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Abstract: Highly functionalized furans are the key scaffolds of many pharmaceuticals and bioactive
natural products. Herein, we disclose a new fruitful synthesis of polyfunctionalized furans starting
from β-nitroenones and α-functionalized ketones. The protocol involves two steps promoted by solid
supported species, and it provides the title targets from satisfactory to very good overall yields and in
an excellent diastereomeric ratios.
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1. Introduction

Furan ring is a useful building block of many biologically active targets, it is the core of many
natural compounds and important polymers, and several furan-containing scaffolds serve as privileged
structures in medicinal chemistry [1–6]. In this context, its significant importance has spurred the
scientific community to investigate ever more efficient methodologies for preparing polyfunctionalized
furan-based scaffolds, which, in turn, are suitable for further synthetic manipulations. In particular,
complex furan derivatives can be achieved by the derivatization of a preexisting furan structure [7–9],
or by the ex novo ring construction, planning the introduction of specific functionalities in the opportune
positions [10–13].

Herein, following our studies on the preparation of heteroaromatic systems starting from aliphatic
nitro compounds [14–17], we found β-nitroenones 1 and α-functionalized ketones 2 to be precious and
practical building blocks of 3-alkylidene furans 3. In particular, this study complements our previous
research concerning the reaction of α-functionalized ketones 2 with β-nitroacrylates 4 [18] to produce,
by a different reaction mechanism, the tetrasubstituted furans 5 (Figure 1).

Figure 1. Usage of α-functionalized ketones 2 in combination with β-nitroenones 1 or β-nitroacrylates
4, for synthesizing tetrasubstituted furans.
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The new protocol involves two steps (Scheme 1): (i) a base promoted addition of 2 to 1 for giving
the adduct I, which eliminates a molecule of nitrous acid [19], to provide the intermediate 6 and (ii) the
acidic catalyzed cyclization of 6 (passing through the adducts II and III) into the title targets 3.

Scheme 1. Probable reaction mechanism.

2. Results and Discussion

In our attempt to maximize the process efficacy, we separately studied the two steps. At the
beginning, we focused our attention on the domino addition-elimination process (Step I), using, as
sample substrates, the β-nitroenone 1a and diketone 2a in stoichiometric ratio (Scheme 2).

Scheme 2. Domino addition–elimination process (I Step).

Initially, we tested different supported bases, conducting the reactions in acetonitrile. The best yield
of 6a was obtained after 2 h (complete conversion), using 1 eq. of PS-carbonate at room temperature
(Figure 2).

Figure 2. Screening of different supported bases conducting the reaction in MeCN, at room temperature,
after two hours (yield of the pure isolated product).

Then, once we identified the best base for promoting the one-pot addition-elimination process,
we moved our attention to the selection of the reaction media. In this sense, a variety of solvents
were screened, and, as depicted in the Figure 3, acetonitrile was the most effective; only ethyl acetate
provided 6a in acceptable yield.
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Figure 3. Screening of different solvents conducting the reaction for 2 h, at room temperature and in
the presence of 1 eq. of PS-carbonate (yield of the pure isolated product).

After the optimization of the I step (1 eq. of PS-carbonate, MeCN, room temperature, 2 h),
we performed an analogous study to optimize the reaction conditions for converting 6a into the
tetrasubstituted furan 3a (II Step, Scheme 3). In this regard, and based on our experience about the use
of Amberlyst 15 for promoting cyclization reactions [11,15,20], we explored this heterogeneous acidic
species in different solvents and reaction temperatures (Table 1).

Scheme 3. Acidic catalyzed cyclization of 6a into 3a (II Step).

Table 1. Optimization studies of the II Step: conversion of 6a into 3a.

Entry Amberlyst
15 (g/mmol) Solvent Temperature

(◦C) 1 Time (h) Yield (%) of
3a 2 E:Z

a 1 MeCN 80 2 53 96:4
b 1 EtOAc 80 2 76 96:4
c 1 Toluene 80 2 68 82:18
d 1 2-MeTHF 80 2 58 90:10
e 1 EtOAc 100 1 74 90:10
f 1 EtOAc 60 4 45 96:4
g 1.2 EtOAc 80 2 82 96:4
h 0.8 EtOAc 80 2 89 96:4
i 0.6 EtOAc 80 2 91 96:4
j 0.4 EtOAc 80 2 85 96:4
1 Reaction performed under microwave irradiations in a sealed vessel. 2 Yield of the pure isolated product.

