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Abstract: (1) Background: Diabetes is a common chronic disease and a leading cause of death. Early
diagnosis gives patients with diabetes the opportunity to improve their dietary habits and lifestyle
and manage the disease successfully. Several studies have explored the use of machine learning
(ML) techniques to predict and diagnose this disease. In this study, we conducted experiments to
predict diabetes in Pima Indian females with particular ML classifiers. (2) Method: A Pima Indian
diabetes dataset (PIDD) with 768 female patients was considered for this study. Different data mining
operations were performed to a conduct comparative analysis of four different ML classifiers: Naïve
Bayes (NB), J48, Logistic Regression (LR), and Random Forest (RF). These models were analyzed
by different cross-validation (K = 5, 10, 15, and 20) values, and the performance measurements of
accuracy, precision, F-score, recall, and AUC were calculated for each model. (3) Results: LR was
found to have the highest accuracy (0.77) for all ‘k’ values. When k = 5, the accuracy of J48, NB,
and RF was found to be 0.71, 0.76, and 0.75. For k = 10, the accuracy of J48, NB, and RF was found to
be 0.73, 0.76, 0.74, while for k = 15, 20, the accuracy of NB was found to be 0.76. The accuracy of J48
and RF was found to be 0.76 when k = 15, and 0.75 when k = 20. Other parameters, such as precision,
f-score, recall, and AUC, were also considered in evaluations to rank the algorithms. (4) Conclusion:
The present study on PIDD sought to identify an optimized ML model, using with cross-validation
methods. The AUC of LR was 0.83, RF 0.82, and NB 0.81). These three were ranked as the best models
for predicting whether a patient is diabetic or not.

Keywords: machine learning (ML); diabetes; PIDD; accuracy; model validation

1. Introduction

Diabetes is a common chronic disease occurring when the pancreas does not produce enough
insulin (Type 1 diabetes) or when the patient’s body does not effectively utilize the insulin (Type 2
diabetes). Hyperglycemia or raised blood sugar is the common consequence of uncontrolled diabetes.
Over time, diabetes can cause severe damage to nerves and blood vessels [1]. Advanced diabetes is
complicated by coronary illness, visual impairment, and kidney failure [1,2]. Early detection of the
disease can give patients the opportunity to make the necessary lifestyle changes and therefore can
improve their life expectancy [3].
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Machine learning (ML), is an application of artificial intelligence (AI) that enables computers to
self-learn and perform statistical analysis without human interaction [4]. ML algorithms and models
are extensively used and have been found reliable for a variety of applications. Researchers have been
adopting ML in medicine, especially for diagnosis, disease prediction [5], drug discovery, and clinical
trials [6].

The machine learning process starts with structured or unstructured data from different sources.
The next step is data preparation or data preprocessing, which involves data selection through a data
mining method in which original or raw data is converted into an understandable format [7]. Once the
data is ready, the model tests different trained data-sets to calculate accuracy or perform statistical
algorithms; this is known as model validation [8]. Model optimization or model improvement is done
by hyperparameter tuning for final validation to perform prediction, and classification (Figure 1).
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In healthcare systems, large amounts of patient data and medical knowledge are stored in
databases, and new tools and technologies for data analysis and classification are needed to exploit
this information. Currently, ML algorithms are used for the automatic analysis of high dimensional
medical data. Dementia forecasting [9], cancer tumor identification [10], diabetes predictions [11],
and radiotherapy [12] are some examples of ML in medicine.

According to World Health Organization (WHO) reports, there are 425 million people in the world
with diabetes [13]. Extensive studies on the diagnosis and early prediction of diabetes have shown that
the risk factors associated with Type 2 diabetes include family history, hypertension, unhealthy diet,
lack of physical activities, and being overweight. Females have a higher tendency to become diabetic
(especially during pregnancy), due to low insulin absorption, high cholesterol levels, or a rise in blood
pressure [13,14]. Studies have shown that cost-effective and efficient techniques for diagnosing diabetes
could be developed by employing computer skills and data mining algorithms.

