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The projective quantum Monte Carlo (PQMC) algorithms are among the most powerful computational
techniques to simulate the ground-state properties of quantum many-body systems. However, they are efficient
only if a sufficiently accurate trial wave function is used to guide the simulation. In the standard approach, this
guiding wave function is obtained in a separate simulation that performs a variational minimization. Here we
show how to perform PQMC simulations guided by an adaptive wave function based on a restricted Boltzmann
machine. This adaptive wave function is optimized along the PQMC simulation via unsupervised machine
learning, avoiding the need of a separate variational optimization. As a byproduct, this technique provides
an accurate ansatz for the ground-state wave function, which is obtained by minimizing the Kullback-Leibler
divergence with respect to the PQMC samples, rather than by minimizing the energy expectation value as in
standard variational optimizations. The high accuracy of this self-learning PQMC technique is demonstrated for
a paradigmatic sign-problem-free model, namely, the ferromagnetic quantum Ising chain, showing very precise
agreement with the predictions of the Jordan-Wigner theory and of loop quantum Monte Carlo simulations

performed in the low-temperature limit.
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I. INTRODUCTION

The similarity between the imaginary-time Schrédinger
equation and the diffusion equation allows one to simulate
quantum many-body systems by stochastically evolving a
(typically large) population of random walkers [1]. This is
the basis of so-called projective quantum Monte Carlo algo-
rithms (PQMC). These algorithms are particularly efficient
when they simulate the ground state of sign-problem-free
Hamiltonians, since the corresponding wave function is real
and nonnegative in a suitable basis. Using fixed-node and
released node methods [2-5], PQMC simulations provide
accurate predictions even when the sign problem occurs,
in particular for many-fermion systems, albeit in general at
a larger computational cost. PQMC algorithms have been
used to simulate fundamental quantum systems, including
the electron gas [6], molecular systems [2], liquid and solid
Helium [7], electrons in solids [8,9], ultracold gases [10],
quantum spin and lattice models [11,12], and nuclear matter
[13]. However, these algorithms are efficient only if they
are provided with a sufficiently accurate trial wave function,
which is used to guide the random walkers towards the most
relevant regions of the configuration space. If this guiding
wave function is not included, or if it is not sufficiently
accurate, the computational cost of a PQMC simulation scales
exponentially with the system size [14-16]. For various
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relevant systems, the general form of a suitable guiding wave
function is provided by some physical theory, and the details
can be further tuned via a variational minimization of the
energy expectation value. However, an appropriate theory is
not always available, and the variational optimization might
turn out to be an extremely challenging computational task.
Even more, an inaccurate ansatz for the guiding wave function
might lead to biased predictions, in particular when different
phases closely compete, as in many strongly correlated and/or
disordered many-body systems. This problem is especially
relevant in the field of adiabatic quantum computing, where
quantum Monte Carlo (QMC) algorithms are being used to
simulate how quantum annealers solve complex optimization
problems [17-21]. In fact, the Hamiltonians corresponding
to typical instances of hard optimization problems can be
written in the form of random Ising models. These models are
characterized by glassy ground states, for which an accurate
ansatz is hard to guess [22].

Wave functions based on a certain type of generative neural
network, specifically, restricted Boltzmann machines (RBM)
[see Fig. 1, upper panel], have been recently proposed as
generic variational ansatzes for quantum spin models [23].
Their representational power, their entanglement properties,
and more elaborate versions are currently the subject of
very intense research activity [27-43]. They appear to be
particularly useful when no other physics-inspired ansatz is
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FIG. 1. Connectivity structure of the restricted Boltzmann ma-
chine (RBM) [23] employed in this work as PQMC guiding wave
function (upper panel) and of the unrestricted Boltzmann machine
employed in Ref. [24] (lower panel). The latter is analogous to the
shadow wave function used for quantum fluids and solids [25,26].
The visible spins are labeled by x;, with j =1,..., N, while the
hidden spins by #;, with i =1, ..., N,. The segments indicate the
allowed interactions.

available. In this paper, we show how to employ them as
guiding wave functions in PQMC simulations. In a previ-
ous article [24], a neural network state that mimics a type
of an unrestricted Boltzmann machine (see Fig. 1, lower
panel) has been employed as guiding wave function. In the
case of Ref. [24], the neural network parameters had to
be obtained via a separate variational optimization, and the
PQMC algorithm had to be overloaded with the sampling
of additional hidden variables. Here we show that, using
unsupervised machine learning algorithms, the RBM can be
trained along the PQMC simulations directly from random-
walker configurations. One obtains an adaptive guiding wave
function that improves during the PQMC simulation, allowing
one to completely eliminate the bias due to the finite random-
walker population [16] and to drastically reduce the statistical
fluctuations. As a testbed, we consider a paradigmatic sign-
problem free model, namely, the ferromagnetic quantum Ising
chain, making comparison against the exact predictions of
the Jordan-Wigner theory and of loop quantum Monte Carlo
(QMC) simulations performed with the ALPS library [44] in
the low-temperature limit. Excellent agreement is obtained
for ground-state energies and for the average magnetization,
above, below, and at the ferromagnetic quantum critical point.
A (possibly useful) byproduct of the self-learning procedure
described here is an optimized RBM ansatz. This ansatz is de-
veloped by minimizing a Kullback-Leibler divergence, rather
than the common minimization of the variational energy [45].

In the model considered here, the self-learned RBM wave
function turns out to be comparatively as accurate as the one
obtained via variational minimization using a sophisticated
optimization method such as the stochastic reconfiguration
algorithm [46] as implemented in the NetKet library [47].

The paper is organized as follows. Section II introduces
the model Hamiltonian we address and describes the PQMC
algorithm, the RBM variational wave-function, as well as
the adaptive unsupervised learning procedure. Numerical re-
sults and comparison with previous theories are presented in
Sec. III. Section IV summarizes our findings and discusses
possible future extensions.

II. METHOD

As a test bed for the self-learning PQMC simulations we
consider the one-dimensional ferromagnetic quantum Ising
Hamiltonian, defined as

N N

N-1
H=-JY oioi —~TY of—=hy of, (1)
j=1

j=1 j=1

where 0¥ and o7 indicate conventional Pauli matrices acting
on the spin at the lattice site j =1,...,N. N is the total
number of spins, and we consider open boundary conditions.
The parameter J > 0 fixes the strength of the ferromagnetic
interactions between nearest-neighbor spins. In the following,
we use J = 1 as unit of the energy scale. I and % are the
intensities of the transverse and longitudinal magnetic field,
respectively. Below, the eigenstates of the Pauli matrix o are
denoted as |x;). The eigenvalue is x; =1 when |x;) = |1)
and x; = —1 when |x;) = |]). The quantum states of N spins
|x) = |x1x3...xx), With x = (x;, ..., xy), form the computa-
tional basis considered in the present work. We denote as
|[v) the quantum state corresponding to the wave function

(x[yr) = ¥ ().

A. Projective quantum Monte Carlo simulations

The PQMC algorithms allow one to simulate the ground
state of a generic Hamiltonian by stochastically evolving the
imaginary-time Schrodinger equation. The algorithm’s accu-
racy and efficiency greatly improve if one introduces a suit-
able ansatz for the ground-state wave function—usually called
guiding (or trial) wave function and indicated as Y¥g(x)—
and let the product f(x, 7) = ¥ (x, 7)¥s(x) evolve according
to the modified imaginary-time Schrodinger equation. This
equation reads

fx, T+ A7) = Z Gx,x', AT) (X, 7). )

where

G(x,x', At) = G(x, ¥/, Ar)jg((j,)), G(x, x',

AT) = (x| exp[—AT(H — Egp)]|x’) is the imaginary-time
Green’s function for a (short) time step At (we set i =1
throughout this paper). Es is a reference energy introduced
to stabilize the numerics, as explained below.

We employ the continuous-time algorithm of Refs. [48,49],
which allows one to stochastically simulate the exact (modi-
fied) imaginary-time Green’s function G(x, x’, A7), avoiding
any finite time-step error which would occur with the use of
Trotter approximations.

