the equation of state
becomes negative as a natural consequence of its func-
tional form [16].
The advantage of the Anton-Schmidt description is that

one has a nonvanishing and physically-supported pressure
defined after a precise redshift domain. The cosmic accel-
eration is recovered as a consequence of approximating
matter with the Anton-Schmidt approach. In such a picture,
dark energy is featured as an isotropic medium and can be
described by means of an effective scalar field description
[17–19]. This scenario has been first introduced in the field
of condensed matter [20,21].
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In this paper, we show that if matter obeys Anton-
Schmidt’s equation of state, the Universe speeds up without
the need of the cosmological constant. Hence, we perform
an effective representation of the dark energy potential
associated with Anton-Schmidt’s equation of state. We
describe its evolution in terms of the scale factor, and we
portray the limits at which Anton-Schmidt’s potential stops
being valid. In our analysis, we portray the effective field
description in terms of unconstrained fields, employing a
similar formalism of inflation [22–24]. We write the action
of the self-gravitating medium in the presence of gravity,
and then we give a thermodynamic interpretation of the
scalar field and potential in terms of thermodynamic
variables. Relevant consequences are based on the initial
settings of the scalar field and occur only as the corre-
sponding volume takes a given value. This scenario
admits, as a limiting case, the approach of logotropic dark
energy [25,26].
We demonstrate how to extend logotropic models

invoking first principles based on thermodynamics of
expanding media in analogy to solid state physics. To
this end, we consider the Grüneisen parameter γG [27],
and we highlight its thermal and microscopic interpreta-
tions. Since its definition comes from the thermodynamics
of expanding media, we show that under the quasihar-
monic approximation, it is possible to relate the macro-
scopic definition of γG to its microscopic definition.
Motivated by such a definition, we show that the
Grüneisen parameter can take values compatible with
current Universe dynamics. Hence, we investigate
Anton-Schmidt’s equation of state in which the pressure
is exactly integrable as γG ¼ 5=6. Afterwards, we under-
line the main physical properties of this solution, and
finally we propose a common origin between Anton-
Schmidt and logotropic dark energy.
We check the validity of our approach at late and

early times. The theoretical consequences of our scenario
are analyzed at the level of background cosmology.
We underline the differences with respect to the pure
logotropic models, as testified by the adiabatic sound
speed expressed in terms of the logotropic one. Further,
we constrain the free parameters of our model by means of
a Monte Carlo analysis at small redshift domains, with
cosmic surveys provided by Supernovae Ia, Hubble rate
data, and baryon acoustic oscillations measurements. In
addition, we compare our numerics with the predictions of
the ΛCDM model and discuss the compatibility of the
results from observations at late times with high redshift
domains.
The work is organized as follows. In Sec. II, we give the

field theory description of the Anton-Schmidt cosmic fluid
describing an accelerating Universe. Specifically, we dis-
cuss the conditions under which Anton-Schmidt’s equation
of state can explain the cosmological dynamics at both
early and late phases, and we derive the analytical form of

the potential in terms of the matter fields. In Sec. IV, we
describe the features of the Anton-Schmidt model at the
level of background cosmology. Section V is dedicated to
the observational constraints from low-redshift data and to
the statistical comparison with the ΛCDM model. In
Sec. VI, we discuss the consequences of the obtained
results at early times cosmology. Finally, in Sec. VII we
summarize our findings and present the future perspectives
of our work.
Throughout the paper, we use units such that 8πG¼c¼1.

II. THE ANTON-SCHMIDT FLUID

In standard general relativity the interaction between
gravity and matter is described by the Einstein-Hilbert
action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ Lmðφ; _φÞ

�
; ð1Þ

where g is the determinant of the metric gμν, and R is the
Ricci curvature. The matter Lagrangian Lm may be written
in terms of scalar fields, φ. The Universe is assumed to be
described by a perfect fluid whose energy-momentum
tensor is obtained as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δLm

δgμν
: ð2Þ

It is possible to rewrite the components of the
energy-momentum in terms of scalar fields following the
scheme [28]:

ϵφ ¼ 1

2
_φ2 þ VðφÞ; ð3Þ

Pφ ¼ 1

2
_φ2 − VðφÞ; ð4Þ

where we identify ϵφ and Pφ as the energy density and
pressure of the Anton-Schmidt fluid according to the
following derivation.

A. A macroscopic formulation of the
Anton-Schmidt fluid

We consider the Universe filled with a single fluid
described by an equation of state with a logarithmic-power
law form. Such a prescription is analogous of crystalline
solids under isotropic deformations, namely the Anton-
Schmidt equation of state, which has been recently con-
sidered to frame the cosmic acceleration [16]:

P ¼ A

�
ϵ

ϵ�

�
−n

ln

�
ϵ

ϵ�

�
; ð5Þ
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where ϵ� is a reference energy density,1 and n is related to
the Grüneisen parameter γG [27] through n ¼ − 1

6
− γG. In

the original formulations [14,16] ϵ is replaced by the rest-
mass density, ρ. However, we here assume ϵ to account for
the total energy density of the cosmic fluid, as also
examined in [29]. We are, in fact, interested in studying
the late-time Universe dynamics by allowing a modified
equation of state for the dark energy fluid inspired by the
Anton-Schmidt case. From a theoretical point of view, the
Anton-Schmidt cosmological model [16] can be described
by means of a scalar field φ and a self-interacting potential
VðφÞ defining the effective Lagrangian

