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Abstract

The development of tolerance to the antinociceptive effect is a main problem associated with the 

repeated administration of opioids. The progressively higher doses required to relieve pain reduce 

safety and exacerbate the side effects of classical opioid receptor agonists like morphine. 

Nociceptin/orphanin FQ (N/OFQ) and its NOP receptor constitute the fourth endogenous opioid 

system that is involved in the control of broad spectrum of biological functions, including pain 

transmission. Aim of this work was to evaluate the relevance of the N/OFQ-NOP system in 

morphine antinociceptive action and in the development of morphine tolerance in the rat. 

Continuous spinal intrathecal infusion of morphine (1 – 3 nmol/h) evoked analgesic effects for 5 

days in wild type animals. The same doses infused in NOP(−/−) rats showed a lower analgesic 

efficacy, while the onset of tolerance was delayed to day 9. N/OFQ (1 – 3 nmol/h), continuously 

infused in NOP(+/+) animals, showed an analgesic profile similar to morphine. 

Immunohistochemical analysis of the dorsal horn of the spinal cord of morphine tolerant 

NOP(+/+) rats showed an increased number of Iba1- and GFAP-positive cells (microglia and 

astrocytes, respectively). Interestingly, microglia but not astrocyte activation was observed in 

NOP(−/−) morphine tolerant rat. A selective activation of astrocytes was observed in the dorsal 

horn of wild type N/OFQ tolerant rats.

The antinociceptive effect of morphine partially depends by the N/OFQ-NOP system that 

participates in the development of morphine tolerance. In particular, NOP receptors are involved in 

morphine-induced astrocyte activation, and N/OFQ per se increases astrocyte density.
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1. Introduction

Morphine is one of the most powerful drug used in pain relief and remains a preferred and 

commonly prescribed analgesic for pain management (Denlinger et al., 2014). Although it 

shows remarkable efficacy for treating chronic pain conditions, there are several limitations 

to its use (Yuill et al., 2016), including rapid development of tolerance, which is 

characterized by a decrease in antinociceptive efficacy (Self and Nestler, 1995). To 

overcome tolerance and achieve equivalent pain relief, the opioid dose is progressively 

escalated which can exacerbate the unwanted effects (Thorn et al., 2015). Mechanisms of 

tolerance are complex and involves changes in receptors, ion channels cell and neuronal 

networks functions (Ji, 2010; Johansson et al., 2010; Zhang et al., 2015). According to a 

classical view these re-arrangements occur at the neuronal level, however growing evidence 

indicates a potential role of glia cells that are activated by repeated administrations of 

morphine (Di Cesare Mannelli et al., 2015; Horvath et al., 2009; Mika, 2008; Mika et al., 

2009; Raghavendra et al., 2003; Song and Zhao, 2001; Watkins et al., 2005). Morphine 

treatment induces astrocyte and microglia changes resulting in increased production of many 

soluble factors such as proinflammatory cytokines and chemokines, neurotrophic factors, 

prostaglandins, nitric oxide, complement proteins, free radicals, neurotoxins and excitatory 

amino acids that counteract opioid analgesia (Eidson and Murphy, 2013; Hameed et al., 

2010). The pharmacological inhibition of microglia and astrocyte with minocycline and 

fluorocitrate, respectively, attenuates the onset of tolerance in rats (Cui et al., 2008; Song 

and Zhao, 2001).