As reported in Table 1, the use of 0.6 g/mmol of Amberlyst 15 in EtOAc, at 80 ◦C, produces, after
two hours, 6a in excellent yield and diastereomeric ratio (Entry i, 91%, E:Z = 96:4). After increasing the
temperature to 100 ◦C, the reaction finished in one hour, however the yield and the diastereomeric
ratio decreased to 74% and 90:10, respectively. On the other hand, at a lower temperature (60 ◦C),
we observed a longer reaction time (four hours) and a dramatic cutoff of the yield to 45%, albeit the
diastereomeric ratio remained unchanged, at 96:4.
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Additional heterogeneous acidic species, such as Montmorillonite K10, acidic alumina, BF3/SiO2,
AlCl3/SiO2, and Dowex® 50Wx8-200 were also tested. Acidic alumina was completely ineffective
(recovered only 6a); BF3 and AlCl3 on SiO2 provided a complex and inseparable mixture of byproducts,
while Montmorillonite K10 and Dowex® provided 3a in 13% and 24% of yield, respectively.

Successively, in order to minimize the waste production and the energy consumption, we coupled
the two steps, avoiding the purification of the intermediate 6a. In this aim, after the accomplishment of
the I Step, PS-carbonate was removed by filtration, the resin was washed with fresh EtOAc, and then
the solvent was evaporated under reduced pressure to give the crude adduct 6a, which was directly
submitted to the II Step, providing 3a in 74% overall yield (Scheme 4). It is important to note that this
result is absolutely comparable with that obtained over the two distinct steps (I Step 85%, II Step 91%,
which correspond to a total yield of 77%).

Scheme 4. Overall synthesis of 3a.

Finally, with the scope to assess the generality of our protocol, we submitted a variety of
β-nitroenones 1 and functionalized ketones 2 to the optimized reaction conditions (Scheme 5). Thanks
to the mild conditions, it was possible to install a variety of functionalities on the furan ring (ketone,
ester, nitrile, and sulfone), obtaining the products 3a–n from satisfactory to very good overall yields
(37–88%), and in excellent diastereomeric ratios (E:Z > 93:7), with the exception of compound 3f
(E:Z = 65:35). Furans 3i and 3l–n were isolated as single E diastereoisomer.
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Scheme 5. Substrate scope demonstration.

3. Conclusions

In conclusion, by exploiting the high reactivity of β-nitroenones, we developed a new general
and efficient two-step protocol for synthesizing poly-functionalized furans in good overall yields
and excellent diastereoselectivity. In particular, thanks to the mild reaction conditions, a plethora of
functional groups can be tolerated, thus giving the possibility to install several functionalities on the
furan ring, such as ketone, ester, nitrile, and sulfone. Moreover, since the use of solid supported species
in both steps, it was possible to avoid the use of the typical wasteful aqueous work-up, reducing the
operation to a simple filtration, with evident advantages from the sustainability viewpoint.

4. Materials and Methods

4.1. General Section

OXFORD NMR S400, Varian Mercury Plus 400, Oxford, United Kingdom, equipped with
workstation Sun Blade 150, software VNMRJ 1.1d, and operating system Solaris 9. 1H NMR analyses
were recorded at 400 MHz and 13C NMR analyses were recorded at 100 MHz. Ir spectra were recorded
with a Spectrum Two FT-IR spectrometer, Waltham, MA, United States equipped with ZnSe window,
Dynascan Interferometer, detector type LiTaO3, and Spectrum 10 software. Microanalyses were
performed with a CHNS-O analyzer Model EA 1108 from Fisons Instruments. GS-MS analyses were
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obtained on an Agilent GC(6850N)/MS(5973N), Stevens Creek Blvd, Santa Clara, CA, United States,
EI technique (70 eV), GC/MSD software, and an HP-5MS column, 30 m, Id 0.25 µm, film thichness
0.25 µm. Microwave irradiations were performed by means of a Biotage® Initiator+ from Biotage,
Uppsala, Sweden. Compound 3j is known, and its spectroscopic data are in agreement with those
reported in the literature [21].

