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A comparative study between two 
models of active cluster crystals
Lorenzo caprini1*, emilio Hernández-García2, cristóbal López2 & Umberto Marini Bettolo 
Marconi3

We study a system of active particles with soft repulsive interactions that lead to an active cluster-
crystal phase in two dimensions. We use two different modelizations of the active force - Active 
Brownian particles (ABp) and ornstein-Uhlenbeck particles (AoUp) - and focus on analogies and 
differences between them. We study the different phases appearing in the system, in particular, 
the formation of ordered patterns drifting in space without being altered. We develop an effective 
description which captures some properties of the stable clusters for both ABp and AoUp. As an 
additional point, we confine such a system in a large channel, in order to study the interplay between 
the cluster crystal phase and the well-known accumulation near the walls, a phenomenology typical of 
active particles. For small activities, we find clusters attached to the walls and deformed, while for large 
values of the active force they collapse in stripes parallel to the walls.

Active particle models have been introduced to investigate the dynamics of individuals or objects able to convert 
energy from the environment into directed motion1–4. The active systems most studied so far are bacteria5, pro-
tozoa6, spermatozoa7, cells, living tissues8, actin filaments9, active nematics10, and the so-called motor-proteins11. 
Recently, active microswimmers have been synthesized in labs3. Typical examples are the Janus particles12, spheri-
cal objects containing two faces of distinct properties, such as hydrophobicity and hydrophilicity. This asymmetry 
produces a self-propulsion in a given direction. The “activation” of a complex microswimmer could have impor-
tant applications, for instance in drug delivery: a propulsion mechanism could enhance and direct the transport 
process with a consequent increase of its efficiency. Alternatively, some colloids could be activated by light or 
magnetic fields13.

A large interest in the polymers community resides in the synthesis and study of star polymers14 or dendrim-
ers15,16, which have highly branched structures and thus endowed with several interesting characteristics such 
as globular, void-containing, shapes which make them suitable for the delivery of anticancer drugs and imaging 
agents. As a consequence of the presence of cavities and channels in their interior, the interaction between dif-
ferent dendrimers or star polymers in solution could be modeled by means of soft-core interactions, which do 
not prevent the overlap between particles. In particular, it may be described by Generalized Exponential Model 
(GEM) potentials whose properties have been reviewed by Likos17,18. Following this, we adopt a coarse-grained 
model which replaces a suspension of complex polymers with overlapping spherical particles. Remarkably, under 
equilibrium conditions, these particles may bind together to form clusters and these, in turn, may organize peri-
odically to form cluster crystals19–23. Because of the peculiarities of two-dimensional systems24, this would not be 
a true crystal phase with long-range positional order, but it displays a clear inhomogenous and periodic distribu-
tion of particles, much more clustered and ordered than the homogenous state found at high temperature. Such 
an interesting aggregation phase occurs also in the presence of other soft-core potentials besides the GEM ones, 
such as the ultra-soft core potentials used for low-temperature bosons25–27 and vortices in superconductors28.

The self-propulsion is often modeled by means of an effective stochastic force. Perhaps, the simplest model 
introduced in the literature to describe the behavior of some bacteria populations is represented by the discrete 
run-and-tumble particle dynamics29,30. Recently, suitable descriptions in terms of continuous stochastic processes 
have received large attention for the possibility of applying well-known tools of statistical mechanics towards 
the development of the thermodynamic of active microswimmers. In this framework, we mention the active 
Brownian particles (ABPs)31,32 and the active Ornstein-Uhlenbeck particles (AOUPs)33–36 models. Regarding the 
observed phenomenology, there is a strong resemblance between ABP and AOUP, but they also display important 
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differences: (a) the ABP active force has a fixed strength whereas its orientation fluctuates in a diffusive fashion, 
while in the AOUP there is no such a constraint and the propulsive force fluctuates both in strength and direction; 
(b) the correlations are of Gaussian type in the AOUP and non-Gaussian in ABP, in spite of the fact that they share 
the same two-time self-correlation of the active force37,38. So far, the practical consequences of these differences 
have not been completely elucidated. One can say that in the majority of cases the two models display a similar 
phenomenology, whose characteristics are:

 (i) In the absence of external forces some single particle properties such as the diffusion and the mean square 
displacement have the same form in ABP31,39,40 and AOUP41.

 (ii) Both models undergo the so-called motility induced phase separation42–45. While such a topic has been 
well studied in the ABP case, with steric interactions46–49, in the presence of an attractive component of the 
potential50,51 and for more complex interactions52,53, the result with AOUP model appeared only in54.

 (iii) In the two models particles accumulate in the proximity of walls55,56. In particular, the wall induces a 
non-uniform density profile decaying with a characteristic length-scale57–59.

 (iv) The dynamics in the presence of a convex, radial and non-harmonic potential shows particle accumulation 
far from the minimum of the potential12,37,60 when the activity is large, in such a way that the particle distri-
bution is not Boltzmann-like61,62.