Nociceptin/orphanin FQ (N/OFQ), a heptadecapeptide from the opioid family, and its 

cognate NOP receptor (previously called the opioid receptor-like, ORL1), are present in 

nociceptive pathways in spinal cord and brain with a complex role (Schroder et al., 2014, 

Zeilhofer and Calo, 2003). N/OFQ differentially modulates nociception depending upon site 

of administration, dose, assay, and animal species. N/OFQ injected intracerebroventricularly 

(i.c.v) decreases the pain threshold in the hotplate and tail-flick assays (Meunier et al., 1995; 

Reinscheid et al., 1995). Moreover, after the i.c.v. administration, N/OFQ attenuates 

morphine analgesia (Mogil et al., 1996). On the contrary, intrathecal (i.t.) administration of 

the peptide shows acute antinociceptive activity in the tail-flick and in the paw pressure tests 

(Micheli et al., 2015a; Xu et al., 1996). Similarly, in models of neuropathic and 

inflammatory pain, i.t. injections of N/OFQ have also been shown to produce anti-

hyperalgesic (Micheli et al., 2015b) and anti-allodynic effects and to potentiate morphine 

antihyperalgesia (Courteix et al., 2004; Hao et al., 1998; Yamamoto et al., 1997). Despite 

these studies prove the properties of N/OFQ to evoke antinociceptive effect after spinal 

administration, no definitive data are reported regarding the involvement of the NOP system 

in the onset of opioid analgesic morphine tolerance.
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Aiming to evaluate the involvement of the NOP system in the onset of morphine tolerance, 

morphine was administered in NOP(+/+) and NOP(−/−) animals through an intrathecal 

catheter that allowed a continuous infusion of the compounds at the lumbar level of the 

spinal cord. The glial activation profile was studied in the dorsal horn in comparison to the 

same treatment with N/OFQ.

2. Materials and Methods

2.1. Animals

Male Sprague-Dawley and Wistar rats were supplied by Envigo (Varese, Italy). Male 

NOP(−/−) rats, supplied by GenOway (Lyon, France), were generated in a Brown Norway 

background and subsequently backcrossed on a Wistar background for four generations as 

previously described in detail (Homberg et al., 2009). For knockout studies Wistar rats were 

used as controls and indicated as NOP(+/+). Animals, weighing approximately 280–300g at 

the beginning of the experimental procedure, were housed in Ce.S.A.L (Centro Stabulazione 

Animali da Laboratorio, University of Florence) and used at least one week after their 

arrival. Four rats were housed per cage (size 26 × 41 cm) kept at 23 ± 1°C with a 12 h light/

dark cycle, light at 7 a.m; were fed a standard laboratory diet and tap water ad libitum. All 

animal manipulations were carried out according to the Directive 2010/63/EU of the 

European parliament and of the European Union council (22 September 2010) on the 

protection of animals used for scientific purposes. The ethical policy of the University of 

Florence complies with the Guide for the Care and Use of Laboratory Animals of the US 

National Institutes of Health (NIH Publication No. 85–23, revised 1996; University of 

Florence assurance number: A5278–01). Formal approval to conduct the experiments 

described was obtained from the Animal Subjects Review Board of the University of 

Florence. Experiments involving animals have been reported according to ARRIVE 

guidelines (McGrath and Lilley, 2015). All efforts were made to minimize animal suffering 

and to reduce the number of animals used.

2.2. Intrathecal catheterization

Rats were anesthetized with 2% isoflurane and intrathecal catheter was surgically implanted 

according to the Yaksh & Rudy (1976) method. Rats were shaved on the back of the neck 

and placed in the stereotaxic frame with the head securely held between ear bars. The skin 

over the nap of the neck was cleaned with ethyl alcohol and incised for 1 cm. The muscle on 

either side of the external occipital crest was detached and retracted to expose about 3–4 

mm2 of the atlanto-occipital membrane. The membrane was incised by a needle, which led 

to the escape of cerebrospinal fluid. The caudal edge of the cut was lifted and about 7.0 cm 

of 28G polyurethane catheter (0.36 mm outer diameter; 0.18 mm inner diameter; Alzet, 

USA) was gently inserted into the intrathecal space in the midline, dorsal to the spinal cord 

until the lumbar enlargement. The exit end of the catheter was connected to the osmotic 

pumps (Alzet, USA) for continuous infusion. Then pumps were subcutaneously fixed on the 

back of the head. The incision site in the skin was sutured with polyamide wire and animals 

were allowed to recover for 24 h before the study began.
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All animals used during behavioral tests did not shown motor impairment induced by 

surgical operation for the catheter implantation. The evaluation of potential motor 

dysfunctions were investigated using Rota rod test (Ugo Basile, Varese, Italy). The animals 

that represented any kind of motor disability (approximately 15%) were excluded from the 

behavioral measurements.