4.2. Chemistry Section

General procedure for the preparation of compounds 3a–n: PS-carbonate (0.286 g, 1 mmol) was
added to a stirred solution of the appropriate β-nitroenone 1 (1 mmol) and ketone 2 (1 mmol) in
acetonitrile (2 mL, 0.5 M), and the resulting solution was stirred at room temperature for the appropriate
time (see Scheme 4). Then the resin was filtered off by washing with fresh ethyl acetate (10 mL), and the
crude intermediate 6, obtained after removal of the solvent under reduced pressure, was solubilized in
ethyl acetate (12 mL) and treated with Amberlyst 15 (0.6 g) and irradiated Biotage® Initiator+, at 80 ◦C,
for 2 h. Finally, the Amberlyst 15 was removed by filtration (washing with fresh ethyl acetate, 10 mL),
the solvent evaporated under vacuum, and the crude product 3 obtained from it was purified by flash
chromatography column (95:5 hexane/Et2O).

Compound 6a. Clear oil. IR (cm−1, neat): 733, 1597, 1646. 1H-NMR (CDCl3, 400 MHz) δ: 1.07 (t, 3H,
J = 7.5 Hz), 2.01 (s, 6H), 2.24 (qui, 2H, J = 7.5 Hz), 6.65 (t, 1H, J = 7.5 Hz), 7.44–7.50 (m, 2H), 7.54–7.59 (m,
1H), 7.69–7.73 (m, 2H), 15.77 (s, 1H). 13C-NMR (100 MHz) δ: 12.9, 23.8, 23.9, 107.9, 128.6, 129.6, 132.2,
136.5, 138.5, 153.2, 191.2, 191.3, 197.0. GC-MS (70 eV): m/z: 258 (13), 229 (100), 187 (14), 151 (26), 105 (56),
77 (49), 43 (77). Anal. Calcd. for C16H18O3 (253.32): C, 74.40; H, 7.02. Found: C, 74.44; H, 6.98.

Compound 3a. Pale yellow oil. IR (cm−1, neat): 693, 764, 950, 1667, 2919. 1H-NMR (CDCl3, 400 MHz) δ:
1.87 (dd, 3H, J = 1.8, 6.6 Hz, CH3CH), 2.44 (s, 3H, CH3CO), 2.58 (s, 3H, CH3), 5.81 (dq, 1H, J = 6.6, 15.9
Hz, CHCH3), 6.46 (dq, 1H, J = 1.8, 15.9 Hz, CH=CH), 7.25–7.29 (m, 1H, p-Ph), 7.35–7.40 (m, 2H, m-Ph),
7.66–7.69 (m, 2H, o-Ph). 13C-NMR (100 MHz) δ: 14.7, 19.0, 31.4, 119.3, 121.8, 125.4, 126.4, 127.7, 128.6,
131.1, 132.4, 147.4, 156.8, 196.5. GC-MS (70 eV): m/z: 240 (100), 225 (50), 197 (25), 183 (12), 155 (14), 153
(13), 152 (12), 105 (19), 77 (26), 43 (47). Anal. Calcd. for C16H16O2 (240.3): C, 79.97; H, 6.71. Found: C,
80.02; H, 6.75.

Compound 3b. Yellow waxy solid. IR (cm−1, neat): 689, 764, 927, 1671, 2939, 2974. 1H-NMR (CDCl3,
400 MHz) δ: 1.14 (t, 3H, J = 7.31 Hz, CH3CH2CO), 1.29, (t, 3H, J = 7.54 Hz CH3CH2), 1.87 (dd, 3H, J =

1.8, 6.6 Hz, CH3CH), 2.72 (q, 2H, J = 7.3 Hz, CH2CO), 2.91 (q, 2H, J = 7.5 Hz, CH2), 5.77 (dq, 1H, J = 6.6,
15.9 Hz, CHCH3), 6.46 (dq, 1H, J = 1.8, 15.9 Hz, CH=CH), 7.24–7.29 (m, 1H, p-Ph), 7.35–7.41 (m, 2H,
m-Ph), 7.65–7.69 (m, 2H, o-Ph). 13C-NMR (100 MHz) δ: 8.5, 12.7, 19.0, 21.8, 36.6, 119.0, 122.0, 125.4,
126.4, 127.6, 128.6, 131.2, 132.1, 147.3, 160.6, 200.4. GC-MS (70 eV): m/z: 268 ([M+], 76), 239 (100), 211
(18), 155 (15), 105 (3), 77 (26), 57 (25), 29 (10). Anal. Calcd. for C18H20O2 (268.36): C, 80.56; H, 7.51.
Found: C, 7.55; H, 7.54.