Lm ¼ Kð _φÞ − VðφÞ; ð6Þ

whereKð _φÞ is a generic kinetic term which can be recast as
in the standard case, i.e., Lm ¼ 1

2
_φ2 − VðφÞ. In such a case,

one employs the simplest assumption on Kð _φÞ.
Following these prescriptions and the cosmological

principle [30], we consider a homogeneous and isotropic
flat Universe described by the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric [31]:

ds2 ¼ dt2 − aðtÞ2½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð7Þ

where aðtÞ is the scale factor.2 Hence, the Friedmann
equation and the continuity equation are, respectively,
given by

H2 ≡
�
_a
a

�
2

¼ ϵ

3
; ð8Þ

_ϵþ 3

�
_a
a

�
ðϵþ PÞ ¼ 0; ð9Þ

where ϵ and P are, respectively, the density and the pressure
for the fluid in Eq. (5).

B. The Anton-Schmidt cosmological dynamics

The energy density of the fluid is found by plugging
Eq. (5) into Eq. (9). An immediate solution occurs for
n ¼ −1, which corresponds to a precise value of the so-
called dimensionless Grüneisen parameter γG [27]. Its
meaning comes from thermodynamic properties of the
material via γG ¼ αVKT

CV
, where α, KT are, respectively,

the thermal coefficient and the isothermal bulk modulus,
and also CV is the heat capacity at constant volume.
Under the quasiharmonic approximation, the macro-

scopic definition becomes indistinguishable from the cor-
responding microscopic picture and can be easily related to

the Debye temperature [15] defined as θD ¼ ℏωD=kB,
where ℏ and kB are the Planck’s and Boltzmann’s constants,
respectively, while ωD is the maximum vibrational fre-
quency of the medium under exam. The γG range typically
spans into the interval ∼1 ÷ 2. The limiting case n ¼ −1
corresponds to isotropic and homogeneous expansion and
turns out to be relevant in the case of cosmology. In that
case, integrating Eq. (9) leads to

ϵ ¼ ϵ� exp
�
−
ϵ�
A
þ 1

A

�
C
a3

� A
ϵ�
�
; ð10Þ

where C is an integration constant. Combining Eqs. (10)
and (5) enables one to get P as a function of aðtÞ:

P ¼
�
−ϵ� þ

�
C
a3

� A
ϵ�
�
exp

�
−
ϵ�
A
þ 1

A

�
C
a3

� A
ϵ�
�
: ð11Þ

We thus distinguish two epochs:

1. Late times ða ≫ 1Þ
This scenario corresponds to a phase in which dark

energy dominates over the other species. Combining
Eqs. (10) and (11), we get

P ¼ ϵ

�
−1þ 1

ϵ�

�
C
a3

�
ξ
�
; ð12Þ

where we have defined ξ≡ A=ϵ�. In the limit of large scale
factor, one has

1

ϵ�

�
C
a3

�
ξ

≪ 1; ð13Þ

under the condition ξ > 0, and therefore

P ≈ −ϵ: ð14Þ

This corresponds to a de Sitter phase capable of accelerat-
ing the Universe today. Clearly, this case is not perfectly
matchable with theΛCDMmodel but approximates it fairly
well in the small redshift domain. Hence, the Anton-
Schmidt approach provides small departures at the level
of background cosmology.

2. Early times ða ≪ 1Þ
For small values of the scale factor, we have�

C
a3

�
ξ

≫ 1; ð15Þ

if ξ > 0. To recover approximatively a matter-dominated
Universe ðP ≈ 0Þ, the quantity in the square brackets of
Eq. (12) has to be vanishingly small, i.e.,

1The physical meaning of ϵ� will be discussed in the next
sections.

2Normalized by aðt0Þ ¼ 1.
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1

ϵ�

�
C
a3

�
ξ

≈ 1: ð16Þ

Combining Eqs. (15) and (16), we obtain the condition
ϵ� ≫ 1. In the matter-dominated era ϵ ∼ ρ, where ρ is the
mass density. Therefore, the aforementioned constraint
becomes ρ� ≫ 1. In [25] ρ� has been identified with the
Planck density. However, considerations on the linear
growth rate of density perturbations show that ρ� is actually
much larger than the Planck density [26].
The equation of state parameter ω ¼ P=ϵ can be calcu-

lated by using Eqs. (10) and (11):

ω ¼ −1þ 1

ϵ�

�
C
a3

�
ξ

; ð17Þ

which takes values in the interval −1 < ω < 0. We note
that, for very large values of the scale factor ða → ∞Þ,
ω → −1, which describes an accelerated expansion driven
by the cosmological constant.
In the next paragraph, we shall derive the expressions of

the physical quantities characterizing the Anton-Schmidt
cosmic fluid in terms of the scalar field φ.