2.3. Drug intrathecal treatments

Morphine hydrochloride was from S.A.L.A.R.S., Como, Italy. N/OFQ was synthesized and 

purified as previously described in details (Arduin et al., 2007; Guerrini et al., 1997). All 

compounds were dissolved in sterile saline solution.

For continuous infusion, compound concentrations were adjusted to release 1 and 3 nmol/h 

morphine or N/OFQ from a mini-osmotic pump ALZET 1002 (USA) with a flow rate 0.25 

μL/h. Final solutions were filtered by a 0.22 μm pore size Hydrophilic PVDF membrane 

(Millipore, Italy). Mini-pumps were attached to the described polyurethane catheters and 

filled with compounds or vehicle solutions, respectively. All mini-osmotic pumps were 

incubated in sterile saline solution overnight at 37 °C.

2.4. Paw Pressure test

The nociceptive threshold in the rat was determined with an analgesimeter (Ugo Basile, 

Varese, Italy), according to the method described by Leighton et al. (1988). Briefly, a 

constantly increasing pressure was applied to a small area of the dorsal surface of the paw 

using a blunt conical probe by a mechanical device. Mechanical pressure was increased until 

vocalization or a withdrawal reflex occurred while rats were lightly restrained. Vocalization 

or withdrawal reflex thresholds were expressed in grams. Rats scoring below 35 g or over 75 

g during the test before the surgical procedure for the catheter implantations were rejected. 

For analgesia measures, mechanical pressure application was stopped at 180 g. All 

experiments were performed by a researcher blind to drug treatments.

2.5. Rota-rod test

The Rota-rod apparatus (Ugo Basile, Varese, Italy) consisted of a base platform and a 

rotating rod with a diameter of 6 cm and a non-slippery surface. The rod was placed at a 

height of 25 cm from the base. The rod, 36 cm in length, was divided into 4 equal sections 

by 5 disks. Thus, up to 4 rats were tested simultaneously on the apparatus, with a rod-

rotating speed of 10 r.p.m. The integrity of motor coordination was assessed on the basis of 

the time the animals kept their balance on the rotating rod up to a maximum of 120 s. The 

number of falls from the rod was also measured. After a maximum of 6 falls, the test was 

suspended and the time was recorded.

2.6. Immunofluorescence staining

After the disappearance of the antinociceptive effects (day 6 for morphine-treated NOP(+/+); 

day 9 for morphine-treated NOP(−/−); day 8 for morphine-treated NOP(+/+)) animals from 

each treatment group were killed using a guillotine. The L4/L5 segments of the spinal cord 

were exposed from the lumbar vertebral column via laminectomy and identified by tracing 

the dorsal roots from their respective dorsal root ganglia (DRG). As previously described by 
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(Di Cesare Mannelli et al., 2013; Di Cesare Mannelli et al., 2014; Tomassoni et al., 2013), 

formalin-fixed cryostat sections (7 μm) were washed 3 × phosphate-buffered saline (PBS), 

0.3% Triton X-100 for 5 min and then were incubated, at room temperature, for 1 h in 

blocking solution (PBS, 0.3% Triton X-100, 5% albumin bovine serum; PBST). Slices were 

incubated overnight at 4°C in PBST containing rabbit primary antisera. The primary 

antibody used was directed against ionized calcium binding adapter molecule 1 (Iba1; rabbit, 