Compound 3c. Yellow oil. IR (cm−1, neat): 732, 831, 1026, 1176, 1246, 1505, 1667, 2839, 2935. 1H-NMR
(CDCl3, 400 MHz) δ: 1.86 (dd, 3H, J = 1.8, 6.6 Hz, CH3CH), 2.40 (s, 3H, CH3CO), 2.54 (s, 3H, CH3),
3.83 (s, 3H, CH3O), 5.78 (dq, 1H, J = 6.6, 15.9 Hz, CHCH3), 6.42 (dq, 1H, J = 1.8, 15.9 Hz, CH=CH),
6.87–6.93 (m, 2H, m-Ar), 7.57–7.61 (m, 2H, o-Ar). 13C-NMR (100 MHz) δ: 14.7, 19.0, 31.4, 55.5, 114.1,
117.9, 122.0, 123.8, 126.9, 127.9, 132.0, 147.6, 156.3, 159.2, 196.6. GC-MS (70 eV): m/z: 270 ([M+], 100), 255
(25), 227 (24), 213 (16), 185 (13), 135 (14), 43 (34). Anal. Calcd. for C17H18O3 (270.33): C, 75.53; H, 6.71.
Found: C, 75.48; H, 6.67.

Compound 3d. Orange oil. IR (cm−1, neat): 835, 950, 1247, 1505, 1667, 2931, 2966. 1H-NMR (CDCl3,
400 Hz) δ: 1.91 (dd, 3H, J = 1.7, 6.6 Hz, CH3CH), 2.40 (s, 3H, CH3CO), 2.55 (s, 3H, CH3), 5.94 (dq,
1H, J = 6.6, 15.9 Hz, CHCH3), 6.38 (dq, 1H, J = 1.8, 15.9 Hz, CH=CH), 7.03 (dd, 1H, J = 3.6, 5.1 Hz,
CHCH=CH), 7.23 (dd, 1H, J = 1.2, 5.1 Hz, CCHCH), 7.32 (dd, 1H, J = 1.2, 3.6 Hz, CHS). 13C-NMR
(100 MHz) δ: 14.8, 19.0, 31.4, 118.8, 121.3, 124.1, 124.4, 124.8, 127.3, 132.7, 133.7, 143.7, 156.9, 196.1.
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GC-MS (70 eV): m/z: 248 ([M+2+], 5) 246 ([M+], 100), 231 (31), 203 (20), 189 (13), 161 (17), 111 (21), 43
(39). Anal. Calcd. for C14H14O2S (246.32): C, 68.27; H, 5.73; S, 13.02. Found: C, 68.33; H, 5.69; S, 12.98.

Compound 3e. Yellow oil. IR (cm−1, neat): 693, 764, 906, 1330, 1445, 1596, 1651, 2851, 2914, 3061.
1H-NMR (CDCl3, 400 MHz) δ: 1.6 (dd, 3H, J = 1.7, 6.6 Hz, CH3CH), 2.30 (s, 3H, CH3), 5.61 (dq, 1H,
J = 6.6, 15.9 Hz, CHCH3), 6.30 (dq, 1H, J = 1.7, 15.9 Hz, CH=CH), 7.28–7.33 (m, 1H, p-Ph), 7.39–7.47 (m,
4H, m-Ph, m-PhCO), 7.53–7.58 (m, 1H, p-PhCO), 7.65–7.69 (m, 2H, o-Ph), 7.84–7.88 (m, 2H, o-PhCO).
13C-NMR (100 MHz) δ: 13.7, 19.0, 119.9, 120.4, 122.7, 126.6, 127.8, 128.7, 128.8, 129.9, 131.1, 131.4, 133.2,
138.7, 147.8, 154.6, 139.6. GC-MS (70 eV): m/z: 302 ([M+], 100), 288 (18), 105 (61), 77 (45). Anal. Calcd.
for C21H18O2 (302.37): C, 83.42; H, 6.00. Found: C, 83.47; H, 6.04.