Here,
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This is achieved by using the formal zero-time limit of
the Green’s function and by appropriately sampling the time
interval §7 between consecutive single-spin flips. More flips
might occur within a time step Art. Since the modified
imaginary-time Green’s function does not define a standard
Markov process, i.e., one driven by a column normalized
transition matrix, the simulation has to be performed by
stochastically evolving a (large) population of random walk-
ers; these walkers are subjected to updates in configuration
space and to a branching process in which they are annihilated
or replicated. The spin-configuration updates x’ — x (with
x' # x) are randomly selected from a probability distribution
proportional to the modified imaginary-time Green’s function.
The guiding wave function favors updates towards relevant
regions of the configuration space. In the branching process,
the random walkers are annihilated or replicated according to
the weight factor wy = exp [—87(Ejc(x') — Eyer)], where the
local energy is Ejoc(x") = ZX Hy ]ff((;)) [50]. This weight ac-
counts for the column normalization of the transition matrix.
By dynamically tuning E.., the size of the random-walker
population can be kept very close to a desired target value
Ny. To implement the branching process and for the tuning of
E..s we use the textbook recipe of Ref. [51].

The continuous-time PQMC algorithm sketched here is
more exhaustively described in Refs. [24,48,49], and we refer
the interested readers to those references for additional imple-
mentation details. The projection can reach long imaginary
times T = Nyvc At by iterating a large number Nyic of Monte
Carlo steps, each step corresponding to a short time step
At. In the long imaginary-time limit, the walkers sample
spin configurations with a probability distribution propor-
tional to f(x, T — 00) = Yp(x)¥s(x) (if Ny, is large enough,
as explained below), where 1(x) is the ground-state wave
function. Unbiased predictions of ground-state energies are
obtained via Monte Carlo integration of the sum

E — Zx f(xs T — 00)Ejoc(x)
e Yo flx, T —>00)

Unbiased prediction of ground-state expectation values of
other observables that commute with the Hamiltonian are
obtained with analogous formulas. However, for operators O
that do not commute with the Hamiltonian, the analogous
formulas would predict so-called mixed estimators, namely
(1//0|0|1//G) /{¥ol¥e). In general, these are affected by a bias
due to the guiding wave function, unless the latter coincides
with the ground-state wave function. Nevertheless, if the
operator O is diagonal in the chosen computational basis, the
pure estimator corresponding to (o|O|v0)/(Yol) can be
determined via the standard forward-walking technique (see,
e.g., Ref. [7]). An accurate guiding wave function reduces the
computational cost of the forward walking technique.

In the large random-walker population limit, Ny — 00,
the above Monte Carlo estimates are unbiased, being affected
only by statistical fluctuations, which can be systematically
reduced. For finite Ny, a systematic bias might arise due to the
spurious correlations among replicated walkers [14-16,52—
54]. In Ref. [16], it was indeed shown that if one does not
introduce a guiding wave function, which corresponds to
setting ¥ (x) = 1 in the equations above, the random-walker

3)

population required to keep this systematic bias below a cho-
sen (small) threshold increases exponentially with the system
size. This, in turn, implies a computational cost which scales
exponentially. Instead, if the guiding wave function is exact,
ie. if Yg(x) = Yo(x), the local energy Ej.(x) is a constant
function. This freezes the annihilations and replications of
the random walkers in the branching process, eliminating
any potential bias. If ¥/(x) is a reasonable approximation
for ¥ (x), the fluctuations of the random-walker number are
anyway reduced compared to the case of the simple PQMC
algorithm performed with {g(x) = 1, giving a much faster
convergence to the exact Ny, — o0 limit.

B. Boltzmann machines for PQMC algorithms

In Ref. [24], it has been shown that a guiding wave function
based on an unrestricted Boltzmann machine is sufficiently
accurate to drastically reduce the required random-walker
population, leading to a polynomially scaling computational
cost, at least for the ferromagnetic quantum Ising chain.
Remarkably, this has been achieved by optimizing just three
variational parameters. The small number of variational
parameters to be optimized is the main benefit of the
unrestricted architecture of Refs. [24,41]. However, using the
unrestricted Boltzmann machine requires to sample additional
hidden spins, both during the variational optimization [55]
and, chiefly, during the PQMC simulations. In fact, the
PQMC algorithm has to be extended, combining visible-spin
and hidden-spin sampling as explained in Refs. [24,56]. An
inefficient sampling of the additional hidden spins might
introduce further correlations among replicated walkers,
leading to a larger finite-N,, bias. This deleterious effect
has indeed been observed in PQMC simulations performed
close to the ferromagnetic quantum critical point [24], where
the statistical correlations among subsequent hidden-spin
configurations are larger. This effect did not lead to an
exponentially scaling computational cost in the ferromagnetic
quantum Ising chain, but it might be more detrimental for
more challenging Hamiltonians.

Below, we show that a guiding wave function based on an
RBM allows one to eliminate the finite-V,, bias. The addi-
tional benefit the RBM ansatz provides is that the optimization
of the guiding function can be performed via unsupervised
machine learning directly from the random-walker popula-
tion, with no need for a separate variational optimization. Fur-
thermore, as opposed to the unrestricted Boltzmann machines,
the RBM ansatz does not require to sample additional classical
hidden-spin variables. This allows one to avoid overloading
the PQMC algorithm with the Monte Carlo updates for the
hidden spins. We argue that these two benefits might be
particularly relevant in two setups: in simulation of disordered
models, where frustration effects might increase the corre-
lations among successive hidden spin configurations, and in
quantum annealing simulations, where the Hamiltonian varies
in time and an automatically adaptive guiding wave function
would allow one to perform more efficient simulations of the
quantum annealers’ dynamics.

Boltzmann machines are generative stochastic neural net-
works often used to approximate the probability distribution
corresponding to a given population of stochastic samples.
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Beyond the visible spin variables x, they include N, additional
hidden spin variables #; = +1, with i =1, ..., N}, collec-
tively denoted in the following as h = (hy, ..., hy,). The
probability distribution is written in the form of the Boltzmann
weight P(x, h) corresponding to a classical Ising Hamiltonian.
In the case of the RBM, this classical Hamiltonian function
reads

HRBM(x,h)I _Zjijhixj_zajxj_zbihi' “4)
ij J i

Notice that no visible-visible interactions nor hidden-hidden
interactions are allowed. Instead, all visible spins interact with
all hidden spins via the coupling parameters J;;. One obtains
two layers, respectively referred to as visible and hidden layer,
with the bipartite all-to-all connectivity illustrated in the upper
panel of Fig. 1. The parameters a; and b;, called biases, play
the role of longitudinal local magnetic fields. The couplings
Jij, together with the bias terms a; and b;, define the RBM.
In the following, all these parameters will be collectively
denoted as W = {W,,} = {J;j,a;, b;}, for i =1,..., N, and
j=1,...,N. The index m labels all the RBM parameters.
In practical applications the required number of hidden units
is typically N, ~ N. Thus, the number of parameters scales,
to leading order, as N2. This quadratic scaling can be reduced
to a linear scaling in translationally invariant models [23,57].
However, in view of future studies on disordered systems,
we avoid translational invariance adopting open boundary
conditions. This allows us to test the unsupervised learning
of RBM wave functions in the most generic setup. In the
unrestricted Boltzmann machine considered in Ref. [24], in-
tralayer visible-visible and hidden-hidden direct interactions
were included, reflecting the same (nearest-neighbor) connec-
tivity of the quantum Hamiltonian in Eq. (1). Furthermore,
N, was taken equal to N, and interlayer interactions were
allowed only between visible and hidden spins corresponding
to the same index, i.e., for i = j. The resulting connectivity
structure is shown in the lower panel of Fig. 1. This structure
is analogous to that of the shadow wave-function used to
describe the liquid and solid phases of Helium-4 [25,26].