III. THE ANTON-SCHMIDT
EFFECTIVE SCALAR FIELD

We here derive the form of φ in terms of aðtÞ, and then
we trace its evolution for Anton-Schmidt’s dark energy
term. To do that, we start from the kinetic energy of φ:

_φ2 ¼
�
C
a3

�
ξ

exp

�
−
1

ξ
þ 1

A

�
C
a3

�
ξ
�
: ð18Þ

Using Eq. (8), we obtain that Eq. (18) becomes

_φ2 ¼ 3

ϵ�

�
_a
a

�
2
�
C
a3

�
ξ

: ð19Þ

The scalar field as a function of the scale factor is obtained
by integrating the above relation:

φ ¼ φ0 þ
2

ξ
ffiffiffiffiffiffiffi
3ϵ�

p
�
C
a3

�ξ
2

: ð20Þ

We can calculate the potential of the scalar field by
combining Eqs. (3) and (4) and using Eqs. (10) and (11):

V ¼
�
ϵ� −

1

2

�
C
a3

�
ξ
�
exp

�
−
1

ξ
þ 1

A

�
C
a3

�
ξ
�
: ð21Þ

To obtain the potential in terms of the field, we invert
Eq. (20) and plug it into Eq. (21), so we finally get:

VðφÞ ¼ ϵ�

�
1 −

3

8
ξ2ðφ − φ0Þ2

�
exp

�
−
1

ξ
þ 3

4
ξðφ − φ0Þ2

�
:

ð22Þ

The potential is symmetric around φ0, where it takes the
minimum value:

Vmin ¼ ϵ�e−1=ξ: ð23Þ

Further, VðφÞ presents two maxima at

φmax ¼ φ0 �
2

ξ

ffiffiffiffiffiffiffiffiffiffi
2 − ξ

3

r
; ð24Þ

where it takes the value

Vmax ¼
1

2
ϵ�ξe−1þ1=ξ: ð25Þ

Requiring that Eq. (24) must be a real quantity, we obtain
the following constraint:

0 < ξ < 2: ð26Þ

In Figs. 1 and 2, we show the functional behaviors of the
scalar field and the potential, respectively. As far as the
constants are concerned, we adopt the indicative values of
ξ ¼ 1 and C ¼ 1.
The density and pressure in terms of the field reads,

respectively,

ϵφ ¼ ϵ� exp
�
−
1

ξ
þ 3

4
ξðφ − φ0Þ2

�
; ð27Þ

Pφ ¼ ϵ�

�
−1þ 3

4
ξ2ðφ − φ0Þ2

�
exp

�
−
1

ξ
þ 3

4
ξðφ − φ0Þ2

�
;

ð28Þ

FIG. 1. Dynamical evolution of the scalar field for ξ ¼ C ¼ 1.
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which yield to the following expression for the equation of
state:

ωφ ¼ −1þ 3

4
ξ2ðφ − φ0Þ2: ð29Þ

Consistently with what was found before, under the
condition ξ ≪ 1, we have ωφ → −1 mimicking the effect
of the cosmological constant.

IV. THE ANTON-SCHMIDT
BACKGROUND COSMOLOGY

The single Anton-Schmidt fluid in the Debye approxi-
mation explains the cosmic speed up without resorting to
the cosmological constant [16]. As the Universe expands,
Anton-Schmidt’s equation of state naturally provides
epochs of deceleration and other phases characterized by
acceleration. This picture is true only when the Universe
temperature reaches a precise range of values. If the
temperature increases the Anton-Schmidt approximation
fails to be predictive. This landscape will be faced in the
next sections when we reconsider the Anton-Schmidt
behavior at early epochs. At small redshifts, n can take
in principle any values. However, the cosmological con-
sequences are not easily matchable to early times without
adding a pressureless fluid into the analysis. We here show
that the case n ¼ −1 is the best choice at small redshifts
and deserves explanations versus the case of free n. A free n
is mostly viable as the Anton-Schmidt does not hold,
leading to the initial phases of the Universe evolution.
We discuss later the properties of n in function of the
temperature T.
To study the cosmological features of the choice n ¼ −1

at the background level, and to compare the results with the
ones relative to the case of free n obtained in [16], we
consider the original formulation of the Anton-Schmidt
pressure

P ¼ A

�
ρ

ρ�

�
ln

�
ρ

ρ�

�
; ð30Þ

where ρ stands for the rest-mass energy. We assume that
the FLRW universe is filled with a perfect fluid of total
energy density ϵ. Under the hypothesis of adiabatic heat
exchanges, the first law of thermodynamics reads

dϵ ¼
�
ϵþ P
ρ

�
dρ; ð31Þ

which can be integrated into

ϵ ¼ ρþ ρ

Z
ρ
dρ0

Pðρ0Þ
ρ02

: ð32Þ

For PðρÞ as given in Eq. (30), one soon obtains

ϵ ¼ ρþ A
2

�
ρ

ρ�

�
ln2

�
ρ

ρ�

�
: ð33Þ

It is important to stress that the above solution cannot be
recovered from the one obtained in [16] as n → −1, since
the case n ¼ −1 is a different analytical case with respect to
the free case n ≠ −1. It follows that the Anton-Schmidt
fluid with n ¼ −1 represents a stand-alone scenario worth
being studied, whereas the corresponding implications in
cosmology are expected to differ from pure logotropic
models examined in [32]. As ða ≪ 1Þ, the first term of
Eq. (33) dominates over the other species as in a matter-
dominated universe. Instead, as a ≫ 1 the pressure
becomes negative as in a dark energy-dominated universe.
This allows one to split the total density into two con-
tributions ðϵ ¼ ϵm þ ϵdeÞ, in analogy to the standard
cosmological scenario:

ϵm ¼ ρm;0

a3
; ð34Þ

ϵde ¼
ϵde;0
a3

−
3A
a3

�
ρm;0

ρ�

�
ln a ln

�
ρm;0

ρ�
a−3=2

�
; ð35Þ

where

ϵde;0 ¼
A
2

�
ρm;0

ρ�

�
ln2

�
ρm;0

ρ�

�
: ð36Þ

Equations (34) and (35) correspond to matter and dark
energy terms, respectively. Defining the normalized density
parameters as Ωm;0 ≡ ϵm;0=ϵc;0 and Ωde;0 ≡ ϵde;0=ϵc;0 ¼
1 − Ωm;0, where ϵc;0 ≡ 3H2

0 is the present critical density,
we can write Eq. (8) as

FIG. 2. Functional behavior of the scalar field potential for
ξ ¼ 1.
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H2 ¼ H2
0

�
ϵm
ϵc;0

þ ϵde
ϵc;0

�

¼ H2
0

�
Ωm;0

a3
þΩde;0

a3
ð1 − 6B ln aþ 9B2ln2aÞ

�
; ð37Þ

where we defined a new parameter:

B≡ ln−1
�
ρm;0

ρ�

�
: ð38Þ

It is worth noting that the above defined B turns out
to be quite different from the one given by logotropic
models. In fact, in the case of logotropic models, it
represents the dimensionless logotropic temperature
defined as [32]

Blog ≡
�
ln

�
ρ�
ρm;0

�
− 1

�
−1
: ð39Þ

If ρ� is identified with the Planck density as assumed in
[25,32], one finds 0 < Blog ≪ 1. Instead, in the present
case, we expect to have B < 0 due to the condition ρ� ≫ 1.
In the following section, we will provide observational
constraints on this parameter, and we will see that they
differ from the bounds obtained in [32].
Therefore, one can write the total density and pressure in

terms of B by:

ϵ

ϵc;0
¼ Ωm;0

a3
þ 1 −Ωm;0

a3
ð1 − 6B ln aþ 9B2 ln2 aÞ ð40Þ

and

P ¼ A
a3

�
ρm;0

ρ�

��
ln

�
ρm;0

ρ�

�
− 3 ln a

�

¼ A
a3

e1=B
�
1

B
− 3 ln a

�
: ð41Þ

Moreover, Eq. (36) reads

ϵde;0 ¼
A
2

e1=B

B2
; ð42Þ

so that

P ¼ 2ϵc;0
1 − Ωm;0

a3
ðB − 3B2 ln aÞ: ð43Þ

Thus, the total equation of state takes the form

ω ¼ 2B − 6B2 ln a
ð1 − Ωm;0Þ−1 − 6B ln aþ 9B2 ln2 a

: ð44Þ

Since B < 0 and Ωm;0 < 1, ω takes negative values and
increases until it reaches 0 at infinity scale factor. In
particular, at present (a ¼ 1) we have

ω0 ¼ 2Bð1 − Ωm;0Þ: ð45Þ

Then, identifying the total pressure of the fluid with the
pressure of the dark energy term [16], one can derive the
expression for the dark energy equation of state parameter
ωde ¼ P=ρde:

ωde ¼
2B

1 − 3B ln a
; ð46Þ

which is a negative quantity and increases until it vanishes
at infinity scale factor. Today, it takes the following value:

ωde;0 ¼ 2B: ð47Þ

The ΛCDM paradigm is recovered as B → − 1
2

for
a ¼ 1 only. When a ≠ 1 at small redshift one gets
ωde ≈ 2Bþ 6B2ða − 1Þ. This outcome is comparable
with the Chevallier-Polarski-Linder (CPL) parametrization,
when the two constants, ω0 and ω1, are intertwined among
them. A direct comparison with the CPL parametrization
and additional models will be provided in the rest of
the work.
An interesting quantity to analyze is the sound speed,

which plays a crucial role for cosmological perturbations
[33]. In the theory of structure formation, the length above
which the perturbations grow is in fact determined by the
sound speed which, for an adiabatic fluid, reads

c2s ≡ ∂P
∂ϵ : ð48Þ

For the Anton-Schmidt pressure given in Eq. (30), we can
use Eq. (33) to obtain

c2s ¼
�∂P
∂ρ

��∂ϵ
∂ρ

�
−1

¼
A½1þ lnð ρρ�Þ�

ρ� þA
2
½2þ lnð ρρ�Þ� lnð

ρ
ρ�
Þ : ð49Þ

In the matter epoch ϵ ∼ ρ and, consequently,
c2s ≡ ∂P=∂ρ. Then, we can calculate the adiabatic sound
speed for the Anton-Schmidt fluid in terms of the parameter
B by using

∂ρ
∂a ¼ −

3ϵc;0Ωm;0

a4
; ð50Þ

∂P
∂a ¼ −

6ϵc;0ð1 − Ωm;0Þ
a4

Bð1þ B − 3B ln aÞ: ð51Þ

One thus finds
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c2s ¼
�∂ρ
∂a

�
−1 ∂P

∂a ¼ 2Bð1 − Ωm;0Þð1þ B − 3B ln aÞ
Ωm;0

:

ð52Þ

By virtue of the aforementioned comments, due to the
difference in the definition of the parameter B between pure
logotropic models and our paradigm, we find that

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ BÞð3B ln a − B − 1Þ

a3

r
cs;log; ð53Þ

with B given as in Eq. (38) and cs;log being the logotropic
sound speed. A dutiful caveat is that, at the level of small
perturbations, n becomes a function of the temperature. In
such a way, we cannot conclude that n ¼ −1 holds true
throughout the whole Universe’s expansion history, and the
corresponding expression for the sound speed Eq. (52) may
be not valid at all redshift regimes. This enables the process
of structure formation and does not influence its dynamics,
indicating that the Anton-Schmidt model works well even
at the level of early-time cosmology [16]. We will better
face this problem later in the text, as we discuss the
dependence on the temperature of n. We also note that
our analysis does not take into account nonlinear effects,
which may lead to significant modifications also at the level
of background cosmology (see [34] and references therein).

V. OBSERVATIONAL CONSTRAINTS

In this section, we employ cosmological data to place
observational constraints on the Anton-Schmidt model in
the case of n ¼ −1. To do so, we combine the Supernovae
Ia data of the Joint Light-curve Analysis (JLA) catalogue
[35], the Observational Hubble data (OHD) acquired
through the differential age method [36] and a collection
of Baryon Acoustic Oscillations measurements (BAO).

A. JLA Supernovae Ia

The JLA sample [35] consists of 740 type Ia Supernovae
(SNe) up to redshift z ≃ 1.3. The catalogue provides the
redshift of each SN together with its B-band apparent
magnitude ðmBÞ, the stretch (X1), and the color factor at
maximum brightness (C). The theoretical distance modulus
of a SN is defined as

μthðzÞ ¼ 25þ 5log10dLðzÞ; ð54Þ

where dLðzÞ is the luminosity distance given by

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð55Þ

Statistical analyses are done by comparing the theoretical
distance modulus with its observational form:

μobs ¼ mB − ðMB − αX1 þ βCÞ: ð56Þ

Here, α and β are constant nuisance parameters, while MB
is the SN absolute magnitude defined as

MB ¼
�
M; if Mhost < 1010MSun

MþΔM; otherwise
; ð57Þ

whereMhost is the stellar mass of the host galaxy and ΔM is
an additional nuisance parameter. Encoding the statistical
and systematic uncertainties on the light-curve parameters
in the covariance matrix C, one can write the normalized
likelihood as follows:

LSN ¼ 1

j2πCj1=2 exp
�
−
1

2
ðμth − μobsÞ†C−1ðμth − μobsÞ

�
:

ð58Þ

B. Observational Hubble data

The differential age method [36] allows one to obtain
model-independent estimations of the Hubble rate. This
technique is based on measuring the age difference of
close passively evolving red galaxies, which are considered
as cosmic chronometers. HðzÞ measurements are then
obtained by using the simple relation

Hobs ¼ −
1

ð1þ zÞ
�
dt
dz

�
−1
: ð59Þ

In Table IV of the Appendix we provide a list of 31
uncorrelated Hubble rate data over the interval 0 < z < 2.
The normalized likelihood function in this case reads

LOHD ¼
exp ½− 1

2

P
31
i¼1 ðHthðziÞ−HobsðziÞ

σH;i
Þ2�

½ð2πÞ31Q31
i¼1 σ

2
H;i�1=2

: ð60Þ

C. Baryon acoustic oscillations

The characteristic peaks in the galaxy correlation
function are the imprint of baryon oscillations in the
primordial plasma. A common procedure to quantify this
physical phenomenon consists of estimating the combina-
tion of the comoving sound horizon at the drag epoch, rd,
and the spherically averaged distance DVðzÞ introduced
in [37]:

dthV ðzÞ≡ rd×DVðzÞ−1¼ rd

�
dL2ðzÞ
ð1þ zÞ2

z
HðzÞ

�−1=3
: ð61Þ

In this work, we use a collection of 6 model-independent
BAO measurements presented in [38] and listed in Table V

EFFECTIVE FIELD DESCRIPTION OF THE ANTON- … PHYS. REV. D 99, 023532 (2019)

023532-7



of the Appendix. Since these are uncorrelated data, the
normalized likelihood function is given by

LBAO ¼
exp ½− 1

2

P
6
i¼1 ðd

th
V ðziÞ−dobsV ðziÞ

σdV;i
Þ2�

½ð2πÞ6Q6
i¼1 σ

2
dV;i

�1=2 : ð62Þ

D. Numerical results and statistical model selection

We perform Markov Chain Monte Carlo (MCMC)
numerical integration through the Metropolis-Hasting
algorithm implemented by the Monte Python code [39].
The statistical analysis is done by considering the joint
likelihood of the combined data:

Ljoint ¼ LSN × LOHD × LBAO: ð63Þ

Uniform priors have been used for the cosmological as well
as for the nuisance parameters. Our numerical results are
presented in Table I, while in Fig. 5 we show the 2D 1σ and
2σ contours and the 1D posterior distributions.
It is interesting to compare the results we have obtained

for the Anton-Schmidt model to the predictions of the
standard ΛCDM model, whose expansion rate is given by

HΛCDMðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3 þ ΩΛ

q
; ð64Þ

where ΩΛ ¼ 1 − Ωm;0. In Table II, we show the results of
the MCMC analysis for ΛCDM.
A useful tool to select, among cosmological models, the

one preferred by the data, is the Akaike information
criterion (AIC) [40], defined as

AIC ¼ −2 lnLmax þ 2p; ð65Þ

where Lmax is the value of the likelihood calculated for the
best-fit parameters, and p is the number of parameters in
the model. The difference ΔAIC ¼ AICi − AICj between
the models i and j provides us with the best model,
which corresponds to the one that minimizes the AIC
value. We also use the Bayesian information criterion (BIC)
criterion [41]:

BIC ¼ −2 lnLmax þ p lnN; ð66Þ

whereN is the number of the data. In contrast with a simple
comparison of the maximum likelihood (or χ2 analysis),
information criteria, such as AIC or BIC, compensate for
any improvement in the maximum likelihood that the
introduction of extra parameters might allow. A more
severe penalization against the model with a larger number
of free parameters is peculiar to the BIC criterion, due to the
presence of the logarithm of the total number of data. Here,
we choose ΛCDM as the reference model, since it
represents statistically the simplest cosmological model
with the least number of parameters. As shown in Table III,
both the selection criteria indicate a decisive evidence for
the Anton-Schmidt model over ΛCDM.

E. Comparison with different cosmological models

We compare here the predictions of the Anton-Schmidt
model with different cosmological scenarios. In addition to
ΛCDM [cf. Eq. (64)], we consider the ωCDM model:

TABLE I. Priors and 68% confidence level parameter results of
the MCMC analysis on the combined data for the Anton-Schmidt
model with n ¼ −1. H0 and rd values are expressed in the usual
units of km/s/Mpc and Mpc, respectively.

Parameter Prior Result

H0 (50,90) 67.06þ1.74
−1.85

Ωm;0 (0,1) 0.344þ0.024
−0.025

B ð−1; 0Þ −0.372þ0.018
−0.021

M ð−20;−18Þ −19.08þ0.06
−0.06

ΔM ð−1; 1Þ −0.055þ0.022
−0.022

α (0,1) 0.126þ0.006
−0.006

β (0,5) 2.618þ0.066
−0.069

rd (130,160) 146.7þ3.3
−3.6

TABLE II. 68% confidence level results of the ΛCDM model
from the MCMC analysis on the combined data. H0 values are
expressed in units of km/s/Mpc, and rd in units of Mpc.

Parameter Result

H0 66.56þ1.24
−1.17

Ωm;0 0.303þ0.025
−0.023

M −19.16þ0.04
−0.04

ΔM −0.078þ0.023
−0.019

α 0.122þ0.006
−0.006

β 2.570þ0.069
−0.069

rd 146.1þ1.9
−1.8

TABLE III. χ2 per degree of freedom, AIC, and BIC differences
based on the best-fit results of the MCMC analysis for ΛCDM
and the Anton-Schmidt model with n ¼ −1.

Model χ2d:o:f: ΔAIC ΔBIC

ΛCDM 1.012 0 0
Anton-Schmidt 0.962 −23.8 −19.1
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HωCDM ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3 þ ð1 − Ωm;0Þð1þ zÞ3ð1þωÞ

q
:

ð67Þ

According to the latest Planck collaboration results [31],
we have Ωm;0 ¼ 0.3065 and ω ¼ −1.006.
Then, we also consider the dark energy parametrization

represented by the Chevallier-Linder-Polarski (CPL) model
[54]:

HCPL ¼ H0½Ωm;0ð1þ zÞ3 þ ð1 −Ωm;0Þð1þ zÞ3ð1þω0þω1Þ

× e−
3ω1z
1þz �1=2: ð68Þ

For this model, we adopt the values obtained by latest
release of the WMAP project [55]: Ωm;0 ¼ 0.2855,
ω0 ¼ −1.17, and ω1 ¼ 0.35.
Finally, we consider the generalized Chaplygin gas

(GCG) model [56]:

HGCG ¼ H0fΩm;0ð1þ zÞ3 þ ð1 −Ωm;0Þ½As þ ð1 − AsÞ
× ð1þ zÞ3ð1þαÞ� 1

1þαg1=2; ð69Þ

where As is the present equation of state of the GCG fluid
(see [57] for the details). The best-fit results found in [58]
are: Ωm;0 ¼ 0.276, As ¼ 0.760, and α ¼ 0.033.
Using the outcomes of our MCMC analysis for the

Anton-Schmidt and the ΛCDM models, and the values
indicated above for the other cosmological scenarios, we
show in Fig. 3 the comparison of the different dimension-
less expansion rates (EðzÞ≡HðzÞ=H0) in the low-redshift
regime.