Compound 3f (Diastereomeric ratio E:Z = 65:35). Pale yellow oil. IR (cm−1, neat): 633, 835, 950, 1029,
1176, 1247, 1505, 1667, 2930, 2966. 1H-NMR (CDCl3, 400 MHz) δ: 1.25 (s, 3.15H, (Z) tBu), 1.28 (s, 5.85H,
(E) tBu), 1.53 (dd, 1.05H, J = 1.8, 6.6 Hz, (Z) CH3CH), 1.83 (dd, 1.95H, J = 1.8, 6.6 Hz, (E) CH3CH), 2.30
(s, 1.05H, (Z) CH3CO), 2.31 (s, 1.95H, (E) CH3CO), 2.43 (s, 1.95H, (E) CH3), 2.47 (s, 1.05H, (Z) CH3),
5.56 (dq, 0.65H, J = 6.6, 15.9 Hz, (E) CHCH3), 5.81 (dq, 0.35H, J = 6.6, 11 Hz, (Z) CHCH3), 6.29–6.34 (m,
1H, (E,Z) CH=CH). 13C-NMR (100 MHz) δ:14.4, 14.7, 14.8, 18.7, 29.4, 30.0, 30.1, 31.5, 33.9, 34.1, 113.2,
116.2, 123.0, 123.6, 123.7, 124.0, 130.3, 131.5, 154.5, 155.6, 155.7, 156.1, 196.6, 197.1. GC-MS (70 eV): m/z:
220 ([M+], 35), 205 (100), 163 (10), 145 (12), 43 (37). Anal. Calcd. for C14H20O2 (220.31): C, 76.33; H,
9.15. Found: C, 76.37; H, 9.18.

Compound 3g. Yellow oil. IR (cm−1, neat): 693, 764, 1097, 1211, 1707, 2938, 2978. 1H-NMR (CDCl3,
400 MHz) δ: 1.29 (t, 3H, J = 7.5 Hz, CH3CH2), 1.37 (t, 3H, J = 7.1 Hz, CH3CH2O), 1.83 (dd, 3H, J = 1.8,
6.6 Hz, CH3CH), 3.00 (q, 2H, J = 7.5 Hz, CH2), 4.31 (q, 2H, J = 7.1 Hz, CH2O), 5.94 (dq, 1H, J = 6.6, 16.0
Hz, CHCH3), 6.50 (dq, 1H, J = 1.8, 16.0 Hz, CH=CH), 7.24–7.29 (m, 1H, p-Ph), 7.34–7.39 (m, 2H, m-Ph),
7.68–7.71 (m, 2H, o-Ph). 13C-NMR (100 MHz) δ: 12.6, 14.5, 19.1, 21.9, 60.3, 113.9, 119.9, 121.4, 125.4,
126.7, 127.7, 128.6, 130.9, 131.4, 163.1, 164.7. GC-MS (70 eV): m/z: 284 ([M+], 100), 269 (12), 255 (50), 239
(16), 237 (35), 223 (11), 211 (11), 209 (10), 195 (11), 182 (13), 181 (12), 165 (10), 153 (11), 152 (12), 105 (34),
77 (32). Anal. Calcd. for C18H20O3 (284.35): C, 76.03; H, 7.09. Found: C, 75.98; H, 7.04.

Compound 3h. Yellow oil. IR (cm−1, neat): 689, 764, 1065, 1223, 1485, 1714, 2910, 2934, 2978. 1H-NMR
(CDCl3, 400 MHz) δ: 1.32 (t, 3H, J = 7.1 Hz, CH3), 1.88 (dd, 3H, J = 7.1 Hz, CH3CH), 4.34 (q, 2H, J = 7.1
Hz, CH2), 6.00 (dq, 1H, J = 6.6, 16 Hz, CHCH3), 6.51 (dq, 1H, J = 1.8, 16 Hz, CH=CH), 7.30–7.46 (m, 6H,
m,p-Ph), 7.74–7.82 (m, 4H, o-Ph). 13C-NMR (100 MHz) δ: 14.3, 19.2, 61.2, 115.8, 120.9, 125.7, 126.9, 127.7,
128.1, 128.3, 128.5, 128.8, 129.1, 130.2, 130.9, 148.8, 153.9, 165.5. GC-MS (70 eV): m/z: 332 ([M+], 100), 285
(33), 269 (25), 215 (13), 105 (57), 77 (29). Anal. Calcd. for C22H20O3 (332.40): C, 79.50; H, 6.07. Found:
C, 79.47; H, 6.03.