The extension of the ABP and AOUP models of activity to particles interacting with soft potentials is consid-
ered in the present paper. We analyze how the morphological properties of the system of particles depend on the 
specific modeling of the active force and if some features of the dynamics are model-independent. What happens 
if the non-equilibrium forcing is replaced by a colored noise term as in the AOUP model? As an example, it has 
been found with ABP driving that for some values of the activity parameter the clusters deform into rings with an 
empty interior63, at variance with the equilibrium situation where clusters are compact. We will see here that such 
an empty-cluster crystal phase does not appear in the AOUP description.

Hereafter, we shall study in detail some properties, such as phase diagram and cluster size, stressing sim-
ilarities and differences between the AOUP and ABP models. Moreover, motivated by microfluidics applica-
tions, we confine the system in large channel to evaluate the long-range influence of the walls on the active 
cluster-crystal-phase.

After introducing the active ultrasoft model in the ABP and AOUP versions, we present a numerical study, 
for high enough density, displaying a traveling cluster-crystal aggregation phase. The role of the active force is 
elucidated, determining at first the size of the cluster and then the occurrence of unstable regions, where clusters 
shrink and reform. Then, an effective description of the the system is developed, with the aim of describing both 
the microscopic dynamics of a particle within a cluster and the global dynamics of the pattern. Finally, we confine 
the system in a large channel to explore the interplay between the cluster-crystal phase and the accumulation near 
the walls. In the last Section we summarize the results discussing future perspectives in the conclusive section.

Model
Polymers are often described as large complex structures having many internal degrees of freedom, but in 
some cases it is not necessary nor possible to take into account their internal properties. For instance, when 
the resolving power of instruments is low some details of their structure can be disregarded and the polymers 
can be assimilated to diffusing objects. It is coherent with such an approach to represent the effective interac-
tion among different polymers by a pair-wise potential which depends on the coordinates of their centers of 
mass. In some cases, such as for dendrimers, this interaction is repulsive and of the soft-core type17, basically due 
to non-diverging potentials which do not prevent the overlap among such complex structures. An appropriate 
model for the effective interaction is the so-called GEM-α potential which reads:

∑ φ φ ε∝ =
<

− | | α
x xV ex({ )}) ( ), ( ) ,

(1)
x

i j
ij ij

R( / )ij

being α a positive real number, and {|xij|} are the relative distances between the pairs of particles. We study a 
system of point particles which self-propel and interact with this potential in two dimensions. Depending on the 
stiffness of the potential (in particular, α > 2 is needed), the passive system (i.e. without the active self-propulsion) 
shows the occurrence of a peculiar aggregation phase at equilibrium16,20,22,23: particles form stable clusters, which 
arrange into a periodic configuration. In two dimensions the triangular or hexagonal lattice is the only stable 
pattern, occurring for small enough temperature T at a large density. The number of particles, Nc, of each cluster 
depends on the global density and on the typical interaction length, R, while the typical inter-cluster distance is 
determined just by R. When the particles are no longer point-like but of small finite size19,64–66 similar properties 
are found, with a new low-temperature phase -the so-called crystal cluster-crystal phase- in which particles inside 
the clusters also show an ordered structure. The cluster-formation phenomenon despite the repulsive interaction 
between all the particles can be physically interpreted by considering the force balance between the intra-cluster 
repulsion (the force felt by particles inside clusters) and the inter-cluster effective interaction, that is, the force 
exerted by neighboring clusters19,20. The increasing of temperature enlarges the typical size of clusters, destroying 
any structure for T sufficiently large.

As mentioned in the introduction, these complex structures could be “activated” by chemical reactions or 
biological mechanisms taking place inside or on the surface of such a complex microswimmer, so that each indi-
vidual self-propels in a preferential direction in the same way as a simple rod-like active particle in the absence 
of any structure. The occurrence of a driving velocity could deform the structure of the polymer, destroying its 
circular symmetry and altering the shape of the effective interaction given by Eq. (1). But when the speed induced 
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by the self-propulsion is smaller than the typical velocities of the “microscopic” components of the polymer (for 
instance, the arms of star polymers) then the structural changes of the polymer shape would be negligible and our 
description in terms of point particles with effective interaction and self-propulsion remains valid. We restrict in 
the following to this regime.

Self-propulsion can be modeled by means of a force vector, applied on the center of mass of each microswim-
mer with dynamics independent on the particle position1,3. In particular, we consider a two-dimensional system 
of N interacting active particles, whose dynamics is described by over-damped Langevin equations for the posi-
tions, xi, of each particle:


γ γ η γ= + +F Tx f2 , (2)i i i i

where Fi = −▽iV is the total force exerted on the particle i by the rest of the particles due to the repulsive poten-
tial V (as given by Eq. (1)). The term ηγT2 i represents the effect of a thermal bath at temperature T where active 
particles are immersed, η = (ηx,ηy) is a two-dimensional Gaussian white noise vector with zero average and corre-
lations 〈ηi(t)ηj(t')〉 = IIδijδ(t − t'), with II the 2d identity matrix. The constant γ is the drag coefficient. The last 
term, fi, models the self-propulsion mechanism of the microswimmers, and here is where the ABP and AOUP 
approaches enter into the modelling. In the ABP, fi is given by a vector of fixed norm: fi = U0nˆi, where nˆi = (cosθi, 
sinθi) is a unit vector whose angle, θi, evolves as a Wiener process