In general, the probability to sample a visible-spin config-
uration x is the marginal distribution over all possible hidden-
spin configurations h:

1
P)=) P,y = = expl—Hrpu(x, 1) (5)
h h

Notice that the fictitious temperature and the Boltzmann con-
stant kp are here equal to unity. The normalization factor is the
partition function Z =), exp [—Hrgm(x, h)]. Due to the
absence of intralayer interactions in the RBM, the hidden-spin
configurations can be analytically traced out, resulting in a
marginal distribution P(x) o exp (3 ;ajx;) [1; Fi(x), where
F;(x) = 2cosh [b; + Zj Jijx;l. In Ref. [23], it has been pro-
posed to use the function P(x) to define an (unnormalized)
ground-state wave function. To describe both amplitude and
phase, the RBM parameters W should, in general, be complex
valued. However, we consider here models whose ground-
state wave function can be assumed to be real and nonnegative
in a suitable basis; therefore, the RBM parameters can be
restricted to have real parameters. Extensions to complex-

valued ground states for, e.g., fermionic systems, have re-
cently been addressed [36,58,59]. In Ref. [23], the RBM pa-
rameters W were determined via variational minimization of
the expectation value (Yrpm|H |¥rREM)/(¥RBM|Y¥RBM), Where
|YreMm) indicates the quantum state corresponding to the (un-
normalized) wave-function (x|y¥rgm) o P(x). The optimiza-
tion of the variational parameters was performed using the
stochastic reconfiguration algorithm [49]. In the following, the
corresponding minimal variational energy, obtained using the
Netket [47] library, will be indicated as Ey,; min.. In Ref. [23],
the variational-minimization approach has been referred to
as reinforcement learning, due to the close similarity with
the reinforcement-learning techniques used in the field of
machine learning. However, in typical machine learning ap-
plications of RBMs the parameters W are determined via un-
supervised machine-learning techniques [60], trying to learn
the (unknown) distribution corresponding to a (typically large)
dataset of stochastic samples. The unsupervised learning ap-
proach has already been used in Ref. [45] to perform quantum
states tomography. Here, we adopt it to extract reasonably
accurate variational ansatzes from the random-walker popula-
tion generated by the PQMC algorithm. As discussed below,
these ansatzes can then be used in an adaptive scheme as
guiding wave functions to boost the efficiency of the PQMC
simulation itself. On the one hand, this scheme allows one
to eliminate the bias originating from the finite N,,. On the
other hand, it allows one to eliminate the residual error in the
RBM ansatz, providing unbiased predictions of ground-state
properties.

C. Unsupervised learning of adaptive RBM
guiding wave functions

In the unsupervised learning approach, the RBM param-
eters are determined by maximizing the log-likelihood of a
(typically large) training set: L(W) = )" InP(x,), where
w labels the instances in the training set. It can be shown
that this corresponds to the minimization of the so-called
Kullback-Leibler divergence (see, e.g., Ref. [61]). In general,
the Kullback-Leibler divergence between two distributions
p(x) and g(x) is defined as

KL(gllp) = ) q(x) In[g(x)/p(x)]. (6)

It represents a measure of the distance between two distribu-
tions (non-symmetric with respect to the exchange ¢ <> p). In
the case discussed here, g(x) is identified with the distribution
of the random walkers obtained via PQMC simulations at
equilibrium, while p(x) with the RBM marginal distribution
P(x). The optimization of the RBM parameters W can be
performed using the gradient ascent algorithm. It consists in
performing iterative updates starting from an initial (random)
guess WO. At the step n =0, 1, ..., Nygeps, One applies the
rule: W = wr + nﬁL(W"), where the coefficient 7 is
the learning rate. This plain vanilla rule can be improved in
various ways, e.g., by including a momentum term propor-
tional to the update performed at the n — 1 step, by annealing
the learning rate, by adopting the adaptive gradient algorithm
(AdaGrad) [62] or the adaptive moment estimation algorithm
(Adam) [63]. For all results reported in this manuscript, the
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plain vanilla rule is augmented only by adding a momentum
term corresponding to V%L(W”_l), with v a rate tuned as
discussed below. Also the learning-rate annealing is adopted,
as explained in the following.

The main task in the implementation of the gradient ascent
algorithm is the computation of the gradients of the log-
likelihood. It is common to use stochastic estimates computed
on mini-batches of N, instances (typically, N, ~ 10-100)
randomly sampled from the (much larger) training set. The
formula for the gradients with respect to the couplings J;; is
usually stated in the following from:

dL(W)
aJij

X (xjhi>data - <xjhi>model- (N

The first term on the right-hand side indicates the av-
erage obtained when the visible units are clamped to the
data in the minibatch. To determine its value, one uses the
probability distribution of the hidden spins 4;. Due to the
bipartite connectivity, it depends only on the visible-spin
configurations. One has #; = 1 with probability pj—(x) =
1/[1 +exp(—2 Zj x;Jij — 2b;)], and h; = —1 with probabil-
ity 1 — pp=1 ().

Determining the second term on the right-hand side of
Eq. (7) is more challenging. It represents the average obtained
when both visible and hidden variables are sampled according
to the probability distribution P(x, k) defined by the RBM
model. In machine learning jargon, this term is often referred
to as the dreaming phase of the learning process, in contrast
to the first term which would correspond to the awake phase.
The average can be determined via Monte Carlo estimation,
starting from the visible variables corresponding to the mini-
batch instances, and then alternating Gibbs sampling of all
hidden variables with fixed visible variables, followed by the
sampling of all visible variables with hidden variables fixed
at the previously sampled values. The probability to sample
x; =1 is analogous to the formula for the hidden spins:
px,:l(h) = 1/[1 + exXp (—2 Zi hjjij — 2aj)].

In principle, this alternated Gibbs sampling should be
iterated till the Markov chain equilibrates. This would provide
an unbiased estimate of the average. In practice, repeating a
sufficient number of iterations to guarantee that equilibrium
has been achieved is often computationally overwhelming.
The algorithm corresponding to a finite number k of iterations
is referred to as k-step contrastive divergence, since it can
be derived by minimizing the difference of two Kullback-
Leibler divergences [64]. In the k — oo limit, this algorithm
is provably unbiased, meaning that it corresponds to max-
imizing the log-likelihood of the dataset [65]. However, it
often turns out to be very accurate also for small k. Formulas
for the log-likelihood derivatives with respect to the other
RBM parameters, namely the biases a; and b;, can also be
derived, analogously to Eq. (7). Rather than reporting them
here, we provide in Algorithm 1 the detailed procedure, which
is adapted from Ref. [61] to the case of interest to us with
binary values x;, h; = %1, rather than the values 1 and O,
more common in the machine-learning literature. The input
of the algorithm is a mini-batch of N, randomly sampled
instances, while the output provides the partial derivatives of

the log-likelihood Ly, = 2%

Algorithm 1. k-step contrastive divergence.

Input: mini-batch x;, with/ =1,..., N,
Output: partial derivatives L Jis Ly,, L,,j
Initialization: L;; = Ly, = L,; =0
for/=1,...,N,do
x) <« x;
fort =0,...,k—1do
set hi = 1 w. prob. pj,—; ('), else i = —1
set x;.“ = 1 w. prob. p,,—; (h'), else x;“ =—1
end for
fori=1,..., Nyand j=1,...,N do
Ly, < Ly; + 2pr=1(x°) — Dx) — 2py=1 (x*) — 1)x}
L(,j <« L,,/. + x_(/-) — xf
Ly, < Ly, + Qpp—1(x*) — 1) = 2pj—1 (x) = 1)
end for
end for

It is convenient to normalize the output, dividing by N,,. For
a recent review on the topic, the interested reader is referred
to Ref. [66].

In the adaptive scheme presented in this paper, the above
unsupervised learning algorithm is used to train the RBM to
describe the (unnormalized) probability distribution f(x, T —
oo) corresponding to a large random-walker population pro-
duced by a PQMC simulation at equilibrium. It is in fact
known that, in principle, for a sufficiently large N, an
RBM can approximate any discrete distribution (in the sense
of the Kullback-Leibler divergence), and many researchers
have found that the training algorithms described above
are capable of finding optimal, or close to optimal, RBM
parameters.

The scheme we propose here involves many consec-
utive stints, labeled in the following by the index s =
0,1,2,..., Ngins — 1, each including a PQMC simulation
with a guiding function ¢, (x) for a long imaginary time
7,, followed by a learning stage which is used to construct
the new guiding function V¢, (x). The imaginary time
runs up to T,Nginis- In €ach learning stage, occurring at the
imaginary times (s 4 1)7,, the RBM is trained to describe
the equilibrium random-walker distribution produced during
the last stint. For the initial PQMC stint s = 0, a quite crude
guiding wave function ¥, (x) can be chosen, e.g., a constant
function or a wave function based on (the square root of) an
RBM with random parameters, ¥g,_,(x) o< +/P(x). After the
s stint, the learned RBM distribution is Ps(x) & ¥g, (X)¥o(x)
(assuming Ny, and 7, large enough). Notice that the learning
process converges much faster if in each learning stage the
RBM parameters are initialized at the values found in the
previous learning stage.

The new guiding function for the stint s 4 1 is obtained by
setting Vg, ,, (x) = +/Ps(x). With this choice the accuracy of
the guiding function increases stint after stint. Indeed, under
the idealized conditions of N, sufficiently large, successful
unsupervised optimization, and Ny, and 7, large enough, at
the s stint the random walkers sample the (unnormalized) dis-
tribution f(x, T — 00) = ", (), /> (x). This indicates
an extremely rapid convergence Vg, (x) = Yp(x). As a
consequence, in less idealized conditions, the (possible) bias
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due to the finite Ny, is expected to disappear after a relatively
small number of stints/training stages. In the next section,
we demonstrate that this is indeed the case. This is achieved
with an affordable number of hidden spins N, using a simple
implementation of the stochastic gradient ascent algorithm
described above.

