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Abstract
Question: In functional biogeography studies, generalizable patterns in the relation‐
ship between plant traits and the environment have yet to emerge. Local drivers (i.e., 
soil, land use, vegetation structure) can increase our understanding of the trait–en‐
vironment relationship. What is the role of climate and local drivers in shaping abun‐
dance‐weighted trait patterns of forest understories at biogeographic scales?
Location: Italian forests.
Methods: We selected 201 sites that are statistically representative for the hetero‐
geneity of Italian forests across three biogeographic regions (alpine, continental, and 
mediterranean). Understorey vegetation was recorded for each site on an area of 
400 m2, together with 25 environmental variables related to climate, soil, land use 
and forest structure. Specific leaf area (SLA), plant height (H) and seed mass (SM) 
were obtained from databases. Community‐weighted mean (CWM) values were cal‐
culated. Variance partitioning was used to identify the relative role of groups of en‐
vironmental variables on the CWM of traits. Generalized Additive Models were used 
to assess the relationship between traits and single variables.
Results: Climate alone and climate–soil interactions explained the largest proportion 
of the variation of all the traits (13.7% to 22.8%). Temperature‐related factors as well 
as soil N and P availability were the climatic and edaphic explanatory variables most 
correlated to trait variation. Forest structure and land use accounted for a smaller 
percentage of the variation in traits. Land‐use factors alone were important in ex‐
plaining only SLA variation.
Conclusions: While climate plays a major role in trait–environment relationships in 
forest understories, our results highlighted the need to integrate at least soil proper‐
ties as local drivers of trait variation in broad scale functional biogeography studies 
of these systems.

K E Y W O R D S

Climate–soil interactions, Community‐weighted mean, functional biogeography, plant height, 
seed mass, specific leaf area, temperature seasonality, trait–environment relationship

www.wileyonlinelibrary.com/journal/jvs
mailto:﻿
https://orcid.org/0000-0001-7184-8242
mailto:stefano.chelli@unicam.it


2  |    
Journal of Vegetation Science

CHELLI et al.

1  | INTRODUC TION

Numerous studies have assessed the relationships between the 
environment and key plant functional traits on a broad scale (Moles 
et al., 2009, 2014; Šímová et al., 2018; Wright et al., 2004, 2005) 
that reflect fundamental plant strategies [Leaf–Height–Seed traits 
(LHS); Westoby, 1998]. However, generalizable patterns have yet 
to emerge (Shipley et  al., 2016): trait–environment correlations 
are often weak, and the strength and sign of these correlations 
vary across studies (Borgy et al., 2017a; Moles et al., 2014; Šímová 
et  al., 2018). These inconsistent results might be due to a vari‐
ety of factors, including differences in the spatial scale examined 
in the studies, different methodological approaches, sparsity of 
data, and differences in the availability of trait data across species 
and plots (Borgy et al., 2017a; Borgy et al., 2017b; Shipley et al., 
2016). In particular, large‐scale studies generally include climatic 
drivers but tend to ignore local drivers (Borgy et al., 2017a) such as 
soil nutrient status (Le Bagousse‐Pinguet et al., 2017; Tautenhahn 
et  al., 2008; Zemunik, Turner, Lambers, & Laliberté, 2015) and 
land use (Hedwall & Brunet, 2016; Pakeman, Lepš, Kleyer, Lavorel, 
& Garnier, 2009). Additionally, many studies did not account for 
plant community organization (i.e., species abundance; Borgy 
et al., 2017b), thus giving the same weight to all species present 
in the defined spatial unit. Therefore, to date, there is a lack of 
knowledge about the extent to which climate, soil and land use 
control the variation of key plant functional traits at biogeographi‐
cal scales, taking into account species abundances (i.e., using com‐
munity‐weighted mean values, CWM; Borgy et al., 2017a;, but see 
also Pakeman et al., 2009; Bruelheide et al., 2018).