1:1000; Wako, Richmond, VA, USA) for microglial staining or against glial fibrillary acidic 

protein (GFAP; rabbit, 1:1000; DAKO, Carpinteria, CA, USA) for astrocyte staining. The 

following day, slides were washed 3 × PBS, 0.3% Triton X-100 for 5 min and then sections 

were incubated in goat anti-rabbit IgG secondary antibody labeled with Alexa Fluor 568 

(1:500; Invitrogen, Carlsbad, USA) and DAPI (4’, 6-diamidin-2-fenilindolo; 1:2000; Life 

Technologies-Thermo scientific, Rockford, IL, USA), a nuclei marker, in PBST at room 

temperature for 2 h, in the dark. After 3 × PBS 0.3% Triton X-100 wash for 10 min, slices 

were mounted using ProLong Gold (Life Technologies-Thermo scientific, Rockford, IL, 

USA) as a mounting medium.

Negative control sections (no exposure to the primary antisera) were processed concurrently 

with the other sections for all immunohistochemical studies, in order to exclude the presence 

of nonspecific immunofluorescent staining or cross-immunostaining. Images were acquired 

by using an Olympus BX63 microscope equipped with an Olympus XM10 camera and 

coupled to CellSense Dimension Software (Olympus, Milan, Italy).

Quantitative analysis of GFAP and Iba1-positive cells was performed by collecting three 

independent fields through a 20X 0.40NA objective in the dorsal horn of each rat spinal 

cord. GFAP and Iba1-positive cells were counted using the “cell counter” plugin of ImageJ 

(NIH, Bethesda, Maryland, USA).

2.7. Statistical analysis

Behavioral measurements were performed on 8 rats for each treatment carried out in 2 

different experimental sets. Results were expressed as means ± S.E.M. and the analysis of 

variance was performed by two way ANOVA. A Bonferroni’s significant difference 

procedure was used as post-hoc comparison. P values of less than 0.05 or 0.01 were 

considered significant. Data were analyzed using the “Origin 9” software (OriginLab, 

Northampton, USA).

3. Results

We compared the analgesic effects of morphine (1 nmol/h and 3 nmol/h) induced by a 

continuous intrathecal (i.t.) infusion in NOP(+/+) and NOP(−/−) rats. Control groups were 

treated with sterile saline solution. To allow a constant delivery of the substance over days, 

mini-osmotic pumps connected to catheters were used. Pain threshold was evaluated every 

day by Paw pressure test, beginning 24 h after pump implant (Fig. 1A and 1B). Animals 

treated with vehicle displayed a stable pain threshold over the time course of the experiment 

(10 days). No difference in the basal pain threshold between NOP(+/+) and NOP(−/−) rats 

was highlighted.
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On day 1, morphine elicited a higher antinociceptive effect in NOP(+/+) animals in 

comparison to the same dose infused in NOP(−/−) rats. A superior effect in NOP(+/+) rats 

was maintained for 2 and 4 days depending on the treatment with 1 or 3 nmol/h, 

respectively. In NOP(+/+) rats morphine effectiveness rapidly decreased (dose-dependently) 

losing significance on day 5 (Fig. 1A and 1B). In NOP(−/−) animals, the antinociceptive 

effect of morphine, even lower, was more stable and longer lasting for both dosages used (1 

and 3 nmol/h). Efficacy was lost on day 9 (Fig. 1A and 1B). Results obtained by the 

continuous intrathecal infusion of the endogenous peptide N/OFQ (1 and 3 nmol/h) in 

NOP(+/+) rats are shown in Fig. 2. N/OFQ efficacy was slightly lower than morphine on day 

1 but the decrease in the following days was lesser drastic. Moreover, the antinociceptive 

effect was maintained till day 7. As previously reported, N/OFQ does not induce analgesia 

in NOP(−/−) animals (Micheli et al., 2015a).

