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Abstract: Indole 2-carboxylates are very important scaffolds that are widely investigated for their
activities and are used as key intermediates of biologically active molecules. Herein, we report a new
procedure for the preparation of this class of derivatives, via Fischer indole synthesis, starting from
β-nitroacrylates and arylhydrazines. The protocol permits the production of the title targets in
satisfactory overall yields, avoids any wasteful aqueous work-up, and has with evident advantages
from a sustainability point of view.
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1. Introduction

The indolic system is one of the most important and versatile nitrogen containing heterocycles;
it is widely spread in nature, such as in food, flowers, in a multitude of biologically active molecules,
and is probably represented as one of the “privileged structures” of the main scaffolds for the discovery
of new drug candidates [1,2]. For all these reasons, a growing number of synthetic approaches for its
preparation and derivatization have been reported in the literature [3–5]. Nowadays, notwithstanding
the development of new methodologies concerning the ex-novo preparation of indoles, the historical
Fischer indole synthesis (introduced by Emil Fischer in 1883) remains one of the pillars for the direct
production of functionalized indoles (Scheme 1) [6,7].
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Scheme 1. Fischer indole synthesis.

This reaction is based on the indolization of arylhydrazones under acidic conditions, and over the
years, several studies have been done concerning the discovery and use of even-more efficient acid
catalysts [8]. However, only few efforts have been directed toward the preparation of arylhydrazones,
which are mainly prepared from ketones and arylhydrazines (Scheme 2) [9–11].
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Scheme 2. Synthesis of arylhydrazones. 

While simple ketones are cheap and readily available, the functionalized ones very often 
require a multistep synthesis and harsh reaction conditions. Among them, α-ketoesters are of 
particular interest since they are key precursors of alkyl indole-2-carboxylates, a very important 
class of indole that is widely investigated for its activities and is exploited as a strategic intermediate 
of biologically active targets, such as the NNRTI Delavirdine and its analogues [12–17]. Recently, 
following our study concerning the use of β-nitroacrylates 1 as a useful building block of 
heterocyclic systems [18–21], we reported a new protocol for synthesizing 5, starting from 1 and 
o-bromoanilines, based on a palladium catalyzed Heck coupling [22] (Scheme 3, Way b). Now, in 
continuing this study with the aim of avoiding the use of precious metal (Pd), we found 1 to be a 
valuable alternative of α-ketoesters for the Fischer indole synthesis (Scheme 3, Way a). 
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2. Materials and Methods  

2.1. General Section 

OXFORD NMR S400, Varian Mercury Plus 400, Oxford, United Kingdom, equipped with 
workstation Sun Blade 150, software VNMRJ 1.1d, and operating system Solaris 9. 1H NMR analyses 
were recorded at 400 MHz and 13C NMR analyses were recorded at 100 MHz. Ir spectra were 
recorded with a Spectrum Two FT-IR spectrometer, Waltham, Massachusetts, United States 
equipped with ZnSe window, Dynascan Interferometer, detector type LiTaO3, and Spectrum 10 
software. Microwave irradiations were performed by Biotage® Initiator. Microanalyses were 
performed with a CHNS-O analyzer Model EA 1108 from Fisons Instruments. GS-MS analyses were 
obtained on an Agilent GC(6850N)/MS(5973N), Stevens Creek Blvd, Santa Clara, CA, United States, 
EI technique (70 eV), GC/MSD software, and an HP-5MS column, 30m, Id 0.25μm, film thichness 

Scheme 2. Synthesis of arylhydrazones.