Broad‐scale approaches dealing with functional trait–environ‐
ment relationships in forest ecosystems have generally focused 
on woody species, as they account for most of the forest biomass 
(Gilliam, 2014). These studies found climate to be the primary 
macro filter acting on the functional structure of tree communities 
(Shiono et al., 2015; Swenson & Weiser, 2010). In detail, variables 
related to climate harshness (minimum/maximum temperature 
and precipitation) and seasonality (temperature and precipitation 
seasonality) showed a pervasive effect on key functional traits re‐
lated to fundamental plant strategies (i.e., specific leaf area, seed 
mass, plant height; Swenson & Weiser, 2010; Shiono et al., 2015). 
However, local soil properties play a significant role in determining 
community traits at large scales, both alone and in interaction with 
climate (Ordonez et  al., 2009; Simpson, Richardson, & Laughlin, 
2016). For example, soil fertility (available phosphorus) and soil pH 
in combination with climate drivers were found to be important de‐
terminants of leaf, root and seed traits in dominant tree species of 
temperate forests (Simpson et al., 2016).The majority of the plant 
diversity in temperate forests is in the understorey and these spe‐
cies play a vital role in forest ecosystem functioning (Gilliam, 2014). 
Fewer scholars in forest ecosystems have considered determinants 
of understorey functional composition. The traits of the understo‐
rey, like those of trees, are strongly shaped by macroclimate (see 
Vanneste et al., 2019, for boreo‐nemoral forests of Europe). Also, 

evidence suggests that the understorey has a functional response 
(e.g., changes in photosynthetic rates) to local variations in soil nu‐
trient availability (Gilliam, 2006; Hättenschwiler & Körner, 1996; 
Hedwall & Brunet, 2016). However, there is still a dearth of studies 
assessing the effect of soil and climate–soil interactions on under‐
storey traits on a broad scale. Filling this gap is fundamental for 
improving our ability to predict the effects of global changes (e.g., 
climate change, nitrogen deposition) on forest ecosystems (Gilliam, 
2014; Lavorel & Garnier, 2002). Additional factors related to for‐
est structure and land use can have an impact on the functional 
composition of the understorey (Campetella et al., 2011; Cervellini 
et al., 2017; Verheyen, Honnay, Motzkin, Hermy, & Foster, 2003). 
For example, the tree canopy cover and structure, which in turn 
are shaped by logging activities, can buffer the climate variability 
(Hedwall & Brunet, 2016) and influence patterns of light and soil 
nutrient availability, affecting understorey traits related to disper‐
sal, resource acquisition and competition (Aubin, Gachet, Messier, 
& Bouchard, 2007; Aubin, Messier, & Bouchard, 2008; Bartels & 
Chen, 2013; Canullo, Campetella et al., 2011; Dahlgren, Eriksson, 
Bolmgren, Strindell, & Ehrlen, 2006; Tonteri et  al., 2016). These 
relationships have mainly been assessed in local studies charac‐
terized by homogeneous climatic and edaphic conditions, leaving 
uncertainty about the effect of land use and forest structure on 
understorey traits along broad biogeographical gradients (Borgy 
et al., 2017a).

The aim of our study was thus to assess the broad‐scale rela‐
tionship between abundance‐weighted mean trait values of the 
understorey vegetation and the environment, including climate, 
soil, land‐use and forest structure variables. The three key func‐
tional traits of the LHS scheme (namely, specific leaf area, plant 
height, seed mass; Westoby, 1998) were used since they are asso‐
ciated with the response of plants to the environment (Lavorel & 
Garnier, 2002).

In this study, we considered Italy as a model region because it 
spans an extensive climatic gradient including three biogeographic 
regions (alpine, continental, and mediterranean) and has a high di‐
versity of soil types due to the great variety of pedogenetic pro‐
cesses (Costantini et al., 2013). These conditions allow for a broad 
variety of forest types, from alpine coniferous forests to thermo‐
philous broadleaf deciduous and evergreen forests. Moreover, 
due to a millennial history of human exploitation (Colombaroli & 
Tinner, 2013), Italy provides examples of different land‐use pat‐
terns and its forests feature different types of vegetation struc‐
tures, from structurally complex old‐growth forests to heavily 
impacted coppice forests.

We ask if: (a) climate acts as the main factor affecting the abun‐
dance‐weighted trait pattern of the understorey forest vegetation; 
and (b) local environmental factors (including soil, forest structure 
and land use) significantly shape CWM traits of the understorey at 
the studied biogeographical scale.