θ ξ= .D2 (3)i r i

The constant Dr is the rotational diffusion coefficient, while ξi is a Gaussian white noise with zero average and 
correlations 〈ξi(t)ξj(t')〉 = δijδ(t − t'). Instead, in the AOUP model fi is a noise vector whose components evolve as 
independent Ornstein-Uhlenbeck processes:

τ = − + Df f w2 , (4)i i a i

where τ is a correlation time, Da an effective diffusion constant characterizing the active force, and wi is a Gaussian 
white noise vector with zero averages and correlations 〈wi(t)wj(t')〉 = IIδijδ(t − t'). We point out the relevance of 
the ratio, Da/τ, i.e. the variance of fi, whose square root gives the typical average value of the active force norm.

Despite the differences between ABP and AOUP models, a connection line between them has been already 
explored in38. We remark that AOUP has been originally introduced as a simplification of ABP in order to cap-
ture its phenomenology with the aim of making analytical predictions42. Subsequently, AOUP was also used 
to describe the complex behavior of a passive object immersed in a bacterial bath67–69. Anyway, AOUP is the 
simplest Gaussian model which displays at long times the same average and two-time activity-activity correla-
tion function as the ABP. In particular, this correlation in the ABP case has an exponential form, which in two 
dimensions reads70:

ˆ ˆ δ〈 〉 = 〈 〉 = .−t U t U ef f n n( ) (0) ( ) (0) II
2 (5)i j i j ij
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Instead, in the AOUP model, such a correlation is41

δ
τ

〈 〉 = .τ−t D ef f( ) (0) II (6)i j ij
a t/

Setting τ = 1/Dr and 2Da/τ = U0
2 the two-time activity-activity correlation of the AOUP dynamics coincides 

with Eq. (5)37, and the average is 〈fi(t)〉 = 0 in both cases.
As commented in the introduction two main differences appear between ABP and AOUP active forces: 

the fluctuating norm of the AOUP force38, and the higher order correlations71 which make the ABP force 
non-Gaussian. We will explore in the following if these differences (and which) are relevant for active cluster 
crystals.

numerical Results
In this Section, we numerically explore the dynamics of Eq. (2) for a suspension of N interacting active particles 
in a two-dimensional box of size L with periodic boundary conditions. We implement the Euler-Maruyama algo-
rithm72 using both ABP and AOUP active forces, given by Eqs. (3) and (4), respectively. We choose a soft-core 
potential of the GEM-α type with α = 3, which displays the cluster-crystal aggregation phase in the passive 
case (U0 = 0) at sufficiently low temperature and large enough particle density20. Throughout this paper we take 
R/L = 10−1, γ = 1 and ε = 1. Since for several active systems of interest the effective diffusion due to the active 
forces is much larger than the one due to the thermal diffusion, hereafter we fix T = (U0

2Dr/γ)10−4.
In Fig. 1 we show long-time patterns (t/τ ≈ 102) for different values of U0 for ABP (left column) and AOUP 

(right column). At such a low temperature, both ABP and AOUP form clusters arranged into a hexagonal pattern 
(see panels (a), (b), (c) and (d)). This scenario resembles the one of passive particles (U0 = 0)19,20.

Notwithstanding that for low values of U0 the active force does not change the static macroscopic properties 
of the pattern, i.e. the hexagonal cluster arrangement, strong differences appear at the dynamical level. While 
clusters occupy stable equilibrium positions in the passive case (U0 = 0), without displaying any macroscopic 
motion, this situation changes in the active case (U0 > 0). The active forces produce a macroscopic coherent 
motion of the pattern, which maintains the hexagonal cluster-crystal phase. Clusters, stuck in the hexagonal pat-
tern, drift persistently before changing direction after a time which grows as 1/Dr. In movie 1 of the Supplementary 
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Information, we compare the time evolution of systems with N = 2 × 103 particles for ABP and AOUP. Despite the 
total active force acting on each cluster is directed randomly in space (green arrows in movie 1), clusters move 
coherently in one direction maintaining the hexagonal arrangement. This global drift follows the average active 
force of the whole system (black arrow in movie 1). The decreasing of Dr enlarges the persistence of the pattern 
dynamics, for both cases, without producing any significant change on the particles configurations. Traveling 
crystals73 occur also for highly packed suspensions of self-propelled particles interacting by hard-core potentials, 
i.e. interactions diverging at r = 0 in such a way that a finite size is attributed to the particles. Experimental evi-
dence of this effect has been recently studied by means of a suspension of micro-disks subjected to vertical vibra-
tions74. The use of density functional theory predicts such a phenomenology and, in particular, the transition to 
rhombic, quadratic, and lamellar patterns as the active force is increased73,75. Such transitions do not occur in our 
system, where the only stable pattern is the hexagonal one. This statement is confirmed by movie 1 in 
Supplementary Information and by the study of the pair correlation, δ= ∑ −≠g r x x L N( ) ( ) /i i0