While simple ketones are cheap and readily available, the functionalized ones very often require a
multistep synthesis and harsh reaction conditions. Among them, α-ketoesters are of particular interest
since they are key precursors of alkyl indole-2-carboxylates, a very important class of indole that is
widely investigated for its activities and is exploited as a strategic intermediate of biologically active
targets, such as the NNRTI Delavirdine and its analogues [12–17]. Recently, following our study
concerning the use of β-nitroacrylates 1 as a useful building block of heterocyclic systems [18–21],
we reported a new protocol for synthesizing 5, starting from 1 and o-bromoanilines, based on a
palladium catalyzed Heck coupling [22] (Scheme 3, Way b). Now, in continuing this study with the
aim of avoiding the use of precious metal (Pd), we found 1 to be a valuable alternative of α-ketoesters
for the Fischer indole synthesis (Scheme 3, Way a).
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Scheme 3. Synthesis of alkyl indole-2-carboxylates starting from β-nitroacrylates.

2. Materials and Methods

2.1. General Section

OXFORD NMR S400, Varian Mercury Plus 400, Oxford, UK, equipped with workstation Sun Blade
150, software VNMRJ 1.1d, and operating system Solaris 9. 1H NMR analyses were recorded at 400 MHz
and 13C NMR analyses were recorded at 100 MHz. Ir spectra were recorded with a Spectrum Two FT-IR
spectrometer, Waltham, MA, USA equipped with ZnSe window, Dynascan Interferometer, detector
type LiTaO3, and Spectrum 10 software. Microwave irradiations were performed by Biotage® Initiator.
Microanalyses were performed with a CHNS-O analyzer Model EA 1108 from Fisons Instruments.
GS-MS analyses were obtained on an Agilent GC(6850N)/MS(5973N), Stevens Creek Blvd, Santa
Clara, CA, USA, EI technique (70 eV), GC/MSD software, and an HP-5MS column, 30m, Id 0.25 µm,
film thichness 0.25 µm. Amberlyst 15 was purchased from Sigma–Aldrich and was purified by soaking
it in methanol for 24 h and then washing it with fresh methanol and THF and dried under a vacuum.
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2.2. Preparation of Starting Materials

β-Nitroacrylates 1 were synthesized by the Henry reaction–elimination process, starting from
nitroalkanes and alkyl glyoxalates [23,24]. Arylhydrazines were purchased from Sigma–Aldrich as
hydrochloride salts and were converted into the free bases by treatment with potassium carbonate in
water [25].

2.3. General Procedure for the Preparation of Compounds 5

A mixture of β-nitroacrylate 1 (1 mmol) and arylhydrazine 2 (1 mmol) was stirred, under
solvent-free and promoter-free conditions, at room temperature for 2 h. Successively, acetonitrile
(6 mL) and TMG (2 mmol, 0.230 mg) were added, and the resulting solution was stirred for a further
4 h. Then, the acetonitrile was removed under a vacuum, and for the purposes of removing the TMG,
the reaction crude was filtered through a short pad of silica (3 g) and washed with ethyl acetate (25 mL).
After evaporation under the vacuum of ethyl acetate, the mixture of tautomers 4, 4′, and 4” were
dissolved in 10 mL of the appropriate alcohol, treated with 2 g of Amberlyst 15, and irradiated by the
Biotage® Initiator+ at 90 ◦C for 4 h. Finally, the resin was filtered off and it was washed with fresh
ethyl acetate (15 mL) and the crude product 5, which was obtained after removal of the solvent at
reduced pressure, and was purified by flash chromatography column (hexane–dichloromethane 6:4).

3. Results and Discussion

This new approach (Scheme 3, Way a) involves two different steps: (i) A one-pot Michael
addition/elimination process, in which the arylhydrazines 2 reacts with 1 to form adduct 3, which under
basic conditions, eliminates nitrous acid and provides intermediate 4; and (ii) an acidic promoted
indolization of 4 into the title target 5.