After the disappearance of the antinociceptive effects (day 6 for morphine-treated NOP(+/+) 

at the dose of 3 nmol/h; day 9 for morphine-treated NOP(−/−) at both dosages (1 and 3 

nmol/h); day 8 for nociceptin/OFQ-treated NOP(+/+)) animals from each treatment group 

were killed for spinal cord collection. The dorsal horn were collected and glial cells analysed 

by immunohistochemistry at the lumbar level. In wild type animals, morphine, infused at the 

dose of 3 noml/h, increased the number of both Iba1- and GFAP-positive cells in comparison 

to control (Fig. 3A and 4A). Differently, the microglial component only was increased by 

morphine (1 and 3 nmol/h) in NOP(−/−) rats whereas astrocytes were unmodified by 

treatment (Fig. 3B and 4B).

In Fig. 5, the effect of N/OFQ on glial cells is shown. The intrathecal infusion of N/OFQ (1 

nmol/h and 3 nmol/h) did not alter the number of Iba-1 positive cells (Fig. 5B). On the 

contrary, the density of GFAP-positive cells was significantly increased (Fig. 5B).

4. Discussion

Results showed that genetic deletion of NOP receptor is associated with reduction in the 

analgesic effect and tolerance development of morphine. Knocking out the NOP receptor, 

morphine is less efficient in increasing the pain threshold but the effect is longer lasting in 

comparison with wild type animals. Moreover, immunohistochemistry revealed that lack of 

NOP receptor is also associated with reduced activation of GFAP-positive cells occurring in 

morphine tolerant rats indicating a potential role of NOP/OFQ system in regulation of 

tolerance through modulation of astrocytes-related mechanisms. This hypothesis if further 

supported by results in wild type rats in which N/OFQ infusion was associated with 

activation of astrocytes.

The lower analgesic efficacy of morphine in NOP(−/−) rats agree with our previous evidence 

after an acute intrathecal injections in rats (Micheli et al., 2015a). Conversely, other authors 

reported similar analgesic effects of morphine in NOP(+/+) and NOP(−/−) in mice (Mamiya 

et al., 2001; Ueda et al.,1997) suggesting a different role of N/OFQergic signaling in rats 

and mice. On the other hand, a partial loss of tolerance liability to morphine analgesia was 

observed also in mice lacking the NOP receptor gene (Ueda et al., 1997).
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The development of morphine tolerance and dependence is also associated with changes of 

the NOP receptor system. For instance, in wild type mice, chronic administration of 

morphine induced an increase of NOP gene expression in the spinal cord while the 

administration of J- 113397, a non-peptide N/OFQ antagonist (Bigoni et al., 2000; Ozaki et 

al., 2000), prevented the development of morphine tolerance (Caputi et al., 2014; Chung et 

al., 2006; Ueda et al., 2000). Accordingly, the concentration of endogenous N/OFQ 

increased in the rat ventricular cerebrospinal fluid, in periaqueductal gray and amygdala in a 

time-dependent manner during the development of morphine tolerance (Yuan et al., 1999).

During the development of morphine tolerance similar increases were observed also for 

cholecystokinin (Becker et al., 2000; Lucas et al., 1999) and neuropeptide FF (Malin et al., 

1990), both of which have been shown to contrast the analgesics effects of opioid in the 

central nervous system. Hence, engagement of antiopioid peptide systems may represent a 

key mechanism responsible for the development of tolerance to the analgesic effects of 

morphine (Harrison et al.,1998).

The demonstration that N/OFQ blocks opioid receptor-mediated stress-induced 

antinociception (Mogil et al., 1996) and also decreases the antinociceptive effect of 

morphine and other opioid receptor agonists (Lutfy et al., 2001; Mogil et al., 1996; Morgan 

et al., 1997; Tian et al., 1997) has led to the suggestion that N/OFQ may act as an anti-opioid 

peptide in the brain (Mogil et al., 1996). Among several mechanisms proposed to explain 

morphine tolerance, the activation of glial cells assumes a main role (Cui et al., 2008; Eidson 

and Murphy, 2013; Ferrini et al., 2013; Song and Zhao, 2001). To the best of our knowledge, 

there are no findings regarding the relationship between glial cells and N/OFQ in the onset 

of morphine tolerance.