Compound 3i. Yellow waxy solid. IR (cm−1, neat) 693, 760, 966, 1093, 1211, 1441, 1707, 2851, 2907, 2950,
3025. 1H-NMR (CDCl3, 400 MHz) δ: 2.61 (s, 3H, CH3), 3.53 (dd, 2H, J = 1.4, 7.1 Hz, CH2), 3.81 (s, 3H,
CH3O), 6.07 (dt, 1H, J = 7.1, 16 Hz, CHBn), 6.59 (dt, 1H, J = 1.6, 16 Hz, CH=CH), 7.20–7.35 (m, 8H,
m,p-Ph, m,o,p-PhCH2), 7.64–7.68 (m, 2H, o-Ph). 13C-NMR (100 MHz) δ: 14.6, 40.0, 51.4, 114.6, 119.5,
121.6, 126.32, 126.8, 127.8, 128.6, 128.7, 128.7, 131.0, 134.2, 140.1, 148.0, 158.8, 156.2. GC-MS (70 eV): m/z:
332 ([M+], 100), 300 (100), 284 (40), 257 (22), 241 (19), 230 (29), 223 (44), 209 (19), 182 (9), 165 (10), 152
(15), 115 (15), 105 (29), 91 (29), 77 (33), 43 (14). Anal. Calcd. for C22H20O3 (332.40): C, 79.50; H, 6.07.
Found: C, 79.54; H, 6.10.

Compound 3j. Clear oil. IR (cm−1, neat) 665, 693, 768, 950, 1069, 1132, 1390, 1667, 2922, 2954. 1H-NMR
(CDCl3, 400 MHz) δ: 2.44 (s, 3H, CH3CO), 2.57 (s, 3H, CH3), 5.41 (dd, 1H, J = 1.7, 24.4 Hz, CH), 5.44 (dd,
1H, J = 1.7, 17.7 Hz, CH), 6.84 (dd, 1H, J = 11.2, 17.7 Hz, CH=CH2), 7.27–7.32 (m, 1H, p-Ph), 7.35–7.41
(m, 2H, m-Ph), 7.66–7.70 (m, 2H, o-Ph). 13C-NMR (100 MHz) δ: 14.7, 31.5, 119.5, 120.7, 124.2, 126.7,
128.0, 128.7, 128.8, 130.7, 148.0, 156.8, 196.3. GC-MS (70 eV): m/z: 226 ([M+], 100), 225 (77), 211 (22), 183
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(40), 165 (15), 155 (23), 141 (22), 115 (19), 105 (18), 77 (25), 43 (41). Anal. Calcd. for C15H14O2 (226.27):
C, 79.62; H, 6.24. Found: C, 79.67; H, 6.20.

Compound 3k. Yellow waxy solid. IR (cm−1, neat): 693, 768, 926, 1671, 2938, 2978. 1H-NMR (CDCl3,
400 MHz) δ: 1.14 (t, 3H, J = 7.3 Hz, CH3CH2CO), 1.30 (t, 3H, J = 7.5 Hz, CH3CH2), 2.75 (q, 2H, J = 7.3
Hz, CH2CO), 2.91 (q, 2H, J = 7.5, CH2), 5.35 (dd, 1H, J = 1.7, 17.7 Hz, CH), 5.41 (dd, 1H, J = 1.7, 11.2
Hz, CH), 6.83 (dd, 1H, J = 11.2, 17.7 Hz, CH=CH2), 7.27–7.32 (m, 1H, p-Ph), 7.36–7.41 (m, 2H, m-Ph),
7.65–7.70 (m, 2H, o-Ph). 13C-NMR (100 MHz) δ: 8.5, 12.8, 21.7, 36.7, 119.2, 120.3, 123.1, 126.7, 127.9,
128.7, 128.7, 130.9, 147.9, 160.5, 200.3. GC-MS (70 eV): m/z: 254 ([M+], 100), 253 (40), 235 (20), 225 (68),
197 (23), 141 (27), 115 (13), 105 (50), 77 (29), 57 (23), 29 (10). Anal. Calcd. for C17H18O2 (254.33): C,
80.28; H, 7.13. Found: C, 80.24; H, 7.10.