D. Simulation details

For all results reported in this article, the simulation details
are the following. The PQMC simulations are performed
with a target number of walkers N,, = 10* and time step
At = 0.04. In each stint, the PQMC simulation runs for an
imaginary time ty = 20, which turns out to be sufficiently
large to represent the infinite imaginary-time limit T — oo.
A small (randomly selected) fraction of the walker popula-
tion, namely N, /20, is stored at each PQMC step for the
learning stage, excluding the initial time segment of each stint
corresponding to T € [sty, sT; 4+ 8]. This avoids correlations
and nonequilibrium effects. This protocol provides Nyin =~
15 x 10* instances for each unsupervised learning stage. The
number of stints ranges from Nyines = 20 to Nyins = 50. This
appears to be sufficient to approach the s — oo limit.

Unsupervised learning is performed after each PQMC stint
using the k-step contrastive divergence algorithm, performing
anumber Nyeps = 5 X 10* to 10° of stochastic gradient ascent
steps, computed on minibatches of size N, = 10 to 50. The co-
efficient of the momentum term is v = /10 (see description
above). The learning rate 1 is kept fixed within each learning
stage, but is reduced stage after stage following the simple em-
pirical annealing protocol n(s) = 10.75°, where o = 0.01 is
the learning rate at the first learning stage s = 0. Remarkably,
k =1 is found to suffice. Tests with k &~ 30 provide com-
parable results. This strongly suggests that in this problem
the k-step contrastive divergence algorithm is correctly min-
imizing the Kullback-Leibler divergence. The initial guiding
function ¥¢,_,(x) is the square root of an RBM distribution
with uniform random couplings J;; € [—0.025 : 0.025]. In the
absence of longitudinal magnetic field, i.e., with 4 = 0, the
bias terms are initialized to zero, while for finite % they are set
to uniform random values a;, b; € [0 : 0.05].

It is worth mentioning that, while the setup described
here turns out to be adequate for the problems addressed
in the present work, it is plausible that even more efficient
simulations could be implemented, e.g., by performing more
frequent learning stages, storing larger training sets, or chang-
ing the optimization algorithm.

III. RESULTS

This section focuses on verifying the accuracy of the self-
learning PQMC scheme described in the previous section.
The ferromagnetic quantum Ising chain Eq. (1) is used as a
testbed. The PQMC predictions for the ground-state energy
are compared against the exact value computed via the Jordan-
Wigner transformation [67]. Notice that the comparison is
made with the Jordan-Wigner results corresponding to the
same system size and the same (open) boundary condition
employed in the PQMC simulations. Let us first focus on a
chain with N = 80 spins, in the absence of a longitudinal field

~1.04 Simple PQMC with yig =1 — -
—-1.06 PQMC with random RBM g RN
~1.08 EWGS (adaptive RBM) _g
| Evar.min.
~z PQMC with Adaptive RBM yig ——
Py Jordan*Wigner —
I \ i
“1.14 W '
-1.16

FIG. 2. Self-learning PQMC simulation of a ferromagnetic quan-
tum Ising chain with N = 80 spins and open boundary conditions.
The transverse-field intensity is I' = 0.85, the longitudinal-field in-
tensity is & = 0. The energy per spin E /N is plotted as a function of
the imaginary time 7. The (violet) dashed curve indicates the running
average in a simple PQMC simulation performed without a guiding
wave function. The (dark-green) dot-dashed curve corresponds to a
PQMC simulation guided by a fixed RBM wave function ¢ _,(x)
with N, = 20 hidden spins and random parameters. The (red) contin-
uous curve corresponds to the PQMC simulation guided by the adap-
tive RBM wave function /¢, (x) trained with unsupervised learning.
The (blue) squares indicate the average energy Ey,; corresponding to
the adaptive RBM wave function ¢, (x) obtained after each stint s.
The (brown) horizontal bar indicates the minimal variational energy
E\armin. for N, = 20 obtained with the NetKet library [47] using
the stochastic reconfiguration algorithm. The (black) horizontal line
corresponds to the exact ground-state energy computed via Jordan-
Wigner transformation [67].

(i.e., with i = 0), with a transverse field of intensity I' = 0.85.
This value is in the ferromagnetic phase, close to the quantum
critical point, which corresponds to I' = 1. This is the regime
where the systematic bias due to the finite random-walker
population is more sizable [16,24]. (For moderately large N,
the bias is larger around I' & 0.85. However, in the Ny, — oo
limit, the slowest vanishing of this bias occurs at the quantum
critical point I' = 1, in the thermodynamic limit.)

Indeed, as shown in Fig. 2, a simple PQMC simulation
performed without guiding wave function, i.e., with ¥g(x) =
1, provides energies with a considerable upward bias of ~1 —
2%. This bias occurs despite the relatively large population
of random walkers N,, = 10*. To understand the occurrence
of this large bias, one should consider that the constant
wave function Yg(x) = 1 describes the ground state in the
' - oo limit, where all spins align along the transverse
axis and all elements of the computational basis have equal
probability amplitude. Thus, for I' = 0.85, the constant func-
tion represents a rather poor guiding wave-function, since
here the ground state is drastically different, displaying long
range ferromagnetic correlations along the longitudinal axis.
Figure 2 also displays a PQMC simulation guided by a fixed
RBM wave function ¥_,(x) with N, = 20 hidden units and
randomly chosen parameters (see previous section for more
details). This simulation provides a comparable, but slightly
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smaller, bias compared to the ¥g(x) = 1 case. Instead, the
self-learning PQMC simulations guided by the adaptive wave
function g, (x) display a radically different behavior. In
the first stint (s = 0), the guiding wave function ¥¢,_,(x) is
the RBM with random parameters described in the previous
section; the systematic bias is, again, noticeable. However,
this bias completely disappears after a few stints/learning-
stages s 2 3. Not only the bias disappears, but also the sta-
tistical fluctuations are drastically suppressed, leading to an
extremely accurate and precise agreement with the Jordan-
Wigner prediction. This indicates that the RBM is capable
of accurately learning the random-walker distribution, leading
to an adaptive guiding wave function ¥g_ _ (x) sufficiently
similar to the ground state 1o(x) to eliminate the systematic
bias in the PQMC simulation. To quantify the accuracy of
the learned adaptive wave functions ¢, (x), we compute the
corresponding energy expectation values:

_ Ve |Hv6.)
Ve = (Ve |¥6,)

These computations are performed via Monte Carlo integra-
tion using a simple Metropolis sampling algorithm. The cor-
responding results are displayed in Fig. 2, placed at the final
imaginary-time of the corresponding PQMC stint T = 7,(s +
1). For small s, due to the memory of the initial guiding wave
function ¥g,_,(x) and, to a lesser extent, to the bias affecting
the PQMC algorithm, this expectation value largely deviates
from the exact ground-state energy. This deviation might also
originate from limitations in the learning process due to the
finite number of learning updates Ng.ps and/or of the instances
in the training set Ny,i,. After a few stints/learning-stages the
deviation from the ground-state energy significantly reduces,
indicating that the adaptive RBM wave function better approx-
imates the ground state. Remarkably, after a number s > 1
of stints and learning stages, Ey,; approaches the optimal
variational estimate Ey,r min. (defined in the previous section)
for an RBM wave function obtained using the NetKet library
[47] for the same value of N,,. This library implements various
sophisticated optimization algorithms. The results reported
here are obtained using the stochastic reconfiguration method,
which appears to be the most effective algorithm for the model
addressed here. The agreement with the NetKet variational
prediction indicates that the unsupervised learning algorithm
is capable of identifying an optimal, or close to optimal,
ground-state wave function from the random walkers sampled
by the PQMC algorithm. It is worth mentioning that the
convergence to the optimal RBM wave function could be
accelerated by a more clever (i.e., not random) choice of
the parameters of the initial guiding wave function ¢, _,(x).
This would reduce the required number of stints. An effective
initialization of the RBM parameters could be obtained by
exploiting the mapping between the RBM wave functions and
other ansatzes, such as Jastrow wave functions or correlator
product states [45,68].