Several studies conduct prediction analysis using data-mining algorithms to diagnose diabetes.
For example, in [15], researchers utilized support vector machines (SVM) for the diagnosis of diabetes
mellitus and achieved a prediction accuracy of about 94%. Another work has used J48 decision trees, RF,
and neural networks, and has found that RF provides the highest accuracy (80.4%) in diabetic patient
classification [16]. Another paper proposed a model to forecast the likelihood of diabetes. This study
concluded that Naïve Bayes (NB) had 76.3% accuracy, higher than J48 and SVM [17]. An accuracy
analysis conducted on different ways of data preprocessing, and parameter modification was done
to improve model precision [18]. The above results revealed that deep neural networks (DNN) with
cross-validation (K = 10) generated 77.86% accuracy in diabetes identification.

In this study, we developed a classification model for Type 2 diabetes in Pima Indian females.
Four classification ML algorithms to detect diabetes in female patients were used: J48 decision trees,
NB, RF, and Logistic Regression (LR). Cross-validation (CV) techniques were employed to train the
different ML models for varying test data-sets. The ranking of each algorithm was decided based on
the performance parameters of accuracy, precision, recall, and F-scores.
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2. Methods and Materials

A Pima Indian diabetes dataset (PIDD) with 768 female patients was considered. This dataset,
owned by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), contained a
tested positive (class variable: 1) and a tested negative (class variable: 0) with eight various risk factors
(Table 1).

Table 1. Statistical report of the Pima Indian diabetes dataset (PIDD).

Attribute Number Risk Factor Acronym Variable Type Range (Min-Max)

1 Number of times pregnant Preg Integer 0–17

2 Plasma glucose concentration a 2 h in
an oral glucose tolerance test Plus Integer 44–199

3 Diastolic blood pressure (mm Hg) Pres Integer 24–122

4 Triceps skinfold thickness (mm) Skin Integer 7–99

5 2-Hour serum insulin (mu U/mL) Insu Integer 14–846

6 Body mass index
(weight in kg/(height in m)ˆ2) Mass Real 18.2–67.1

7 Diabetes pedigree function Pedi Real 0.07–2.42

8 Age (years) Age Integer 21-81

9 Class - Binary 1-Tested Positive (268)
0-Tested Negative (500)

Data investigation was undertaken using WEKA 3.8 [19], which is an open-source tool that can
help to perform various data-mining operations. At first, PIDD was exposed to data preprocessing
steps to control the unbalanced data-sets (Figure 2).
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2.1. Data Sampling

Two data sampling techniques were used to convert imbalanced datasets into balanced datasets:
oversampling (on the minority class instances), and under-sampling (on the majority class instances).
Different forms of the PIDD dataset with statistical values of each attribute are presented in Table 2.



Machines 2019, 7, 74 4 of 11

Table 2. Statistics of original and different trained sets (where SD: standard deviation, BMI: Body Mass
Index).

Statistics Dataset Preg Plas Pres Skin Insu BMI Pedi Age

Count

Original 768 768 768 768 768 768 768 768
Preprocess 392 392 392 392 392 392 392 392

Under-sampling 536 536 536 536 536 536 536 536
Oversampling 1036 1036 1036 1036 1036 1036 1036 1036

Mean

Original 3.84 121.6 72.40 29.15 155.54 32.45 0.472 33.241
Preprocess 3.301 122.62 70.66 29.14 156.05 33.08 0.523 30.86

Under-sampling 4 126.228 69.095 20.403 84.981 32.553 0.488 33.944
Oversampling 4.084 126.123 69.593 20.818 84.894 32.765 0.494 34.2

SD

Original 3.37 30.43 12.09 8.79 85.02 6.87 0.331 11.76
Preprocess 3.211 30.86 12.49 10.51 118.84 7.028 0.345 10.201

Under-sampling 3.464 33.335 20.378 16.515 124.84 7.877 0.351 11.684
Oversampling 3.349 32.443 19.378 16.062 121.33 7.522 0.332 11.43

Min

Original 0 0 0 0 0 0 0.07 21
Preprocess 0 56 24 7 14 18.2 0.085 21

Under-sampling 0 0 0 0 0 0 0.078 21
Oversampling 0 0 0 0 0 0 0.078 21

Max

Original 17 199 122 99 846 67.1 2.42 81
Preprocess 17 198 110 63 846 67.1 2.42 81

Under-sampling 17 199 114 99 846 67.1 2.42 81
Oversampling 17 199 122 99 846 67.1 2.42 81

2.2. Cross-Validation

Cross-validation (CV) is a model training method that can assess prediction accuracy [20].
The biggest challenge in ML is validating the model with trained data. To ensure the adopted model is
producing the noise-free model patterns [21], data scientists use CV techniques. Compared with other
methods, the CV technique offers the most ease in estimating low bias models, and therefore is one of
the most popular techniques in ML algorithms.