2 , where a target 
particle is at the origin, the sum runs over the other particles, and the brackets indicate a circular average over 
positions x with the same modulus |x| = r. In Fig. 2d), we compare the g(r) for several values of the active force 
both for ABP and AOUP dynamics, revealing the occurrence of the typical peaks of a hexagonal pattern, indicat-
ing the presence of first, second, third, etc. neighbors at distances 1, 3 , 2, 7 , ... times the basic periodicity of the 

Figure 1. Snapshot of the configurations in the plane xy of a system of N = 2 × 103 particles interacting with 
the GEM-3 potential for both ABP (left column) and AOUP (right column) active forces. Panels (a) and (b) 
are obtained with U0 = 2.75, panels (c) and (d) with U0 = 3.75 and panels (e) and (f) with U0 = 4.5. Other 
parameters: γ = 1, Dr = 1, L = 1, R = 10−1, ε = 1, T = 10−4U0

2/Drγ. In the AOUP case the parameters used are 
Dr = 1/τ and U0

2 = 2Da/τ. Black lines in panels (a) and (b) are eye-guides to show the hexagonal pattern. Graphs 
(c), (d), (e) and (f) display an inset around a small square region around a cluster. In the insets, the black arrows 
have a length proportional to the active force on each particle. In panel (d), isolated particles not belonging to 
clusters are highlighted by red circles.
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pattern. This periodicity does not change with U0 and remains at the value determined by this potential in the 
passive case19,20, namely 1.4R ≈ 0.14. The increasing of U0 leads to wider and lower peaks towards the occurrence 
of the liquid shape of the g(r). The presence of the initial peak near r ~ 0 is due to the Nc particles belonging to each 
cluster. We remark that the g(r) remains essentially unchanged when computed at different times during the 
motion (this is not shown in the figure).

The specific modeling of the active force influences the structure of a single cluster as shown in the insets of 
Fig. 1, panels (c), (d), for ABP and AOUP, respectively. In particular, ABP’s arrange in ring-like clusters while 
AOUP’s form Gaussian-like clusters as in the passive case (U0 = 0). In Fig. 2c) the radial probability distribution, 
ρ(r), of a single cluster is numerically measured. ρ(r)dr is the fraction of particles of a cluster which are at a dis-
tance between r and r + dr from its center. In particular, ρ(r) = 2πrp(x), where p(x) is the single-particle probabil-
ity density for a specific particle to be at x, which turns out to depend only on the norm r = |x|.

In the AOUP case, p(x) is fitted by a Gaussian centered at x = 0, while in ABP case p(x) is close to a Gaussian in 
r = |x| centered at a typical radius larger than zero, and displays a smaller variance. For both ABP and AOUP the 
angular location of the particles in the clusters, i.e. the angular coordinates φi computed for each particle i with 
respect to the center of its cluster, is approximatively equal to the orientational angle of the active force, θi. This 
feature is illustrated in the insets of Fig. 1c,d, where black arrows represent the vectors of the active forces for each 
particle, which point radially with respect to the center of the cluster. Despite the apparent analogies between the 
clusters obtained with the AOUP model and the passive systems20 (both are non-empty), we note the difference 
between these two cases: in the large persistence regime, Dr ≪ γ an AOUP particle is stuck to its radial position 
with respect to the center of its cluster only for a time ~τ. After this correlation time, the active force is consist-
ently modified and, as a consequence, a large variation in the radial coordinate of the particle occurs. In fact, the 
non-existence of ring-like clusters in the AOUP is due to the fluctuating norm of the active force at variance with 
the ABP where it remains constant. This fact is confirmed by simulations (not shown) where a force with the 
angular time-dependence of the AOUP but a fixed norm is used in analogy with38. In this case, empty clusters are 

Figure 2. Cluster size as a function of U0 for two different values of the density: green and blue for N = 103, 
2 × 103, respectively, at fixed L. Other parameters as in Fig. 1. Continuous lines are obtained by linear numerical 
fits. In the ABP case (Panel (a)) we plot the diameter, d, of the ring cluster, while the AOUP case (Panel (b)) we 
show 2σ. In the AOUP case the label U0 is a short-cut for τD2 /a . The appearance of configurations which 
exchange particles among clusters is indicated by violet symbols. Blue shades denote the occurrence of unstable 
clusters in the case N = 2 × 103, while the same analysis for N = 103 is not shown for the sake of clarity. The left 
vertical dashed line indicates the smallest value of the active force which displays the instability of at least one 
cluster in the steady state. The right vertical dashed line shows the beginning of the disordered phase. In panel 
(c) we show the radial probability density, ρ(r). Red diamonds refer to ABP, yellow triangles to AOUP. Black 
lines are the result of a numerical fit. In panel (d) we plot the pair correlation function, g(r), for different values 
of the active force both for ABP and AOUP dynamics, as shown in the legend.
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obtained. Also, for some particular initial conditions in Eq. (4), ring-like clusters are observed for the standard 
AOUP, but only as a short-lived (for a time of the order of Dr