The adaptive RBM wave function ¢, (x) with N, =20
is sufficiently accurate to eliminate the bias and to boost the
efficiency of the PQMC simulation. However, the correspond-
ing energy expectation value Ey,, does not precisely agree
with the exact ground-state energy, even after a number of

®)

0.1 ; ' ' ' ' '
E,.  (adaptive RBM)
E ar min. (stoch. reconf.) —e—
= E rpm (stoch. g.d.) mmm
= 0.01}
=
=
=
-
o
oy 0-001f
\*\4»
0.0001

FIG. 3. Relative error (E — Ejw)/|Eyw| of the estimated ground-
state energy E with respect to the (exact) Jordan-Wigner result Eyy,
as a function of the hidden-spin number N,,. The system parameters
are: N =80, I' =1, and & = 0. The (red) squares indicate the en-
ergy expectation value of the optimal adaptive RBM wave-function
Y6, ., (x), optimized via unsupervised learning along the PQMC
simulation. This optimization corresponds to the minimization of
the Kullback-Leibler divergence. The (blue) circles correspond to the
minimal variational energy for an RBM wave-function obtained with
the NetKet library using the stochastic reconfiguration algorithm.
As a reference, the minimal variational energy corresponding to
the unrestricted Boltzmann machine (uURBM) wave function [24] is
indicated by the horizontal (green) bar. The width represents (twice)
the statistical error. The uRBM wave function is optimized using the
stochastic gradient descent algorithm.

stints s — oco. As shown in Fig. 3, this residual deviation
can be systematically reduced by increasing the number of
hidden neurons &, in the RBM. This analysis is shown for the
quantum critical point I' = 1, where it is more challenging to
accurately approximate the ground state with neural network
ansatzes [23,24,39,41]. The system size is, again, N = 80.
One also observes that here the NetKet variational estimates
Eyar.min. for small N, are slightly lower than Ey,; . This
might indicate that the stochastic reconfiguration algorithm is
able to better optimize the RBM parameters. However, one
should also consider that when a variational ansatz is not very
accurate, and the exact ground state is not contained in the
manifold defined by the variational parameters, minimizing
the energy expectation value does not necessarily provide
a better overall description of the ground state. One can-
not exclude that the adaptive RBM wave function ¥, ,_ (x)
produced by the unsupervised learning protocol, which aims
at minimizing the Kullback-Leibler divergence with respect
to the PQMC samples rather than at minimizing the energy
expectation value, would provide more accurate predictions
of physical properties other than the energy. As a reference,
Fig. 3 displays also the minimal variational energy corre-
sponding to the unrestricted Boltzmann machine ansatz of
Ref. [24]. This is obtained by minimizing the energy expec-
tation value with an implementation of the stochastic gradient
descent algorithm which samples the additional hidden spin
variables. This variational estimate is comparable to the one

043301-7



S. PILATL E. M. INACK, AND P. PIERI

PHYSICAL REVIEW E 100, 043301 (2019)

-1.2676 : ; . . .
| Jordan-Wigner
12678 PQMC,RBM =
\\ PQMC, Boltzmann - — - -
-1.268 | \
Z \
~ L
m 1.2682 \\
-1.2684 | ‘\
\
-1.2686 | \
. e " —E—"
10 20 30 40 50 60 70 80
Ny

FIG. 4. Energy per spin E /N obtained from a PQMC simulation
guided by the optimized adaptive RBM wave functions v¢, . (x)
with different numbers of hidden spins N,. The system parameters
are: N = 80, I' = 1, and & = 0. The (blue) horizontal line indicates
the exact ground-state energy computed via the Jordan-Wigner (JW)
transformation. For comparison, the (green) dot-dashed line indi-
cates the results of a PQMC simulation guided by an optimized
Boltzmann-type ansatz.

corresponding to an RBM wave-function with N, = 80-100
hidden spins. More importantly, if the number of hidden units
is too small, the adaptive RBM wave function might not
be sufficiently accurate to eliminate the systematic bias of
the PQMC simulation, even after many stints/learning-stages.
This effect is visualized in Fig. 4, again for I' = 1. Indeed, one
notices that, when the adaptive guiding function has N, < 10
hidden spins, the PQMC results are affected by a small bias
~0.1%. This bias completely disappears for N;, > 20, within
statistical uncertainty. For comparison, Fig. 4 displays also the
PQMC result obtained by using a conventional Boltzmann-
type guiding wave function, defined as V¢ (x) = exp (—BH,)),
where Hy = — Z]}Fl X;jxj41 is the Hamiltonian function of
a classical Ising chain, and the fictitious temperature f§ is
determined via variational energy minimization. At I' = 1,
this optimization provides § = 0.274(1). One notices that the
Boltzmann guiding wave function is not sufficiently accurate
to completely eliminate the bias in the PQMC result due to the
finite Ny,. Indeed, it was shown in Ref. [24] that, in the vicinity
of the ferromagnetic critical point, the computational cost of
PQMC simulations guided by Boltzmann ansatzes increases
exponentially with the system size if the systematic bias is
kept below a chosen small threshold. These findings further
highlight the importance of implementing a systematically
improvable ansatz, such as the adaptive RBM guiding wave
functions adopted here.

By exploiting the adaptive RBM wave function, unbiased
PQMC results can be obtained also for larger system sizes.
Figure 5 shows data for different system sizes (up to N =
160). With a number of hidden spins N, = N/2, one sees from
the inset that the relative error with respect to the exact result
is as small as ~1073% even for the largest system size.

The PQMC ground-state energy predictions are shown in
Fig. 6 as a function of the transverse field I". This plot explores

-1.261 T
1.00006 |
z
-1.263 | =
M 1.00003}
S
-1.265 4 |
- & 100000 ¥
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N
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Jordan-Wigner ——
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-1.271 Q,
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FIG. 5. Main panel: energy per spin E/N as a function of the
system size N, at the quantum critical point I' = 1 with 2 = 0. The
(red) dots and interpolating line indicate the exact Jordan-Wigner
result. The (blue) circles indicate the results of PQMC simulation
guided by the optimized adaptive RBM wave function vg, ,_ (x)
with N, = N/2 hidden spins. Inset: ratio of the PQMC result Epgmc
and the exact (Jordan-Wigner) ground-state energy Ejw.

a moderately broad region around the critical point. The sys-
tem size is N = 80. Perfect agreement with the Jordan-Wigner
prediction is found over the whole region. Results obtained
in the presence of a longitudinal field of intensity 7 = 0.2
are also shown. In this case, the comparison is made against
the predictions of loop QMC simulations [69] performed with
the ALPS library [44]. Notice that the loop QMC algorithm
provides finite-temperature results, but we consider here a
sufficiently low temperature 7 = 0.05 (we set kg = 1) such
that thermal effects are negligible. In the PQMC simulations,

h:b Jordan'-Wigne; —
h=0 PQMC —=—
h=0.2 PQMC —e—

h=0.2 loop QMC

-1.2

0.6 0.8 1 1.2 1.4 1.6 1.8
r

FIG. 6. Energy per spin E/N as a function of the transverse
magnetic field T", for vanishing longitudinal magnetic field, i.e.,
h =0, and for & = 0.2. The system size is N = 80. At h = 0, the
results of PQMC simulations guided by the optimized adaptive
RBM wave function v, (x) (blue squares) are compared with the
Jordan-Wigner theory (red dots and interpolating line). At 4 = 0.2,
comparison is made with loop QMC simulations performed at low
temperature 7 = 0.05 using the ALPS library [44].
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FIG. 7. Main panel: magnetization per spin M /N as a function of
the transverse magnetic field I'. The system size is N = 80 and the
longitudinal-field intensity is # = 0.2. The PQMC results obtained
with the pure estimator (blue empty circles) are compared with the
results of loop QMC simulations (green crosses) performed with the
ALPS library at the temperature 7" = 0.05. Inset: loop QMC results
(green bullets) for M/N as a function of the temperature 7', for I' = 1
and & = 0.2. The (red) horizontal thin bar corresponds to the zero-
temperature PQMC prediction obtained using the mixed estimator.
The horizontal bar with (blue) diagonal pattern corresponds to the
pure estimator.

the guiding function is, for both # = 0 and 7 = 0.2, an opti-
mized adaptive RBM wave function v, (x) with N, = 40
hidden spins. For & = 0, the bias terms of the RBM are set to
zero; in fact, we find that optimizing them does not lead to a
more accurate guiding wave function. This is expected, since
nonzero bias terms would break the Z, symmetry of the (finite
system) ground state. Instead, for 7 = 0.2 the unsupervised
learning algorithm leads to sizable bias terms.