Compound 3l. Pale yellow waxy. IR (cm−1, neat): 685, 764, 962, 1489, 2225, 2859, 2926, 2954. 1H-NMR
(CDCl3, 400 MHz) δ: 0.95 (t, 3H, J = 7.2 Hz, CH3), 1.37–1.56 (m, 4H, CH3CH2CH2), 2.25–2.32 (m, 2H,
CH2CH), 6.43 (dt, 1H, J = 1.5, 16.1 Hz, CH=CH), 6.63 (dt, 1H, J = 6.9, 16.1 Hz, CHBu), 7.37–7.53 (m,
6H, m,p-Ph, m,p-Ph), 7.66–7.70 (m, 2H, o-Ph), 8.05–8.09 (m, 2H, o-Ph). 13C-NMR (100 MHz) δ: 14.2,
22.5, 31.4, 33.6, 93.0, 115.9, 117.9, 121.0, 125.8, 127.0, 128.3, 128.8, 129.0, 129.3, 129.8, 130.3, 136.8, 149.0,
159.0. GC-MS (70 eV): m/z: 327 ([M+], 100), 284 (34), 250 (29), 206 (10), 105 (48), 77 (33). Anal. Calcd. for
C23H21NO (327.43): C, 84.37; H, 6.46; N, 4.28. Found: C, 84.41; H, 6.42; N, 4.31.

Compound 3m. Yellow waxy solid. IR (cm−1, neat): 671, 691, 766, 1491, 2231, 2924, 3023, 3058. 1H-NMR
(CDCl3, 400 MHz) δ: 3.63 (dd, 2H, J = 1.2, 6.7 Hz, CH2), 6.46 (dt, 1H, J = 1.6, 16.1 Hz, CH=CH), 6.82
(dt, 1H, J = 6.7, 16.1 Hz, CHBn), 7.17–7.54 (m, 11H, m,o,p-PhCH2, m,p-Ph, m,p-Ph), 7.62 (m, 2H, o-Ph),
8.04–8.09 (m, 2H, o-Ph). 13C-NMR (100 MHz) δ: 39.9, 92.8, 115.8, 119.5, 120.6, 125.8, 126.6, 127.0, 128.2,
128.8, 128.9 (2C), 129.0, 129.3, 129.6, 130.4, 134.5, 139.5, 149.5, 159.2. GC-MS (70 eV): m/z: 361 ([M+],
100), 360 (89), 270 (14), 269 (13), 105 (29), 77 (26). Anal. Calcd. for C26H19NO (361.44): C, 86.40; H, 5.30;
N, 3.88. Found: C, 86.45; H, 5.33; N, 3.84.

Compound 3n. Yellow oil. IR (cm−1, neat): 558, 605, 685, 1160, 1318, 1445, 2859, 2926, 2958. 1H-NMR
(CDCl3, 400 MHz) δ: 0.9 (t, 3H, J = 7.2 Hz, CH3), 1.23–1.37 (m, 4H, CH3CH2CH2), 2.06–2.12 (m, 2H,
CH2CH), 2.73 (s, 3H, CH3), 5.78 (dt, 1H, J = 7.7, 16.1 Hz, CHBu), 6.29 (dt, 1H, J = 1.6, 16.1, CH=CH),
7.24–7.59 (m, 6H, m,p-Ph, m,p-PhS), 7.62–7.66 (m, 2H, o-Ph), 7.86–7.94 (m, 2H, o-PhS). 13C-NMR (100
MHz) δ: 14.0, 14.2, 22.5, 31.1, 33.2, 118.1, 122.8, 126.7, 127.3, 128.0, 128.2, 128.6, 129.1, 130.3, 133.2, 138.7,
142.9, 148.2, 156.9. GC-MS (70 eV): m/z: ([M+2+], 7), 380 ([M+], 100), 232 (31), 311 (69), 196 (36), 182 (53),
153 (25), 125 (15), 105 (73), 77 (75), 43 (29). Anal. Calcd. for C23H24O3S (380.50): C, 72.60; H, 6.36; S,
8.43. Found: C, 72.65; H, 6.39; S, 8.39.
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Abbreviations

PS-carbonate carbonate on polymer support (Sigma-Aldrich code: 21850: loading: 3.5 mmol/g)

PS-DMAP
4-(dimethylamino)pyridine, polymer-bound (Sigma-Aldrich code: 39410, loading: 3
mmol/g)

PS-BEMP
2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine,
polymer-bound (Sigma-Aldrich code: 20026, loading: 2.2 mmol/g)

PS-TBD
1,5,7-Triazabicyclo[4.4.0]dec-5-ene bound to polystyrene (Sigma-Aldrich code: 01961,
loading: 3.0 mmol/g)

PS-F fluoride on polymer support (Sigma-Aldrich code: 47060, loading: 3.0 mmol/g)
KF/alumina potassium fluoride on aluminum oxide (Sigma-Aldrich code: 60244, loading: 5.5 mmol/g)
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