3.1. Optimization of the 1st Step

In order to optimize the entire protocol, we first investigated the Michael addition/elimination
one-pot process using phenylhydrazine 2a and the β-nitroacrylate 1a as reagents. Preliminary studies
highlighted the almost quantitative addition of 2a to 1a under solvent-free and promoter-free conditions
at room temperature (2 h). Further investigations (in terms of solvents, bases, and reaction temperatures)
were dedicated to nitrous acid elimination, and the best result was obtained using two equivalents of
TMG in MeCN at room temperature (4 h, entry f). Instead of obtaining the pure adduct 4a, a mixture of
tautomers 4a, 4a′, and 4a” were isolated in a ratio of approximately 54:13:33. The ratio was calculated by
1H-NMR on the basis of the characteristic signal of each tautomer, as depicted in Figure 1. Nevertheless,
all tautomers were suitable for the Fischer indole synthesis (Table 1).
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Table 1. Optimization studies concerning the addition/elimination step.
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Entry Base Solvent Temp. Time (h) Yield (%) of 4a-a”

A DBU (1 eq.) MeCN rt 2 23
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E PS-TBD (1 eq.) MeCN rt 4 35
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H TMG (3 eq.) MeCN rt 4 71
I TMG (2 eq.) THF rt 4 35
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1 No reaction occurs.

3.2. Optimization of the 2nd Step

Successively, we faced off the indolization of tautomers 4a-a” into the alkyl indole-2-carboxylate
5a. In this context, we first performed the addition/elimination one-pot process, then the TMG was
removed by fast filtration through a short pad of Silica, and finally, after the removal of the solvent
under a vacuum, the crude 4a-a” were subjected to a variety of acidic conditions. Initially, inspired by
the literature, we tested PPA, ZnCl2/AcOH, SOCl2/EtOH, and p-toluenesulfonic acid/EtOH [26–29].
Only the latter system was efficient for the indolization reaction (3eq. p-TsOH, EtOH, reflux, 8 h,
32%). Based on this result and following our studies concerning the use of heterogeneous systems,
we repeated the reaction using 1g/mmol of Amberlyst 15, a sulfonic acid type based upon a styrene-DVB
copolymer [30]. Under these conditions, 5a was recovered in a similar yield (30%), but with the
remarkable advantage of minimizing the work-up step to an easy filtration, thus avoiding the classic
tedious and wastefully aqueous work-up. Further tests permitted the optimization of reaction
conditions (Table 2), and the best yield of 5a (over the two steps) was recorded, under microwave
irradiation at 90 ◦C for 4 h, using 2 g/mmol of Amberlyst 15 (Entry k, 54%).
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3.3. Substrate Scope Investigation

Lastly, to achieve the aim of verifying the generality of our protocol, we tested a variety of
β-nitroacrylates and arylhydrazines under the optimized reaction conditions (Table 3). In all cases,
the products were isolated from satisfactory to good overall yields (38–55%), even in the presence of
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phenyl ring, a double and triple bond, and an ester group, respectively.
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It is important to highlight that, in order to prevent the transesterification reaction at C-2,
the indolization was conducted using the same alcohol (R3OH) of the ester moiety. Detailed
spectroscopic data for compounds 5a-m are included in the Supplementary Materials.

4. Conclusions

In conclusion, we disclosed a new, important application of β-nitroacrylates as a valuable
alternative of α-ketoesters for synthesizing alkyl indole-2-carboxylates, which were key and useful
intermediates of biologically active molecules. The method involved two easy steps and afforded title
targets with a good substrate scope generality and satisfactory overall yields. Moreover, thanks to
the possibility of removing the TMG by an easy filtration through the silica (first step), and the use
of heterogeneous Amberlyst 15 in the second step, it was possible to avoid the typical tedious and
wasteful aqueous work-up, with evident advantages from a sustainability point of view.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/23/5168/s1,
Spectroscopic Data.
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The following abbreviations are used in this manuscript:

TMG 1,1,3,3-Tetramethylguanidine
DBU 1,5-Diazabiciclo[5.4.0]undec-5-ene

PS-TBD
1,5,7-Triazabicyclo[4.4.0]dec-5-ene bound to polystyrene
(Sigma-Aldrich code: 01961)

PS-Carbonate Carbonate on polymer support (Sigma-Aldrich code: 21850)
NNRTI Non-nucleoside reverse transcriptase inhibitor
PPA Poly Phosphoric Acid
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