In the present study we reported the glial response in the dorsal horn of the spinal cord in 

NOP(+/+) and NOP(−/−) rats tolerant to morphine. We performed the same analysis in 

NOP(+/+) rats tolerant to N/OFQ. Wild type animals, tolerant to morphine after the 

intrathecal continuous infusion of the alkaloid at the dose of 3 nmol/h, showed glial 

activation characterized by an increase in cell density without morphological alterations of 

both microglia and astrocytes. This results are in accord with previous evidence (Di Cesare 

Mannelli et al., 2015). On the contrary, in wild type rats tolerant to N/OFQ the number of 

astrocyte cells is statistically increased whereas microglia density is not altered. Neverthless, 

when the NOP receptor is deleted morphine treatment selectively activates microglia but not 

astrocytes. A NOP-mediated morphine-induced astrocyte activation may be hypothesize. On 

the other hand, fluorocitrate, a nonselective metabolic inhibitor of astrocytes, partially 

reversed the development of morphine tolerance in rats (Song and Zhao, 2001). Moreover, 

astrocytes express NOP receptor and cytokine production by astrocytes can be inhibited by 

N/OFQ, an effect which represents one mechanism by which N/OFQ may reduce pain 

sensitivity (Fu et al., 2007). Furthermore, N/OFQ mRNA is increased in astrocytes treated 

with morphine (Takayama and Ueda, 2005), further, various proinflammatory cytokines as 

those increased during morphine treatment (eg., tumor necrosis factor and interleukin-1) can 

enhance astrocyte concentrations of immunoreactive N/OFQ and N/OFQ mRNA (Buzas et 

al., 2002; Mallimo and Kusnecov, 2013). In this view, our data suggest that lacking NOP 

receptor the ancillary role of N/OFQ in morphine antinociception is lost but losing the NOP-
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dependent astrocyte signal tolerance development may be delayed. The topic deserves 

further studies to clarify the role of N/OFQ signaling in astrocyte and to attempt a NOP 

modulation for enhancing morphine antinociceptive activity. In particular, an in vivo study 

with the continuous i.t. infusion of morphine and a NOP receptor antagonist will be 

performed to highlight the link between the onset of morphine tolerance and the NOP 

system.

5. Conclusion

In conclusion the antinociceptive effect of morphine seems to be partially dependent from 

the NOP system since rats lacking NOP receptor are less sensitive to the analgesic effect of 

this opioid agonist. Interestingly results revealed also that receptor deletion contributes to 

delay the development of morphine tolerance possibly through mechanisms associated with 

astrocytes activation.
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Fig. 1. 
Analgesic effect induced by continuous intrathecal infusion of morphine in NOP(+/+) and in 

NOP(−/−) rats. a) The opioid compound was dissolved in sterile saline solution and infused 

in two different groups of animals both at the dose of 1 nmol/h with osmotic pumps until 

day 10. Vehicle NOP(+/+) and vehicle NOP(−/−) groups were infused with sterile saline 

solution. The nociceptive threshold was evaluated every day by Paw pressure test, starting on 

the 1st day of treatment. b) The opioid compound was dissolved in sterile saline solution and 

infused in two different groups of animals, both at the dose of 3 nmol/h with osmotic pumps 
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until day 10. Vehicle NOP(+/+) and vehicle NOP(−/−) groups were infused with sterile 

saline solution. The nociceptive threshold was evaluated every day by Paw pressure test, 

starting on the 1st day of treatment. Each value represents the mean of 8 rats performed in 2 

different experimental sets. Data are shown as mean ± S.E.M; ^^P<0.01 vs vehicle 

NOP(+/+) infused rats; **P<0.01 vs vehicle NOP (−/−) infused rats.
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Fig. 2. 
Effect induced by continuous intrathecal infusion of N/OFQ in NOP (+/+) rats. The 

compound was dissolved in sterile saline solution and administered in two different groups 

of animals at the dosages of 1 and 3 nmol/h with osmotic pumps until day 8. Vehicle NOP 