The PQMC algorithm provides predictions also for ob-
servables other than the energy. In Fig. 7, the estimates
of the ground-state magnetization M = (| Y_ i ajllﬁo), ob-
tained using the forward-walking technique, are shown as a
function of the transverse field. A finite longitudinal field
h = 0.2 is included, so that the Z, symmetry, which would
lead to a vanishing average magnetization in finite systems, is
broken. The adaptive RBM wave function has N, = N/2 = 40
hidden units. The agreement with the loop QMC predictions
is extremely precise. This can be appreciated in the inset of
Fig. 7, where the loop QMC results are plotted as a function
of the temperature 7', showing that thermal effects become
indeed irrelevant at the lowest temperatures we consider. The
inset displays also the prediction provided by the PQMC
mixed estimator (see the definition in the previous section).
This is affected by a remarkably small bias ~0.1%, indicating
that the optimized adaptive RBM guiding function is a good
approximation for the ground state. As expected, the pure
estimator removes even this small bias.

IV. CONCLUSIONS

Machine learning techniques have been employed in the
recent past to implement smart updates in classical and in

path-integral Monte Carlo simulations [70-74], leading to a
substantial efficiency improvement. In this paper, we used
them to boost the performance of QMC simulations based
on projective algorithms. Specifically, we have introduced a
self-learning PQMC algorithm in which the guiding wave
function is adaptively developed along the PQMC simulation,
avoiding the need of a separate variational optimization. This
adaptive guiding wave function is based on an RBM, and
it is optimized via unsupervised machine learning using the
k-step contrastive divergence algorithm. If the number of
hidden units is sufficiently large, this adaptive guiding wave
function allows one to eliminate any systematic bias in the
PQMC simulation and to drastically boost its performance by
suppressing the statistical fluctuations.

The self-learning PQMC algorithm appears to be partic-
ularly suitable when it is otherwise challenging to guess
an accurate ansatz for the ground-state wave function. This
is the case, e.g., of the disordered Ising Hamiltonians that
describe the combinatorial optimization problems commonly
addressed in the field of adiabatic quantum optimization.
As a side product of the self-learning PQMC simulations,
one obtains an accurate approximation for the ground-state
wave function written in the form of an RBM. By construc-
tion, this function minimizes the Kullback-Leibler divergence
with respect to the random-walker distribution. We argue
that this unsupervised learning approach is complementary
to other common techniques for wave function optimization
based on the variational minimization of energy expectation
values. Following Ref. [23], one might refer to these latter
techniques as reinforcement learning. It is indeed plausible
that, when the available ansatz is not sufficiently flexible to
exactly describe the ground state, the minimization of the
Kullback-Leibler divergence might lead to a fairer descrip-
tion of ground-state properties other than the energy. Our
unsupervised learning approach is also complementary to
the optimization techniques for neural network states based
on supervised machine learning introduced very recently in
Ref. [37].

The self-learning PQMC algorithm has been tested in
the ferromagnetic quantum Ising chain, obtaining excellent
agreement with the Jordan-Wigner theory and with the loop
QMC simulations performed in the low-temperature limit.
The model considered here is not affected by a sign problem.
As a perspective, one can envision the extension of the self-
learning PQMC technique to models where the sign prob-
lem occurs. Examples are many-fermion models and other
non-stoquastic Hamiltonians relevant in adiabatic quantum
computing. Fermionic PQMC simulations can be imple-
mented using random walkers that carry a sign. They have
been performed in the past adopting fixed-node and released
node approaches, eventually performing annihilation of walk-
ers with opposite sign [5] to alleviate the suppression of the
signal-to-noise ratio associated to the sign problem. In such
fermionic simulations, the adaptive RBM guiding function
would remain nonnegative, since its aim is to learn the prob-
ability distribution of the random walkers. It might allow one
to further alleviate the sign problem by learning the nodal
regions, and so reducing the random-walker crossings that
lead to the suppression of the signal-to-noise ratio. We leave
these endeavors to future investigations.

043301-9



S. PILATL E. M. INACK, AND P. PIERI

PHYSICAL REVIEW E 100, 043301 (2019)

ACKNOWLEDGMENTS

We acknowledge useful discussions with Ferran Mazzanti,
Juan Carrasquilla, Giacomo Torlai, and Giuseppe Santoro.
E.M.I thanks Dustin Lang for his help in performing the sim-
ulations on the Perimeter Institute HPC architectures. S.P. and
P.P. acknowledge financial support from the FAR2018 project
of the University of Camerino and from the Italian MIUR un-
der Project No. PRIN2017 CEnTral 20172H2SC4. S.P. also

acknowledges the CINECA award under the ISCRA initiative,
for the availability of high performance computing resources
and support. Research at Perimeter Institute is supported in
part by the Government of Canada through the Department of
Innovation, Science and Economic Development Canada and
by the Province of Ontario through the Ministry of Economic
Development, Job Creation and Trade. This research was
supported in part by the National Science Foundation under
Grant No. NSF PHY-1748958.

[1] J. B. Anderson, A random-walk simulation of the Schrodinger
equation: HY, J. Chem. Phys. 63, 1499 (1975).

[2] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester
Jr, Fixed-node quantum Monte Carlo for molecules, J. Chem.
Phys. 77, 5593 (1982).

[3] D. M. Ceperley and B. Alder, Quantum Monte Carlo for
molecules: Green’s function and nodal release, J. Chem. Phys.
81, 5833 (1984).

[4] D. M. Ceperley and B. Alder, Quantum Monte Carlo, Science
231, 555 (1986).

[5] G. H. Booth, A. J. Thom, and A. Alavi, Fermion Monte Carlo
without fixed nodes: A game of life, death, and annihilation in
Slater determinant space, J. Chem. Phys. 131, 054106 (2009).

[6] D. M. Ceperley and B. J. Alder, Ground State of the Electron
Gas by a Stochastic Method, Phys. Rev. Lett. 45, 566 (1980).

[7] J. Boronat, Monte Carlo simulations at zero temperature: He-
lium in one, two, and three dimensions, in Microscopic Ap-
proaches to Quantum Liquids in Confined Geometries, edited
by E. Krotscheck and J. Navarro (World Scientific, Singapore,
2002), Chap. 2, pp. 21-90.

[8] W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Quantum
Monte Carlo simulations of solids, Rev. Mod. Phys. 73, 33
(2001).

[9] G. H. Booth, A. Griineis, G. Kresse, and A. Alavi, Towards
an exact description of electronic wavefunctions in real solids,
Nature 493, 365 (2013).

[10] S. Giorgini, J. Boronat, and J. Casulleras, Ground state of a
homogeneous Bose gas: A diffusion Monte Carlo calculation,
Phys. Rev. A 60, 5129 (1999).

[11] N. Trivedi and D. M. Ceperley, Ground-state correlations
of quantum antiferromagnets: A Green-function Monte Carlo
study, Phys. Rev. B 41, 4552 (1990).

[12] M. Calandra Buonaura and S. Sorella, Numerical study of
the two-dimensional Heisenberg model using a green function
Monte Carlo technique with a fixed number of walkers, Phys.
Rev. B 57, 11446 (1998).

[13] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,
K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo
methods for nuclear physics, Rev. Mod. Phys. 87, 1067 (2015).

[14] N. Nemec, Diffusion Monte Carlo: Exponential scaling of
computational cost for large systems, Phys. Rev. B 81, 035119
(2010).

[15] M. Boninsegni and S. Moroni, Population size bias in diffusion
Monte Carlo, Phys. Rev. E 86, 056712 (2012).

[16] E. M. Inack, G. Giudici, T. Parolini, G. Santoro, and S. Pilati,
Understanding quantum tunneling using diffusion Monte Carlo
simulations, Phys. Rev. A 97, 032307 (2018).

[17] G. E. Santoro, R. Martondk, E. Tosatti, and R. Car, Theory of
quantum annealing of an Ising spin glass, Science 295, 2427
(2002).

[18] S. Boixo, T. F. Rgnnow, S. V. Isakov, Z. Wang, D. Wecker, D. A.
Lidar, J. M. Martinis, and M. Troyer, Evidence for quantum
annealing with more than one hundred qubits, Nat. Phys. 10,
218 (2014).

[19] E. M. Inack and S. Pilati, Simulated quantum annealing of
double-well and multiwell potentials, Phys. Rev. E 92, 053304
(2015).

[20] S. Boixo, V. N. Smelyanskiy, A. Shabani, S. V. Isakov, M.
Dykman, V. S. Denchev, M. H. Amin, A. Y. Smirnov, M.
Mohseni, and H. Neven, Computational multiqubit tunneling
in programmable quantum annealers, Nat. Commun. 7, 10327
(2016).

[21] B. Heim, T. F. Rgnnow, S. V. Isakov, and M. Troyer, Quantum
versus classical annealing of Ising spin glasses, Science 348,
215 (2015).