In this study, four ML classifiers were employed to conduct different cross-validations. The k-fold
CV technique was used to perform model validation. The PIDD was split into ‘k’ folds to conduct
training with test data, and the remaining ‘k-1’ folds were combined to form trained data. Original
data were randomly separated into ‘k’ folds (k1,k2 . . . ,ki), and the model testing was performed by ‘k’
times. For example, in the first iteration, if subset (k1) served as test data, then the remaining subsets
(k2, . . . . . . ,ki) were combined to conduct model training, and this process was repeated for the rest
of the ‘k’ values. Many studies reported that in order to avoid issues associated with imbalanced
data-sets, the optimal value for ‘k’ should be 5 or 10. With the highest (k) values, the difference in
trained and sampled data-sets tended to acquire low values. In the present study, model validation
was conducted with k = 5, 10, 15, and 20.

2.3. Naïve Bayes (NB)

Naïve Bayes (NB) is a probability-based ML method that can be used as a classification technique.
Based on feature extraction, NB produces the probability for target groups in classification [22].
This algorithm quickly and easily predicts the test data and produces better performance values in
multi-class predictions. Compared with numerical inputs, NB predicts correctly categorical input
values. The Bayes theorem is represented in Equation (1) below

P (c/X) =
(P (X

∣∣∣c) P(c)

P(X)
(1)

The probability of ‘c’ is happening, given that ‘X’ occurrence.
Here, P (c/X) = target class’s posterior probability,
P (X/c) = predictor class’s probability,
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P(c) = class ‘c’s probability is true,
P(X) = predictor’s prior probability.

2.4. Logistic Regression (LR)

LR is a classification algorithm used to allocate observations into discrete set of classes. It is
classified into the binary, multi, and normal level types. LR does not indicate a relationship between
non-continuous attributes, but allows the prediction of the discrete variables [23]. It is very easy to
implement and quite efficient for training the model.

Logistic regression is mathematically written as a multiple linear regression function Equation
(2) by

Logit (P) =
(

m(x = 1)
1− (p = 1)

)
= β+ β1.x1 + β2.x2−−βi.xm for i = 1 . . . .N (2)

The following example represents a simple logistic binary function. As discussed, two target
diabetic groups (tested positive-‘1’ or tested negative-‘0’) were tested

Hypothesis W = AX + B (3)

H (x) = sig (W) (4)

If ‘W’ reaches positive infinity, then the prediction is positive, and if ‘W’ reaches to negative
infinity, then the prediction is negative (Figure 3).
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2.5. Random Forest (RF)

When feature selection methods are used, the RF algorithm is quick to learn to produce the highest
classification accuracy on large databases, because of the tree-based systems used. Generally, these
trees are nicely positioned for improving the virtue of the tree node known as the Gini impurity [24].
In RF, feature extraction is conducted from the test data. Thereafter, test features are validated by the
randomly generated decision trees (Figure 4). In the example of PIDD, if the model was generated
50 random trees, every tree could predict two different outcomes for the same test group. If 30 trees
were predicted (tested positive) and 20 trees were predicted (tested negative), then the RF algorithm
returns ‘tested positive’ as the predicted target.
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2.6. J48 (Decision Tree Algorithm)

J48 or decision tree algorithm allows to calculate the feature behavior of different test groups. With
J48, it is easy to understand the explanatory distribution of instances. This can help in identifying
missing attributes and therefore works as a precision tool in case of over fitting was occurred [25].
The major challenge associated with the decision trees is the identification of the root node attribute.
This attribute selection can be done in two methods: information gain Equation (5) and Gini Index
Equation (6).