−1) transient state.
In Fig. 2 we study the size of a single cluster, i.e. the average diameter of the ring in the ABP case (Panel (a)) or 

twice its standard deviation in the AOUP case (Panel (b)), as a function of U0 ( τ= D2 /a  in the AOUP case). In 
particular, linear scaling of the standard deviation with U0 emerges for both types of active drivings and its slope 
depends on the mean number of particles in each cluster Nc: larger values of Nc produce larger confinements. Such 
a feature is due to the stronger repulsion from the neighboring clusters, which is more important than the intra-
cluster repulsion, and needs the contribution from the active forces to get balanced at a particular ring radius63. 
We remark that such size does not depend on the persistence time of the active force, τ. A second difference 
between the two models emerges at large values of U0 (or of τD2 /a ). As shown by the comparison between 
Panels (c) and (d) of Fig. 1, at some values of U0 the AOUP reveals a different phase which does not occur in the 
ABP model: In panel (d) we observe that some particles, which are marked by red circles, leave their clusters, 
eventually joining other ones, even if the cluster-crystal phase is preserved. Quantitatively, this particle exchange 
is a rare event and does not affect the cluster-size as shown in Fig. 2. The number of particles which migrate from 
a cluster to another, without destroying the stable hexagonal pattern, grows with increasing τD2 /a  in the AOUP 
but is always a very small fraction of Nc. For the ABP case, the exchange of particles could eventually occur only 
for larger values of T as found in63, but is always independent of U0.

A further increase of U0 leads for both models to the instability of some clusters. In such cases, clusters dis-
appear and immediately reform. The number of unstable clusters increases as U0 grows, without destroying the 
global order of the pattern. While in the AOUP case clusters simply blow up, in the ABP case we can clearly see 
the deformation of the ring-like aggregates into lines after which the cluster can reform. Then, the growth of U0 
produces the formation of continuous flows of particles while other groups of particles arrange in the hexagonal 
pattern (Fig. 1c,f). In other words, we observe the coexistence of the cluster-crystal phase with the disordered 
phase. Finally, the formation of any stable structure for both models is prevented by a further increase of U0, a 
regime which is not under investigation in the present manuscript.

The comparison between ABP and AOUP shows the weaker stability of the cluster-crystal phase in the latter, 
due to the particle-exchange mechanism which does not occur in the ABP case. In addition, clusters start to break 
down for AOUP at smaller values of U0 as shown in Fig. 2 (for N = 2 × 103). The disordered phase in ABP appears 
for larger values of U0 than for AOUP. We remark that in both cases the active force plays a role which resembles 
the one of an effective temperature since its increasing induces a transition towards the disordered phase. In any 
case, the role of the active force reveals other interesting features, like the coherent motion of the pattern and the 
shape of a single cluster, which cannot be understood in terms of an effective temperature approach.

Effective Description
In this Section, we elaborate an effective description of the dynamics of the system in the cluster-crystal phase by 
separating the dynamics of the single particle from the dynamics of the clusters. This has already been done for 
equilibrium hard-core passive repulsive particles in19 and is based on the fact that the typical distance between 
clusters remains approximately constant. As commented before, such assumption holds also in the presence of the 
active force (see the movie in Supplementary Information). These observations allow us to separate the effective 
dynamics of the single particle from the effective dynamics of the clusters. In particular, the effective equations 
for the i-th particle in the j-th cluster reads


ηγ γ γ= − + +F Tx x R f( ) 2 , (7)i

j
eff i

j j
i
j

i
j( ) ( ) ( ) ( ) ( )

where Feff is the effective confining force due to the neighboring clusters63. The mean cluster positions, R(j), are 
located on a hexagonal structure as in the purely Brownian case (U0 = 0) since the inter-cluster distance does not 
change significantly by the presence of the active force. The complex dynamics of interacting microswimmers is 
approximated by a set of independent particles in the presence of a grid of confining potential wells. The validity 
of this approximation has been discussed in19,20,23 in the passive case, and basically follows by a Taylor expansion 
of the GEM-α potential truncated at the second order, since the inter-cluster distance is always larger than the 
typical cluster-size in the cluster crystal phase. Within this approximation, particles belonging to the same cluster 
are treated as independent and only experience the effective force generated by the particles in the neighboring 
clusters63, which is described by the linear shape, Feff(x) ≈ −k(x − R(j)). We stress that the same equations are 
obtained if using interaction potentials different from GEM, the only difference being the particular value of 
the spring constant k. At variance with the equilibrium case where the pattern does not move and each clus-
ter fluctuates around its equilibrium position, in the presence of the self-propulsion the positions R(j) change. 
However, since particle relative distances remain constant within the cluster we shall neglect this movement and 
only consider the particle dynamics inside each cluster and study a system of independent particles confined in 
a harmonic well in the presence of the self-propulsion. Taking the center of the cluster (R(j) = 0) as the origin of 
coordinates, the effective particle dynamics reads