F. Comparison with Chaplygin gas

The Anton-Schmidt approaches candidates to unify dark
energy and matter into a single dark fluid [59]. The
unifying dark energy models represent widely appreciated
scenarios whose main advantages lie on framing large-scale
dynamics within a single fluid description [60]. Among
several possibilities, the Chaplygin gas represents a suitable
prototype [56] whose net pressure is under the form P ¼
−A=ϵ with A > 0.
The model has reached considerable success for its

interconnection with string theory d-branes [61].
Unfortunately some experimental flaws plagued the model,
leading to the formulation of a subsequently generalized
Chaplygin gas, with pressure P ¼ −A=ϵα [62]. The extra
term, namely α, is bounded inside the interval 0 ≤ α ≤ 1
and provides a causal and subluminal sound speed,
i.e., 0 ≤ cs ≤ 1.
One can recover the model through a k-essence

Lagrangian, L≡ LðXÞ, where X ¼ 1
2
∇μϕ∇μϕ, and ∇μ is

the covariant derivative with respect to the coordinate xμ.
Choosing as LðXÞ the following lagrangian density:

L ¼ −ϵΛ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ð2XÞβÞ 2α

1þα

q
; ð70Þ

with 0 ≤ 2X ≤ 1, one recovers the generalized version of
the Chaplygin gas when β ¼ ð1þ αÞ=ð2αÞ. In this puzzle,
α and β are positive constants whereas ϵΛ is a positive
constant energy density.
The Anton-Schmidt paradigm can be related to the

modified Chaplygin gas. In fact, the sound speed in a
Chaplygin-like scenario is given as

FIG. 3. Dimensionless expansion rate for different models.

FIG. 4. Functional behavior of the n parameter of Anton-
Schmidt’s equation of state with temperature.

EFFECTIVE FIELD DESCRIPTION OF THE ANTON- … PHYS. REV. D 99, 023532 (2019)

023532-9



c2s ¼ α
A

ϵ1þα ; ð71Þ

and, following the work [63], we have

P ¼ −
A
ϵα�

�
ϵ�
ϵ

�
α

þ C; ð72Þ

where A=ϵα� ¼ ϵΛ and C is a constant of integration.
Expanding around α ¼ 0 one obtains

P ¼ ϵΛ

�
−1þ α ln

�
ϵ

ϵ�

�
þOðα2Þ

�
þ C: ð73Þ

Taking into account the limit

FIG. 5. 2D marginalized 68% and 95% confidence levels contours, and 1D posterior distributions as a result of the Monte Carlo
numerical integration of the Anton-Schmidt model with n ¼ −1.

CAPOZZIELLO, D’AGOSTINO, GIAMBÒ, and LUONGO PHYS. REV. D 99, 023532 (2019)

023532-10



A ¼ lim
α→0

ϵΛ→∞

αϵΛ; ð74Þ

with finite A and setting C ¼ ϵΛ, we have

P ¼ A ln

�
ϵ

ϵ�

�
: ð75Þ

The model above defined is a version of Logarithmic
Chaplygin gas and turns out to naively extend the ΛCDM
concordance model. The most intriguing fact is that the
aforementioned equation of state for Logarithmic
Chaplygin gas corresponds to n ¼ 0 in the picture of
Anton-Schmidt. This may be viewed as an alternative
picture to get both the Anton-Schmidt fluid and logotropic
versions of dark energy. Another intriguing fact would be
the possibility to frame out a Lagrangian formalism
associated with both the logarithmic correction to the
Chaplygin gas and with the Anton-Schmidt paradigm.
Details are reported in [63,64].

VI. CONSEQUENCES AT EARLY TIMES

The observational constraints obtained from the low-
redhifts data can be used to infer the quantity ρ�. In fact,
inverting Eq. (38) and using the best-fit results of the
MCMC analysis (cf. Table I) one gets

ρ�
ρc;0

¼ Ωm;0e−1=B ≃ 5.1: ð76Þ

This is in contrast with the condition we have obtained from
theoretical considerations at early times (see Sec. II B 2)
and with the limits found in [26]. Moreover, we can check
the consistency of our model with the observational
constraints from the growth rate of linear perturbations
[26]. In the matter-dominated epoch, the comoving Jeans
length is given by

λcJ ¼ csð1þ zÞ
ffiffiffiffiffiffiffi
8π2

ρ

s
: ð77Þ

Using Eq. (52) and ρ ¼ 3H2
0Ωm;0ð1þ zÞ3, we find

λcJ ¼
4π

H0Ωm;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð1 − Ωm;0Þ½1þ Bþ 3B lnð1þ zÞ�

3ð1þ zÞ

s
:

ð78Þ

This quantity defines the scale above which the linear
growth of density perturbations can occur. Choosing
R ¼ 8h−1 Mpc, the condition for the cosmic structures
to grow in the matter era ðz > 1Þ is λcJ < R. Such a
condition is, however, not satisfied for the best-fit values

of the cosmological parameters obtained from our numeri-
cal fit (cf. Table I). The reason of aforementioned incon-
sistencies lies in the fact that Anton-Schmidt’s equation of
state is valid only in the Debye regime. Such an approxi-
mation is no longer licit as temperatures become high,
making our model with n ¼ −1 unpredictive at early times.
To solve this issue, one needs to consider the temperature
dependence of the Grüneisen parameter [65]. Several
theories have been proposed in the literature [66]. A good
agreement with experimental data is represented by the
model proposed in [67], according to which the Grüneisen
parameter can be expressed in terms of the temperature as
follows:

γGðTÞ ¼ γG;0½1þ b1ðT − T0Þ þ b2ðT − T0Þ2�: ð79Þ

Here, T0 is a reference temperature,3 while b1 and b2 are
free coefficients obtained by fitting experimental data at
different temperatures. The authors in [67] found b1 ¼
1.45 × 10−4 K−1 and b2 ¼ 5.40 × 10−7 K−2. Due to
Eq. (79), the n parameter of Anton-Schmidt’s equation
of state becomes also temperature-dependent:

nðTÞ ¼ −
1

6
− γGðTÞ: ð80Þ

The above relation can be thus used to calibrate the value of
n at any temperature. In our case, we can identify T0 with
the temperature of the Cosmic Microwave Background
(CMB) radiation today, T0 ¼ 2.726 K [68]. We also fix
γG;0 to the value correspondent to n ¼ −1, so that
γG;0 ¼ 5=6. Figure 4 shows the values of n at different
temperatures. As an example, at the last scattering surface,
when the temperature of the CMB was T ¼ 3000 K, the
value of n reads

nCMB ¼ −5.40: ð81Þ

More detailed analyses will be the subject of future
works.

VII. OUTLOOK AND PERSPECTIVES

In the present work, we propose a new class of dark
energy models based on the assumption that matter obeys
Anton-Schmidt’s equation of state. In particular, we con-
sidered a single fluid description based on the use of a
scalar field with a given potential. We showed that Anton-
Schmidt’s pressure naturally provides a negative value even
for matter only. This turns out to be true as one assumes that
the cosmic expansion changes the thermodynamics of

3In the case of solids, T0 is the room temperature: 300 K.

EFFECTIVE FIELD DESCRIPTION OF THE ANTON- … PHYS. REV. D 99, 023532 (2019)

023532-11



standard matter. Indeed, we demonstrated that, under the
Debye approximation, one recovers a negative pressure
proportional to the matter density itself, ρ. Relating it to the
volume and to the field φ, we were able to frame the cosmic
dynamics choosing the case n ¼ −1 compatible with
observations. In such a case, we found an analytic solution
for φ, ρ and the effective barotropic factor, ω. Through
analyses of different regimes characterized by different
values of the scale factor, we found that pressure vanishes at
early regimes, while it becomes significantly negative at
late times.
We investigated the features of the new model at the level

of background cosmology. We thus computed the adiabatic
sound speed and related it to the case of the pure logotropic
model. In doing so, we pointed out the differences and the
limits of our approach with respect to logotropic fluid
scenarios.
Furthermore, we employed cosmological data such as

Supernovae Ia, Hubble rate data, and baryon acoustic
oscillations to get observational constraints on our model.
In particular, the Monte Carlo analysis on the combined
data showed that our model statistically performs
even better than the standard ΛCDM model. We thus
discussed the consequences of our outcomes and we found
that a generalization of the model is necessary to accom-
modate the constraints from the high-redshift regimes.
Specifically, we proposed a model based on a temperature-
dependent Grüneisen parameter which would be able to
satisfy the theoretical predictions of early time cosmology.
Future investigations will be dedicated to the analysis

of the CMB data that will be used to calibrate the back-
ground evolution at early times and match the results
of low-redshift observations in order to remove
possible degenerations (see also [69] for a discussion on
this topic).
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APPENDIX: EXPERIMENTAL DATA

TABLE IV. Observational HðzÞ data in units of km/s/Mpc.

z H � σH Reference

0.0708 69.00� 19.68 [42]
0.09 69.0� 12.0 [36]
0.12 68.6� 26.2 [42]
0.17 83.0� 8.0 [43]
0.179 75.0� 4.0 [44]
0.199 75.0� 5.0 [44]
0.20 72.9� 29.6 [42]
0.27 77.0� 14.0 [43]
0.28 88.8� 36.6 [42]
0.35 82.1� 4.85 [45]
0.352 83.0� 14.0 [46]
0.3802 83.0� 13.5 [46]
0.4 95.0� 17.0 [43]
0.4004 77.0� 10.2 [46]
0.4247 87.1� 11.2 [46]
0.4497 92.8� 12.9 [46]
0.4783 80.9� 9.0 [46]
0.48 97.0� 62.0 [47]
0.593 104.0� 13.0 [44]
0.68 92.0� 8.0 [44]
0.781 105.0� 12.0 [44]
0.875 125.0� 17.0 [44]
0.88 90.0� 40.0 [47]
0.9 117.0� 23.0 [43]
1.037 154.0� 20.0 [44]
1.3 168.0� 17.0 [43]
1.363 160.0� 33.6 [48]
1.43 177.0� 18.0 [43]
1.53 140.0� 14.0 [43]
1.75 202.0� 40.0 [43]
1.965 186.5� 50.4 [48]

TABLE V. Baryon acoustic oscillations measurements.

z dV � σdV Reference

0.106 0.336� 0.015 [49]
0.15 0.2239� 0.0084 [50]
0.32 0.1181� 0.0023 [51]
0.57 0.0726� 0.0007 [51]
2.34 0.0320� 0.0016 [52]
2.36 0.0329� 0.0012 [53]
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