In addition, we explored the single trait–environment relation‐
ships in order to assess the strength and sign of these correlations in 
forest understories.
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2  | MATERIAL S AND METHODS

2.1 | Study area and sampling design

The study area covers the Italian forests, estimated to be around 
9 million hectares, mainly concentrated along the N–S Apennine 
chains and the W–E disposition of the Alps. Annual mean temper‐
ature ranges from −1.2°C to 17.5°C; annual average rainfall var‐
ies between 458 and 1,437 mm. Latitude is comprised between 
37.1°N and 46.9°N, including mediterranean, continental and 
alpine climatic regions. The data used for the present investiga‐
tion were collected during the BioSoil biodiversity project (WGFB 
2011). The sampling design is systematic and probabilistic, allow‐
ing a representative picture of Italian forests, useful for avoid‐
ing most of the biases contained in traditional vegetation data, 
for example, subjective decisions on where to locate the sample 
plots, and for enabling sound generalisations (Chiarucci, 2007). It 
is based on a grid superimposed upon the whole country with cells 
of 16 km × 16 km. Each corner of the grid was included as a sample 
point if a field check found a forest larger than 1  ha there. This 
system belongs to the transnational Level I network for monitor‐
ing the forest health status in Europe (ICP Forests, http://icp-fores​
ts.net/). For Italy, this resulted in a sample of 201 forest stands 

(Figure  1), which were visited in order to record the local plant 
community composition.

In each forest stand, a total area of 400 m2 was sampled. Data 
on the presence/absence and coverage (%) were visually assessed 
for all vascular plants of the understorey (including shrub layer, 
h ≤ 5 m). The field sampling was done during the spring and sum‐
mer of 2006, following common protocols, with trained and inter‐
calibrated surveyor teams (see Allegrini, Canullo, & Campetella, 
2009; 2011b).

2.2 | Explanatory variables

For each sampling area, we recorded 25 explanatory variables con‐
cerning climate, soil, forest structure and land use (Table 1). Variables 
were either not correlated or very weak to moderate (r < 0.50; Evans, 
1996). Climate variables were obtained from the WorldClim global 
database (version 1; Hijmans, Cameron, Parra, Jones, & Jarvis, 2005, 
time span 1970–2000); among the available parameters, we selected 
those representing temperature stress (isothermality, temperature 
seasonality, maximum temperature of the warmest month), water 
stress [total potential evapotranspiration (PET; Trabucco and Zomer, 
2009), precipitation seasonality] and moisture availability (precipita‐
tion of the wettest month).

F I G U R E  1  Map showing the location 
of the 201 sampling areas in the context 
of forest cover in Italy

http://icp-forests.net/
http://icp-forests.net/
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The soil variables, measured according to standard procedures 
(Andreetta, Macci, Giansoldati, Masciandaro, & Carnicelli, 2013; 
Andreetta et al., 2011, 2016), are indicative of soil nutrient status 
[topsoil available potassium (K), and total nitrogen TN] and N avail‐
ability (N/C; Rowe, Emmett, Smart, & Frogbrook, 2011), they serve 
as properties of the parent material (subsoil P), regulate nutrient 
availability (soil pH) and are considered a good proxy of water‐hold‐
ing capacity (effective soil volume).

Variables related to forest structure were measured in the 
field, including the number of tree layers as an indicator of struc‐
tural complexity, basal area, which is related to the total woody 
biomass (and consequently, to productivity), and stem density, 
related to the successional stage and competition within forest 

stands. Furthermore, four additional structural variables were vi‐
sually assessed: total vegetation cover (including overstorey), litter 
cover, moss cover and bare soil cover, representing the general 
condition of forest ground. They are recognized as biotic drivers 
and suitable/unsuitable microhabitats especially for the under‐
storey (e.g., germination, seedling establishment; Kovács, Tinya, 
& Ódor, 2017).