[22] L. Stella and G. E. Santoro, Quantum annealing of an Ising spin-
glass by Green’s function Monte Carlo, Phys. Rev. E 75, 036703
(2007).

[23] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[24] E. M. Inack, G. E. Santoro, L. Dell’ Anna, and S. Pilati, Projec-
tive quantum Monte Carlo simulations guided by unrestricted
neural network states, Phys. Rev. B 98, 235145 (2018).

[25] L. Reatto and G. L. Masserini, Shadow wave function for many-
boson systems, Phys. Rev. B 38, 4516 (1988).

[26] S. Vitiello, K. Runge, and M. H. Kalos, Variational Calculations
for Solid and Liquid “He with a Shadow Wave Function, Phys.
Rev. Lett. 60, 1970 (1988).

[27] D.-L. Deng, X. Li, and S. Das Sarma, Quantum Entangle-
ment in Neural Network States, Phys. Rev. X 7, 021021
(2017).

[28] X. Gao and L.-M. Duan, Efficient representation of quantum
many-body states with deep neural networks, Nat. Commun. 8,
662 (2017).

[29] H. Saito, Solving the Bose-Hubbard Model with Machine
Learning, J. Phys. Soc. Jpn. 86, 093001 (2017).

[30] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, Equivalence
of restricted Boltzmann machines and tensor network states,
Phys. Rev. B 97, 085104 (2018).

[31] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and
J. 1. Cirac, Neural-Network Quantum States, String-Bond
States, and Chiral Topological States, Phys. Rev. X 8, 011006
(2018).

043301-10


https://doi.org/10.1063/1.431514
https://doi.org/10.1063/1.431514
https://doi.org/10.1063/1.431514
https://doi.org/10.1063/1.431514
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.447637
https://doi.org/10.1063/1.447637
https://doi.org/10.1063/1.447637
https://doi.org/10.1063/1.447637
https://doi.org/10.1126/science.231.4738.555
https://doi.org/10.1126/science.231.4738.555
https://doi.org/10.1126/science.231.4738.555
https://doi.org/10.1126/science.231.4738.555
https://doi.org/10.1063/1.3193710
https://doi.org/10.1063/1.3193710
https://doi.org/10.1063/1.3193710
https://doi.org/10.1063/1.3193710
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1103/PhysRevA.60.5129
https://doi.org/10.1103/PhysRevA.60.5129
https://doi.org/10.1103/PhysRevA.60.5129
https://doi.org/10.1103/PhysRevA.60.5129
https://doi.org/10.1103/PhysRevB.41.4552
https://doi.org/10.1103/PhysRevB.41.4552
https://doi.org/10.1103/PhysRevB.41.4552
https://doi.org/10.1103/PhysRevB.41.4552
https://doi.org/10.1103/PhysRevB.57.11446
https://doi.org/10.1103/PhysRevB.57.11446
https://doi.org/10.1103/PhysRevB.57.11446
https://doi.org/10.1103/PhysRevB.57.11446
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRevE.86.056712
https://doi.org/10.1103/PhysRevE.86.056712
https://doi.org/10.1103/PhysRevE.86.056712
https://doi.org/10.1103/PhysRevE.86.056712
https://doi.org/10.1103/PhysRevA.97.032307
https://doi.org/10.1103/PhysRevA.97.032307
https://doi.org/10.1103/PhysRevA.97.032307
https://doi.org/10.1103/PhysRevA.97.032307
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1103/PhysRevE.92.053304
https://doi.org/10.1103/PhysRevE.92.053304
https://doi.org/10.1103/PhysRevE.92.053304
https://doi.org/10.1103/PhysRevE.92.053304
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1103/PhysRevE.75.036703
https://doi.org/10.1103/PhysRevE.75.036703
https://doi.org/10.1103/PhysRevE.75.036703
https://doi.org/10.1103/PhysRevE.75.036703
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevB.98.235145
https://doi.org/10.1103/PhysRevB.98.235145
https://doi.org/10.1103/PhysRevB.98.235145
https://doi.org/10.1103/PhysRevB.98.235145
https://doi.org/10.1103/PhysRevB.38.4516
https://doi.org/10.1103/PhysRevB.38.4516
https://doi.org/10.1103/PhysRevB.38.4516
https://doi.org/10.1103/PhysRevB.38.4516
https://doi.org/10.1103/PhysRevLett.60.1970
https://doi.org/10.1103/PhysRevLett.60.1970
https://doi.org/10.1103/PhysRevLett.60.1970
https://doi.org/10.1103/PhysRevLett.60.1970
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.7566/JPSJ.86.093001
https://doi.org/10.7566/JPSJ.86.093001
https://doi.org/10.7566/JPSJ.86.093001
https://doi.org/10.7566/JPSJ.86.093001
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevX.8.011006

SELF-LEARNING PROJECTIVE QUANTUM MONTE CARLO ...

PHYSICAL REVIEW E 100, 043301 (2019)

[32] N. Freitas, G. Morigi, and V. Dunjko, Neural network opera-
tions and SusukiTrotter evolution of neural network states, Int.
J. Quantum Inf. 16, 1840008 (2018).

[33] Z. Cai and J. Liu, Approximating quantum many-body wave
functions using artificial neural networks, Phys. Rev. B 97,
035116 (2018).

[34] H. Saito and M. Kato, Machine learning technique to find
quantum many-body ground states of bosons on a lattice,
J. Phys. Soc. Jpn. 87, 014001 (2018).

[35] G. Carleo, Y. Nomura, and M. Imada, Constructing exact rep-
resentations of quantum many-body systems with deep neural
networks, Nat. Commun. 9, 5322 (2018).

[36] D. Luo and B. K. Clark, Backflow transformations via neural
networks for quantum many-body wave functions, Phys. Rev.
Lett. 122, 226401 (2019).

[37] D. Kochkov and B. K. Clark, Variational optimization in the Al
era: Computational graph states and supervised wave-function
optimization, arXiv:1811.12423.

[38] M. Ruggeri, S. Moroni, and M. Holzmann, Nonlinear Network
Description for Many-Body Quantum Systems in Continuous
Space, Phys. Rev. Lett. 120, 205302 (2018).

[39] M. J. Beach, R. G. Melko, T. Grover, and T. H. Hsieh, Making
Trotters sprint: A variational imaginary time ansatz for quantum
many-body systems, Phys. Rev. B 100, 094434 (2019).

[40] K. McBrian, G. Carleo, and E. Khatami, Ground-state phase
diagram of the one-dimensional Bose-Hubbard model from
restricted Boltzmann machines, arXiv:1903.03076.

[41] M. Collura, L. Dell’Anna, T. Felser, and S. Montangero,
On the descriptive power of Neural-Networks as constrained
Tensor Networks with exponentially large bond dimension,
arXiv:1905.11351.

[42] J. Kessler, F. Calcavecchia, and T. D. Kiihne, Artificial neural
networks as trial wave functions for quantum monte carlo,
arXiv:1904.10251.

[43] A. Nagy and V. Savona, Variational Quantum Monte Carlo with
Neural Network Ansatz for Open Quantum Systems, Phys. Rev.
Lett. 122, 250501 (2019).

[44] B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire,
S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler et
al., The ALPS project release 2.0: Open source software for
strongly correlated systems, J. Stat. Mech. (2011) P05001.

[45] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo, Neural-network quantum state tomography, Nat.
Phys. 14, 447 (2018).

[46] S. Sorella, Green Function Monte Carlo with Stochastic Recon-
figuration, Phys. Rev. Lett. 80, 4558 (1998).

[47] G. Carleo, K. Choo, D. Hofmann, J. E. T. Smith, T. Westerhout,
F. Alet, E. J. Davis, S. Efthymiou, I. Glasser, S.-H. Lin
et al., Netket: A machine learning toolkit for many-body quan-
tum systems, SoftwareX 10, 100311 (2019).

[48] E. Becca and S. Sorella, Quantum Monte Carlo Approaches for
Correlated Systems (Cambridge University Press, Cambridge,
2017).

[49] S. Sorella and L. Capriotti, Green function Monte Carlo with
stochastic reconfiguration: An effective remedy for the sign
problem, Phys. Rev. B 61, 2599 (2000).

[50] One has to accumulate the weight factors of the updates oc-
curring within the time-step At. See Refs. [24,48,49] for more
details.

[51] J. Thijssen, Computational Physics (Cambridge University
Press, Cambridge, 2007).

[52] J. H. Hetherington, Observations on the statistical iteration of
matrices, Phys. Rev. A 30, 2713 (1984).