γ γ η γ= − + +k Tx x f2 , (8)

where we dropped the indices i and j for the sake of simplicity.
In the AOUP case Eq. (8) is linear, so that we can solve its associated Fokker-Planck equation for the steady 

state joint probability distribution function, f(x,f), which reads57:
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where C  is a normalization and Γ = 1 + kτ/γ is a numerical factor which depends on kτ/γ ≫ 1, i.e. the ratio 
between the correlation time of the activity, τ, and the relaxation time, γ/k, due to the harmonic potential. The 
result is a multivariate Gaussian distribution with non-zero correlations between each component of x and f. In 
other words, a non-zero conditioned first moment of the spatial distribution appears, so that 〈x〉 ∝ f, meaning that 
particles prefer to spend their life far from the minimum of the potential in a fixed position determined by the 
value of f. Since the active force is an Ornstein-Uhlenbeck process, f can explore large values depending on its 
variance, Da/τ, even if the most probable values remains f = 0. Instead, its persistence time, τ, rules how long the 
particle remains close to the particular position determined by the value of f.

Integrating out the active force in Eq. (9), we can easily find the probability density for the position of a given 
particle, p(x), which reads:

= γ γ
−

+ Γ
+ Γp ex( ) , (10)

k x y
D T

( )
2 /a

2 2

where   is a normalization factor. Formula (10) implies that the clusters have a Gaussian shape with 〈x〉 = 〈y〉 = 0 
and defines an effective temperature of the system33:
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The last approximation holds if T ≪ γDa, the regime considered in this manuscript. Note that the result for Te 
is in agreement with the scaling with τ recently observed in a dense suspension of active particles with hard-core 
repulsive interaction, specifically Lennard Jones potentials76,77. We also note that Eq. (11) approaches T + γDa, in 
the equilibrium limit, τ → 0, i.e. the effective temperature due to the joint effect of self-propulsion and thermal 
noise for a free microswimmer31,78,79. The Gaussianity of the density agrees with the shape of the clusters obtained 
in Fig. 2c). Moreover, the standard deviation of the above distribution, obtained as the square root of Eq. (11), 
confirms the linear cluster-size scaling with τ =D U2 /a 0, numerically measured in Fig. 2(b). We note that the 
authors of 37 showed that significant anharmonicity of the trap (for instance Feff = −∇U(x), with U(x) ∝ |x|2n and 
n ≥ 2) would lead, under AOUP dynamics, to a “delocalization” phenomenon, in which particles accumulate far 
from the minimum of the potential, displaying a non-Boltzmann distribution54,61,80,81. The absence of this phe-
nomenon here confirms that the effective trap potential induced by the neighboring clusters is harmonic to a 
good approximation (see also63).

In the case of the ABP active force, in this effective dynamics description in which interparticle forces are 
replaced by an external confining potential, the solution of the single-particle Fokker-Planck equation is not an 
easy task even under the simple harmonic potential60,62,82,83. Recently, such a system has been studied in the pres-
ence of hydrodynamic and steric interactions84 by means of the density functional theory85. In Fig. 3(a), we 
numerically study the radial density, ρ(r) = 2πrp(x), associated to Eq. (8) with ABP self-propulsion. We identify 
two regimes: i) when Dr ≫ k/γ, the activity plays the role of effective temperature and the particle position density 
p(x), has a Gaussian form as in the case of AOUP and passive suspensions (see the inset of Fig. 3(a)). In this 
regime, the increasing of Dr changes only the effective temperature, γU0

2/2Dr + T (which is equivalent to γDa + T 
discussed below Eq. (11)), which determines the variance of the distribution. It is straightforward to check that 
for large Dr the variances of the ABP and AOUP positions coincide. (ii) When  γD k/r , particles arrange on a 
circular crown and the region near the minimum of the harmonic potential becomes empty as in the clusters in 
Fig. 1. The decrease of Dr enhances the accumulation of particles in the proximity of r* ≈ γU0/k (shown in 
Fig. 3(a)), where r* corresponds to the radius at which active and the confining harmonic force balance. For T = 0 
(or T small enough with respect to γU0

2/Dr), the distribution is strongly non-Gaussian and can be approximated 
by a Dirac δ-function centered at r − r* in the limit Dr → 0. At T = 0 the asymmetry of ρ(r) is quite evident (see 
Fig. 3b)), since as the norm of the active force is fixed at U0, particles cannot explore regions with r > r*. When 

 γD k/r , particles arrange on the circular crown in such a way that their orientational angles, θ, can be approxi-
mated by θ ≈ φ = arctan(y/x), i.e. their angular coordinate with respect to the minimum of the potential. In this 
case, the probability distribution, g(θ − φ), is a Gaussian which becomes narrower as Dr decreases (Fig. 3c)). In 
Fig. 3(d) we study the variance of g(θ − φ) vs Dr for several values of T, showing a linear scaling (black triangles).