Each plot was assigned to different classes describing previous 
land use (in terms of years since a plot has been forested, i.e., <25, 
25–100  years, etc.), current land use (if logged, distinguishing re‐
cent from dated treatments), and the current type of management 
(i.e., high forest, under development to high forest, coppice; see 
Nieuwenhuis, 2000). For instance, in a plot managed as coppice since 

TA B L E  1  Description of the explanatory variables with units and ranges

Group Variable Unit Range Notes

Climate Total potential evapotranspiration (PET) mm 370–1,065 Source: Trabucco and Zomer (2009)

Isothermality % 23–38 Source: Hijmans et al. (2005), WorldClim

Temperature seasonality CV (%) 51–75 Source: Hijmans et al. (2005), WorldClim

Max. temperature of the warmest 
month

°C 9.2–31.5 Source: Hijmans et al. (2005), WorldClim

Precipitation of the wettest month mm 65–155 Source: Hijmans et al. (2005), WorldClim

Precipitation seasonality CV (%) 7–64 Source: Hijmans et al. (2005), WorldClim

Soil Soil pH –log(H+) 4–8.6 Source: Andreetta et al. (2016)

Total N g/kg 1.2–16.1 Source: Andreetta et al. (2013)

N/C na 0.05–0.19 Source: Andreetta et al. (2016)

Subsoil P mg/kg 55–4,450 Source: Andreetta et al. (2016)

Topsoil available K cmol+/Kg 0.01–7 Unpublished data

Effective soil volume cm 4.5–170 A good proxy of water holding capacity. 
Source: Andreetta et al. (2016)

Forest 
Structure

Total vegetation cover % 40–100 As biotic driver of vegetation

Litter cover % 2–100 As biotic driver of vegetation

Baresoil cover % 0–68 As biotic driver of vegetation

Moss cover % 0–72 As biotic driver of vegetation

Number of tree layers Classes 1–4 1, 2, 3, >3 tree layers; as indicator of 
structural complexity

Basal area m2/ha 2.8–69 Related to the total woody biomass

Stem density n.stems/ha 100–2,000 Related to the dynamic state and compe‐
tition within forest stands

Land use Previous land use Classes 1–5 1, Forested >300 years; 2, forested 
>100 years; 3, forested 25–100 years; 
4, forested <25 years; 5, unknown

Current land use Classes 1–4 1, Unmanaged; 2, logged >10 years ago; 
3, logged within 10 years; 4, unknown

Stand age Age classes 8 classes of 20 years each Mean age of the dominant storey

Type of management Classes 1–4 1, High forest (i.e., regeneration by 
seeds); 2, under development to high 
forest; 3, coppice (i.e., vegetative 
regeneration of trees; 4, other

Total deadwood m3/400 m2 0–15 A good proxy of disturbance intensity

Deadwood removal Binary 0–1 0, No; 1, yes



     |  5
Journal of Vegetation Science

CHELLI et al.

350 years, under current treatments (i.e., within 10 years), the vari‐
able previous land use assumes value 1 (i.e., forested >300 years), 
the current land use value 3 (i.e., logged within 10 years), and the 
type of management value 3 (i.e., coppice; see Table 1). The stand 
age was defined as the mean age of the dominant storey (expressed 
in classes, Table 1). Furthermore, two variables related to deadwood 
were considered. Deadwood removal (binary, Table  1) is linked to 
management practices undertaken in fear of the spread of diseases, 
pests, or fires (Travaglini et al., 2007). Total deadwood is the total 
volume of deadwood (standing and fallen dead trees, coarse woody 
debris, stumps and snags, expressed in m3; Puletti, Giannetti, Chirici, 
& Canullo, 2017) and is often used as a proxy of disturbance intensity 
(Duncker et al., 2012; Green & Peterken, 1997; Lombardi, Lasserre, 
Tognetti, & Marchetti, 2008). Structural and land‐use variables were 
defined according to the reference manual of the ICP Forests, and 
collected by coordinated crews of professionals and staff of the 
National Forest Service (WGFB 2011).

2.3 | Plant functional traits

We selected the three key functional traits of the LHS scheme 
(Westoby, 1998) that are independent of each other and represent 
the major axes of plant strategies. They are associated with the re‐
sponse of plants to environmental factors (response traits, sensu 
Lavorel & Garnier, 2002). These traits are specific leaf area (SLA), 
a proxy of plant growth and a good surrogate for ability to use light 
efficiently; plant height (H), related to competitive ability and access 
to the vertical light gradient; and seed mass (SM), having implica‐
tions for the space/time dispersal ability and indicative of seedling 
establishment (Westoby, 1998). They have been found to be respon‐
sive to the above‐mentioned climatic, soil, vegetation structure and 
land‐use factors (Campetella et al., 2011; Le Bagousse‐Pinguet et al., 
2017; Moles et al., 2009, 2014; Pakeman et al., 2009).