(+/+) group was infused with sterile saline solution. The nociceptive threshold was evaluated 

by Paw pressure test, starting the 1st day of treatment. Each value represents the mean of 8 

rats performed in 2 different experimental sets. Data are shown as mean ± S.E.M; ^P<0.05 

and ^^P<0.01 vs vehicle NOP (+/+) infused rats.
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Fig. 3. 
Iba1-positive cell density in the dorsal horn of the spinal cord of morphine NOP(+/+) and 

NOP(−/−) tolerant rats. a) Morphine 3 nmol/h was continuously intrathecal infused in 

NOP(+/+) rats until the onset of tolerance and immunohistochemical analysis was performed 

on day 6. Representative images of merged Iba1-labeled microglia cells (red), plus DAPI-

labeled cell nuclei (blue), scale bar: 50 μm. b) Morphine 1 nmol/h and 3 nmol/h was 

continuously intrathecal infused in NOP(−/−) rats until the onset of tolerance and 

immunohistochemical analysis was performed on day 9. Representative images of merged 
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Iba1-labeled microglia cells (red), plus DAPI-labeled cell nuclei (blue), scale bar: 50 μm. 

Each value represents the mean of 4 rats performed in 2 different experimental sets. Data are 

shown as mean ± S.E.M; ^^P<0.01 vs vehicle NOP(+/+) infused rats. *P<0.05 and **P<0.01 

vs vehicle NOP(−/−) infused rats.
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Fig. 4. 
GFAP-positive cell density in the dorsal horn of the spinal cord of morphine NOP(+/+) and 

NOP(−/−) tolerant rats. a) Morphine 3 nmol/h was continuously intrathecal infused in 

NOP(+/+) rats until the onset of tolerance and immunohistochemical analysis was performed 

on day 6. Representative images of merged GFAP-labeled astrocytes cells (red), plus DAPI-

labeled cell nuclei (blue), scale bar: 50 μm. b) Morphine 1 nmol/h and 3 nmol/h was 

continuously intrathecal infused in NOP(−/−) rats until the onset of tolerance and 

immunohistochemical analysis was performed on day 9. Representative images of merged 
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GFAP-labeled astrocytes cells (red), plus DAPI-labeled cell nuclei (blue), scale bar: 50 μm. 

Each value represents the mean of 4 rats performed in 2 different experimental sets. Data are 

shown as mean ± S.E.M; ^^P<0.01 vs vehicle NOP(+/+) infused rats.
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Fig. 5. 
Iba1-positive cell density and GFAP-positive cell density in the dorsal horn of the spinal 

cord of N/OFQ NOP(+/+) tolerant rats. a) N/OFQ 1 nmol/h and 3 nmol/h was continuously 

intrathecal infused in NOP(+/+) rats until the onset of tolerance and immunoistochemical 

analysis were performed on day 8. Representative images of merged Iba1-labeled microglia 

cells (red), plus DAPI-labeled cell nuclei (blue), scale bar: 50 μm. b) N/OFQ 1 nmol/h and 3 

nmol/h was continuously intrathecal infused in NOP(+/+) rats until the onset of tolerance 

and immunoistochemical analysis were performed on day 4. Representative images of 
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merged GFAP-labeled astrocytes cells (red), plus DAPI-labeled cell nuclei (blue), scale bar: 

50 μm. Each value represents the mean of 8 rats performed in 2 different experimental sets. 

Data are shown as mean ± S.E.M; ^P<0.05 vs vehicle NOP(+/+) infused rats.
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