Information gain written as Gain (X, A) = Entropy (X) −
∑

x
Values(X)

|Xx|
|X|
∗ Entropy (Xx) (5)

Here, X: Set of instances, A: attribute, XX: a subset of X with A = X, and value (A): set of total possible
values of A.

Gini index (GI) is a parameter that helps to calculate how often randomly selected instances could
be incorrectly classified.

GI = 1−
∑

a
z2

a (6)

2.7. Performance Measures

Model performance was decided on the basis of accuracy, precision, recall, and F-scores.
The performance measures with formulation and definitions are provided in Table 3.

Table 3. Definition and formulation of accuracy measures (where TP: true positive; TN: true negative;
FP: false positive; FN: false negative).

Parameter Definition Formulation

Accuracy Rate of correctly classified
instances from total instances

TP+TN
TP+TN+FP+FN

PRECISION (P) Rate of correct predictions TP
TP+FP

RECALL (R) True positive rate TP
TP+FN

F-Measure Used to measure the accuracy of
the experiment 2 ∗ ( P∗R

P+R )

3. Results

Due to the issues raised with the model over fitting, exclusion of over-sampling and under-sampling
PIDD data-sets were done during experiments.

3.1. Pruned Decision Tree

The J48 model classifier was exposed with the remained dataset (after removal of missing instances)
to generate a pruned decision tree. The output pruned decision tree with plasma value as a central node
is represented in Figure 5. It is obvious that plasma glucose concentration has the highest information
gain, which could be considered as the highest risk factor for diabetes. Other risk factors such as
multiple pregnancies, release of high levels of insulin, and lineage function also increased the chances
of having diabetes. Generally, pregnant women who do not take much physical exercise have higher
chances of gaining weight, which in turn increases the likelihood of having Type 2 diabetes.
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3.2. Confusion Matrix

The confusion matrix was used to describe the performance of various model classifiers [26].
The simulation was conducted with the four ML classifiers to analyze the accuracy of the prediction of
the test class (Table 4).

Table 4. Confusion matrix of different classifier models.

A B <– Classified as Model

427 73 A = Tested negative Naïve Bayes (NB)
122 146 B = Tested positive

450 50 A = Tested negative Logistic Regression (LR)
129 139 B = Tested positive

431 69 A = Tested negative Random Forest (RF)
118 150 B = Tested positive

427 73 A = Tested negative J48
122 146 B = tested positive

3.3. Model Classification

We conducted the experiments with four ML classifiers to diagnose whether the patient was
diabetic or non-diabetic. Table 5 shows the hyper parameters of four classifiers trained to classify
diabetes of female patients. Performance measures validated all the models, exposed to different
cross-validations to conduct model optimization techniques. The performance of four models chosen
was depending on accuracy, recall, precision, AUC (area under the curve), and F-scores as shown in
Table 6.
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Table 5. Hyperparameters of different classifiers (here C: pruning confidence and ‘R’–R squared value).

N Model Tuning Parameters

1 J48 C = 0.25

2 NB -

3 RF Number of trees—100, Number of features to
construct each tree—4, and out of bag error—0.237

4 LR R = 1.0E-8

Table 6. Performance measures of different model classifiers (where k = 5, 10, 15&20).

K Classifier Accuracy Precision Recall F-Score AUC

5

J48 0.71 0.71 0.71 0.71 0.72
NB 0.76 0.76 0.76 0.76 0.81
RF 0.75 0.75 0.75 0.75 0.82
LR 0.77 0.77 0.77 0.76 0.83

10

J48 0.73 0.73 0.73 0.73 0.75
NB 0.76 0.75 0.76 0.76 0.81
RF 0.74 0.74 0.74 0.74 0.81
LR 0.77 0.76 0.77 0.76 0.83

15

J48 0.76 0.75 0.76 0.76 0.74
NB 0.76 0.75 0.76 0.75 0.81
RF 0.76 0.76 0.76 0.76 0.82
LR 0.77 0.77 0.77 0.76 0.83

20

J48 0.75 0.74 0.75 0.74 0.74
NB 0.76 0.75 0.76 0.75 0.81
RF 0.75 0.74 0.75 0.74 0.82
LR 0.77 0.77 0.77 0.76 0.83

4. Discussion

Diabetes diagnosis at an early stage will give patients the opportunity to treat the disease and
change their lifestyle in time to achieve positive results. In the present study, we propose an optimized
machine learning algorithm for classifying and diagnosing Pima diabetic patients.