[53] O. Golinelli, T. Jolicoeur, and R. Lacaze, Haldane gaps in a
spin-1 Heisenberg chain with easy-plane single-ion anisotropy,
Phys. Rev. B 45, 9798 (1992).

[54] L. Pollet, N. V. Prokof’ev, and B. V. Svistunov, Stochastic lists:
Sampling multivariable functions with population methods,
Phys. Rev. B 98, 085102 (2018).

[55] In one and in two dimensional models with short-range inter-
actions, the unrestricted Boltzmann machine ansatzes can be
mapped to constrained matrix product states and to constrained
tensor network states, respectively [41]. In one dimension this
mapping allows one to implement alternative variational min-
imization techniques, which avoid the sampling over hidden
spins.

[56] S. A. Vitiello and P. A. Whitlock, Green’s-function Monte Carlo
algorithm for the solution of the Schrodinger equation with the
shadow wave function, Phys. Rev. B 44, 7373 (1991).

[57] K. Sohn and H. Lee, Learning invariant representations with
local transformations, in Proceedings of the 29th International
Coference on International Conference on Machine Learning
(Omnipress, Madison, WI, 2012), pp. 1339-1346.

[58] K. Choo, T. Neupert, and G. Carleo, Study of the two-
dimensional frustrated J1-J2 model with neural network quan-
tum states, Phys. Rev. B 100, 125124 (2019).

[59] F. Ferrari, F. Becca, and J. Carrasquilla, Neural Gutzwiller-
projected variational wave functions, Phys. Rev. B 100, 125131
(2019).

[60] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning
algorithm for Boltzmann machines, Cogn. Sci. 9, 147 (1985).

[61] A. Fischer and C. Igel, An introduction to restricted Boltzmann
machines, Iberoamerican Congress on Pattern Recognition
(Springer, Berlin, 2012), pp. 14-36.

[62] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient meth-
ods for online learning and stochastic optimization, J. Mach.
Learn. Res. 12, 2121 (2011).

[63] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[64] G. E. Hinton, Training products of experts by minimizing
contrastive divergence, Neural Comput. 14, 1771 (2002).

[65] Y. Bengio and O. Delalleau, Justifying and generalizing con-
trastive divergence, Neural Comput. 21, 1601 (2009).

[66] G. Torlai and R. G. Melko, Machine learning quantum states in
the NISQ era, arXiv:1905.04312.

[67] G. G. Cabrera and R. Jullien, Role of boundary conditions in
the finite-size Ising model, Phys. Rev. B 35, 7062 (1987).

[68] S. R. Clark, Unifying neural-network quantum states and corre-
lator product states via tensor networks, J. Phys. A 51, 135301
(2018).

[69] S. Todo and K. Kato, Cluster Algorithms for General-S Quan-
tum Spin Systems, Phys. Rev. Lett. 87, 047203 (2001).

[70] L. Huang and L. Wang, Accelerated Monte Carlo simulations
with restricted Boltzmann machines, Phys. Rev. B 95, 035105
(2017).

[71] J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Self-learning
Monte Carlo method and cumulative update in fermion systems,
Phys. Rev. B 95, 241104(R) (2017).

043301-11


https://doi.org/10.1142/S0219749918400087
https://doi.org/10.1142/S0219749918400087
https://doi.org/10.1142/S0219749918400087
https://doi.org/10.1142/S0219749918400087
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.7566/JPSJ.87.014001
https://doi.org/10.7566/JPSJ.87.014001
https://doi.org/10.7566/JPSJ.87.014001
https://doi.org/10.7566/JPSJ.87.014001
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1103/PhysRevLett.122.226401
https://doi.org/10.1103/PhysRevLett.122.226401
https://doi.org/10.1103/PhysRevLett.122.226401
https://doi.org/10.1103/PhysRevLett.122.226401
http://arxiv.org/abs/arXiv:1811.12423
https://doi.org/10.1103/PhysRevLett.120.205302
https://doi.org/10.1103/PhysRevLett.120.205302
https://doi.org/10.1103/PhysRevLett.120.205302
https://doi.org/10.1103/PhysRevLett.120.205302
https://doi.org/10.1103/PhysRevB.100.094434
https://doi.org/10.1103/PhysRevB.100.094434
https://doi.org/10.1103/PhysRevB.100.094434
https://doi.org/10.1103/PhysRevB.100.094434
http://arxiv.org/abs/arXiv:1903.03076
http://arxiv.org/abs/arXiv:1905.11351
http://arxiv.org/abs/arXiv:1904.10251
https://doi.org/10.1103/PhysRevLett.122.250501
https://doi.org/10.1103/PhysRevLett.122.250501
https://doi.org/10.1103/PhysRevLett.122.250501
https://doi.org/10.1103/PhysRevLett.122.250501
https://doi.org/10.1088/1742-5468/2011/05/P05001
https://doi.org/10.1088/1742-5468/2011/05/P05001
https://doi.org/10.1088/1742-5468/2011/05/P05001
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.1016/j.softx.2019.100311
https://doi.org/10.1016/j.softx.2019.100311
https://doi.org/10.1016/j.softx.2019.100311
https://doi.org/10.1016/j.softx.2019.100311
https://doi.org/10.1103/PhysRevB.61.2599
https://doi.org/10.1103/PhysRevB.61.2599
https://doi.org/10.1103/PhysRevB.61.2599
https://doi.org/10.1103/PhysRevB.61.2599
https://doi.org/10.1103/PhysRevA.30.2713
https://doi.org/10.1103/PhysRevA.30.2713
https://doi.org/10.1103/PhysRevA.30.2713
https://doi.org/10.1103/PhysRevA.30.2713
https://doi.org/10.1103/PhysRevB.45.9798
https://doi.org/10.1103/PhysRevB.45.9798
https://doi.org/10.1103/PhysRevB.45.9798
https://doi.org/10.1103/PhysRevB.45.9798
https://doi.org/10.1103/PhysRevB.98.085102
https://doi.org/10.1103/PhysRevB.98.085102
https://doi.org/10.1103/PhysRevB.98.085102
https://doi.org/10.1103/PhysRevB.98.085102
https://doi.org/10.1103/PhysRevB.44.7373
https://doi.org/10.1103/PhysRevB.44.7373
https://doi.org/10.1103/PhysRevB.44.7373
https://doi.org/10.1103/PhysRevB.44.7373
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevB.100.125131
https://doi.org/10.1103/PhysRevB.100.125131
https://doi.org/10.1103/PhysRevB.100.125131
https://doi.org/10.1103/PhysRevB.100.125131
https://doi.org/10.1207/s15516709cog09017
https://doi.org/10.1207/s15516709cog09017
https://doi.org/10.1207/s15516709cog09017
https://doi.org/10.1207/s15516709cog09017
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/neco.2008.11-07-647
https://doi.org/10.1162/neco.2008.11-07-647
https://doi.org/10.1162/neco.2008.11-07-647
https://doi.org/10.1162/neco.2008.11-07-647
http://arxiv.org/abs/arXiv:1905.04312
https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1103/PhysRevLett.87.047203
https://doi.org/10.1103/PhysRevLett.87.047203
https://doi.org/10.1103/PhysRevLett.87.047203
https://doi.org/10.1103/PhysRevLett.87.047203
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.241104
https://doi.org/10.1103/PhysRevB.95.241104
https://doi.org/10.1103/PhysRevB.95.241104
https://doi.org/10.1103/PhysRevB.95.241104

S. PILATL E. M. INACK, AND P. PIERI

PHYSICAL REVIEW E 100, 043301 (2019)

[72] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Self-learning Monte Carlo

method, Phys. Rev. B 95, 041101(R) (2017).

[73] H. Shen, J. Liu, and L. Fu, Self-learning Monte Carlo with deep

neural networks, Phys. Rev. B 97, 205140 (2018).

043301-12

[74] S. Li, P. M. Dee, E. Khatami, and S. Johnston, Accelerating

lattice quantum Monte Carlo simulation using artificial neural
networks: An application to the Holstein model, Phys. Rev. B
100, 020302(R) (2019).


https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.97.205140
https://doi.org/10.1103/PhysRevB.97.205140
https://doi.org/10.1103/PhysRevB.97.205140
https://doi.org/10.1103/PhysRevB.97.205140
https://doi.org/10.1103/PhysRevB.100.020302
https://doi.org/10.1103/PhysRevB.100.020302
https://doi.org/10.1103/PhysRevB.100.020302
https://doi.org/10.1103/PhysRevB.100.020302