The effect of T is shown in Fig. 3b,c,d. On one hand, the larger thermal fluctuations symmetrize the 
shape of ρ(r) leading the system to explore the region r > r*, otherwise inaccessible. In this regime, p(x) is 
well-approximated by a Gaussian concentrated on a ring of radius |x| ≈ r*, so that the radial density is:

⁎ρ ≈



− −



r r k

T
r r( ) exp

2
( ) ,

(12)
2

as confirmed in Fig. 3(b). On the other hand, even if T does not change the Gaussian shape of g(θ − φ), its value 
can determine the variance of the distribution. For large Dr the variance is independent of the value of T (Fig. 3d)). 
A decrease of Dr determines a deviation from the linear behavior until a T-dependent plateau is reached. The 
shape of g(θ − φ) is approximatively described by a Gaussian distribution:
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whose variance excellently agrees with numerical simulations as shown in Fig. 3(d). In the Supplementary 
Information we show an analytical argument, which comes from the analysis of the Fokker-Planck equation, to 
derive Eqs. (12) and (13).

The study of the distribution of particles inside each cluster, within the present approximation of independent 
particles in a confining potential allows to further understand the origin of some differences between the AOUP 
and ABP active forces, occurring at large U0. We already showed that the constancy of the norm U0 makes the 
difference. Another way to see this is by noting that in the AOUP case the fluctuations in the positions are ruled 
by Te/k given by Eq. (11), which scales as ~γ2Da/τk2 for large τ. In this case, we can find a particle at r > r* with a 
finite probability, which is controlled by the strength of the active force in the regime of very small T. A large value 
of Da/τ increases the diameter of the cluster and the probability of finding a particle far away from its most prob-
able value. On the other hand, in the ABP case fluctuations are mostly ruled by T, while γU0/k only determines 
the maximal cluster radius, without increasing the particle positions fluctuations. Only fluctuations induced by T 
could lead a particle to explore radial distances larger than γU0/k from the center of its cluster. This difference 
explains why in the regime of negligible T, ABP does not display the particle-exchange phase, at variance with the 
AOUP model. This is also the main reason for which the AOUP active force has a region of cluster instability for 
smaller values of U0 ( τD2 /a ). This description directly agrees with the radial distribution measured in panel 
Fig. 2c), where, despite the same value of U0, the probability of finding an AOUP-particle for r ≳ r* is consistently 
larger than the ABP counterpart. The particle-exchange phase could occur only if a “small” fraction of particles 
has an active force large enough to overcome the effective barrier induced by the neighboring clusters, which for 
T → 0 can be provided only by the norm fluctuations of f, a mechanism which is absent in the ABP model with 
T = 0. We remark that “small” has to be considered in relation to the average number of particles inside each 
cluster86.

Figure 3. A single ABP particle in a harmonic trap. Panel (a): radial probability density ρ(r) for different values 
of Dr. The inset shows a comparison between the Gaussian approximation with some effective temperature, 
Eq. (11), and numerical data for Dr = 500. Panel (b): ρ(r) for Dr = 0.3 for three values of T: colored symbols 
from numerical simulations, black lines from Eq. (12). The red line is for T = 0. Panel (c): angular probability 
distribution functions, g(θ − φ), for two different values of T (colored points) compared with Eq. (13) (black 
lines). Panel (d): Variances of g(θ − φ) vs Dr for different values of T. Points are obtained by simulations while 
continuum lines correspond to the variances predicted by the distribution (Eq. 12). The dashed lines indicate 
the limiting variances obtained for Dr → 0. Other parameters: k = 10 and U0 = 3.
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Active cluster crystal in a channel
In this Section, we return to the original system of N active particles interacting through a repulsive GEM-α 
potential, and consider its behavior in a long channel. The aim is studying the interplay between cluster-crystal 
active aggregation and geometrical confinement.

The cluster crystal phase obtained with soft-core interactions and in the presence of a confining mechanism 
has been already studied in27 in the passive case. The hexagonal pattern is stable if the cross-section of the channel 
is larger than the typical interaction length of the soft-core potential, L/R ≫ 1, a regime which will be considered 
hereafter.

In addition, it is well-known that active particles, also in the non-interacting case, manifest the tendency 
to accumulate near the walls87,88, in the regime of large persistence. Both for AOUP and ABP active forces, a 
microswimmer maintains its direction roughly during the active force correlation time (1/Dr or τ). This persis-
tence induces a profile in the space-density of the system, producing an anomalous maximum in front of each 
wall higher than the typical bulk density55,56,89–91. We, now, evaluate the relation between the cluster crystal phase 
and the wall-accumulation.

We consider a channel of infinite length in the y-direction, and width 2L in the transverse x-direction and 
model two parallel walls by means of external repulsive potentials at positions x = ±L. For the sake of simplicity, 
we choose a truncated harmonic wall-shape in such a way that the force exerted on the particle, Fw, is linear and 
directed along the direction of the unit vector xˆ. In detail:

ˆθ= − ± ±k x L x LF x( ) ( ) , (14)w
l r,

where the indices l and r refer to the left and the right walls, respectively. θ(x) is the Heaviside function and the 
constant k represents the strength of the harmonic potential. Along the y-direction we consider periodic bound-
ary conditions to mimic the infinite size of the channel. In this way, the equations of motion read:


γ γ η γ= + + + + .Tx F f F F2 (15)i i i i w

l
w
r

It is well-known that active particles show a peculiar behavior in confined geometries92. When the active force is 
strong and persistent the microswimmers accumulate at the walls, so that their stationary probability distribution 
displays anomalous peaks in the proximity of the walls, at x ≈ ±L. The main reason is related to the time-persistence 
of their motion, which keeps the direction of the active forces roughly for a time ~1/Dr, depending on the model 
employed93. The number of particles accumulating at the walls with respect to the particles in the bulk is controlled 
by the persistence length of the active motion, λ τ= ∝U D D/a r a0 . When λa ≪ L the majority of the particles 
moves freely in the bulk, while the number of particles at the wall become comparable with the bulk-particles in the 
opposite regime86. In such a situation, the role of T has important consequences: the accumulation is reduced and a 
bulk profile of the density occurs even far from the walls, both for ABP58,59 and AOUP57 active forces. Such a 
long-range effect of the wall has not a Brownian counterpart and increases with the ratio T/γDa.

In Fig. 4, we display configurations obtained for three different values of U0 keeping fixed Dr. At small U0, the 
cluster-crystal phase occurs and, for both ABP and AOUP, aligns along the wall direction, as shown in panels a), 
b), c) and d). Interestingly, we find two symmetric narrow stripes of clusters attached to the walls whose shapes 
are strongly deformed with respect to the bulk-clusters (see the insets in panels a) and b)): in the ABP case, we 
observe ellipsoidal-like clusters instead of the ring-like one, while in the AOUP the Gaussian clusters are com-
pressed in the transversal direction with respect to the channel as if the wall affects the x-variance of the particle 
distribution inside the wall-clusters. This narrow stripe of clusters slides along the walls changing direction with 
an average rate ~1/Dr = τ, without breaking away from the walls. Clusters, hexagonally arranged, form in the bulk 
at very small U0, behaving in the same way as unconfined clusters, with one of the hexagonal directions aligned 
with the walls, as confirmed by the study of the x-density, ρ(x), in panel g) which reveals separated peaks. This 
situation changes by increasing U0. In the bulk, far from the walls, clusters become unstable: they disappear and 
reform continuously in time as in the unconfined case, but maintain a clear alignment. As shown in Fig. 4c,d, the 
inner clusters elongate along the y-direction until they collapse in vertical stripes. In this case, the study of ρ(x) 
cannot capture this dynamical effect: the central peaks are only less pronounced with respect to the lateral ones 
and overlap. A further increase of U0 destroys the stripes order in the inner region, creating a fluid-like homoge-
nous bulk-phase, whose structure is confirmed by the study of the density in panel i) which is roughly homoge-
nous until the occurrence of the first stripes. In the proximity of the walls two stripes clearly separated are stable: 
the one in front of the wall and the one at the interface with the fluid-region, clearly separated by an empty region. 
In practice, the wall stripe creates an effective extra wall at distance ~±(L − R), where active particles accumulate.

Finally, when U0 is very large we recover the usual behavior of active particles in the presence of walls (not 
shown), i.e. accumulation near walls without any structures in the bulk region. We remark that the suppression of 
any ordered structure occurs at larger values of U0 than in the case of the unconfined system. The presence of the 
walls, which breaks the rotational symmetry, stabilizes the stripe-phase which cannot form in the absence of walls. 
As in the unconfined case, the drift of the pattern is controlled by the average active force of the whole system. 
Nevertheless, we observe that the confinement prevents any motion along the transversal direction of the channel.

conclusion
In this work, we have studied a system of active particles in the presence of soft-core repulsive interactions, a 
coarse-grained model for suspensions of activated complex polymers, such as dendrimers or star polymers. We 
explored how the active force affects the cluster-crystal phase of the system. We discover the existence of traveling 
cluster crystals, with a speed induced by the active force. The crystal moves coherently in space, for a typical time which 
depends on the persistence of the active force, maintaining its hexagonal structure. In addition, the cluster-shape is 
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deeply affected by the strength of the active force which determines its size, until producing an unstable region where 
at first clusters can exchange particles and then destroy and reform continuously in time. Finally, for large enough 
self-propulsion, the crystal melts. We have checked in specific cases that such a phenomenology is not restricted to 
our choice of interparticle potential and we expect it to be present in a large class of soft-core interactions. We explore 
two different modelizations of the active force, both well-known in the literature, exploiting analogies and differences 
between them. Besides some differences in the particular parameter values at which transitions occur, the only feature 
which distinguishes the two descriptions is the cluster shape: for some values of the control parameters they display a 
central hole in the ABP case, but not in the AOUP. We have explained in detail the reasons for this difference.

Finally, we confine the system into an infinitely long channel to explore the dynamics of active soft repulsive 
particles. The effective long-range effect of the wall clearly appears, deeply influencing the structure of the pattern 
until to produce a collapse into a stripe-phase aligned to the walls. Such a phenomenon has not a passive counter-
part and is entirely due to the active force.

The consideration of more complicated confining geometries, finite-size for the particles, and the role of repul-
sive and attractive potentials acting at different scales may give rise to interesting behaviors and applications of 
the interplay of active forces and aggregated phases of particles. This is material to be explored in the close future.
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