The majority of the results produced almost identical accuracy values. Hence, for assigning
rankings for each model, Receiver Optimistic Curve (ROC) rates were used. ROC is a visualizing
tool of the performance of the binary classifier. It is generated by plotting a false positive rate on the
X-axis against the true positive rate on the Y-axis in order to decide the correct threshold value [27].
The AUC is the rate of accurate model classification and typically ranges between 0.5 and 1.0. If AUC
is near to 1, the model performs correct classification of instances, and results in good optimization [28].
Four different machine learning algorithms were employed for various k values to predict whether a
patient was diabetic or non-diabetic. Dataset was split into ‘k’ subsets to perform training and testing
(in ‘k’ times). All preliminary analysis was carried out with the help of WEKA studio.

To avoid over fitting and under fitting issues, tenfold cross-validation was considered. The highest
accuracy was achieved when the trained data had been exposed to k = 10. From Table 6, it was found
that the LR model with the highest accuracy of 0.77, and NB, J48, and RF had an accuracy of 0.76, 0.73,
and 0.74 respectively. In addition, recall (sensitivity) defines the rate of correctly predicted diabetic
patients. For LR, it was found to be 0.77, and for RF, J48, and NB, it was recorded as 0.74, 0.73, and 0.76.
The precision of NB was 0.75 that of J48 was 0.73, RF was 0.74, and LR was 0.76. F scores of J48, NB,
RF, and LR were 0.73, 0.76, 0.74, and 0.76 respectively. In addition, we calculated the AUC to measure
the performance of the four models. The AUC of J48, NB, RF, and LR was generated as 0.75, 0.81, 0.81,
and 0.83.
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These results clearly show that the four classifiers had similar prediction accuracy with small
differences and margins of error. However, LR was the most accurate and J48 was the least accurate.
Ultimately, LR, NB, and RF were deemed to be the three best models for predicting whether a patient
is diabetic or not. Furthermore, for K = (5, 10, and 20), the NB parameters for accuracy, precision,
recall, and f-scores were higher than those of RF. However, for K = 15, the RF precision and F-scores
were higher than those of NB. Accuracy was not only the parameter, which can be used in assessing
model optimization. The main limitation in using accuracy as the key performance metric is that
it does not work well in datasets. This can generate class imbalances. The PIDD (Table 1) contains
500 women who tested negative for diabetes, and 268 women who tested positive for diabetes, and thus
the imbalance ratio is 1.87. Hence, along with accuracy, it is also important to consider the AUC values
(Figure 6). The AUC values of NB (Figure 6.1) and LR (Figure 6.2) were 0.81 and 0.83, respectively,
and for RF (Figure 6.3), it was 0.82 and 0.81. However, J48 produced a lower AUC value (0.72) than
others (Figure 6.4). When each classifier is ranked according to performance values, once seems that
an optimized model is LR > RF > NB > J48.
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5. Conclusions

Diabetes is one of the most critical chronic diseases today, and early diagnosis can help greatly in
improving a patient’s chances of managing it well. The latest developments in machine intelligence can
be exploited to improve our understanding of the factors causing the onset of this disease. We developed
four binary classifier models: NB, J48, LR, and RF, and each model was analyzed using different CV
methods (subject to different ‘k’ values). Performance assessment was conducted with the parameters
of accuracy, precision, recall, F-scores, and AUC. Preliminary outcomes suggested that all models
investigated achieved good results, with the LR model showing the greatest accuracy (0.77), and the
J48 the relatively low accuracy compared to the others. Ranking conducted by considering not only
accuracy but also other parameters, and indicated that LR, NB, RF are the three best models for
predicting whether a patient is diabetic or not.

The main limitation of this stdy is that only the conventional ML classifiers were considered.
Since the results provide an improvement on existing methods for predicting diabetes, it would be
worthwhile in future studies to explore these models in unsupervised machine learning and deep
learning techniques as well.
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