The effect of individual species on ecosystem properties is re‐
lated to their relative abundance in the community, and trait values 
of the dominant species have a proportionally greater effect than 
those of less abundant ones (Grime, 1998; Wasof et  al., 2018). 
Therefore, we (a) selected from each plot all the species contributing 
to reach a relative cumulative coverage of 80% at the plot level; (b) 
attributed trait values to these species;, and (c) weighted trait values 
according to species coverage at plot level, in order to obtain com‐
munity‐weighted mean (CWM) values for each trait (Garnier et al., 
2004; Lavorel & Garnier, 2002). Seedlings of tree species were ex‐
cluded. Trait values were obtained from the literature and databases 
(Campetella et al., 2011; Kleyer et al., 2008; Royal Botanical Gardens 
Kew, 2008).

2.4 | Data analysis

2.4.1 | Data preparation

The matrix of plot × species data was combined with the matrix of 
species ×  trait data to provide a matrix of trait × plot data, which 

formed the basis for all the analyses. Weighted mean traits were 
log‐transformed (Dainese, Scotton, Clementel, Pecile, & Lepš, 2012; 
Pakeman et al., 2009; Westoby, 1998), since the original values were 
not normally distributed, and the transformation significantly in‐
creased the level of variation explained for all the selected traits.

2.4.2 | Variance partitioning

Variance partitioning (Borcard, Legendre, & Drapeau, 1992) was 
used to identify the contributions of climate, soil, vegetation struc‐
ture and land use, alone and in combination, to explaining the varia‐
tion in community‐weighted mean trait values. Variance partitioning 
has frequently been used to look at how different groups of environ‐
mental factors control species and trait distributions (Pakeman et al., 
2009). In effect, it is redundancy analysis, linearly relating CWM val‐
ues to groups of variables.

2.4.3 | Generalized additive models

In order to explore the single trait–environment relationships, we 
used generalized additive models (GAMs), which are nonparamet‐
ric extensions of generalized linear models (GLMs), in which the 
linear predictor is substituted with an additive predictor (Hastie & 
Tibshirani, 1990). Due to their nonparametric nature, GAMs are 
more data‐driven than their parametric counterpart GLMs, and per‐
mit both linear and complex additive response shapes within the 
same models (Venables & Ripley, 2002, pp. 271–300). For these spe‐
cific models, the response variables (y) were defined as the commu‐
nity‐weighted mean for each of the three selected plant functional 
traits, while climatic, soil, structural and land‐use covariates were 
used as predictor variables. To avoid multicollinearity, GAM model 
selection was done by Restricted Maximum Likelihood (REML) with 
automatic variable selection based on adding penalties to successive 
variables (Bradbury et al., 2014; Marra & Wood, 2011). In order to 
reduce overfitting of the regression models, we reduced the number 
of nods in the smoothed functions and used a restricted maximum 
likelihood estimator (Madani et al., 2018).

All statistical analyses were performed in R, version 3.4.4 (R 
Foundation for Statistical Computing, Vienna, Austria). In particu‐
lar, the mgcv R package (function gam) was used for the generalized 
additive models and the vegan R package (function varpart) served 
for variance partitioning (Borcard et al., 1992; Legendre & Legendre, 
2012; Wood, 2006). The chosen methods treat both numerical and 
categorical predictors (see Pakeman et al., 2009 for variance parti‐
tioning, and Pöyry, Luoto, Heikkinen, & Saarinen, 2008 for GAMs).

3  | RESULTS

3.1 | Partitioned trait–environment relationships

Climate alone explained the largest proportion of the variation of H 
(12.6%), SLA (7.7%) and SM (8.6%). Soil properties alone explained 
a small fraction of the H (1.0%) and SLA (2.1%) variation, while 
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climate–soil interactions explained a higher amount of trait variation 
(H, 9.8%; SLA, 6.1% and SM, 5.1%). Forest structure and land use con‐
trolled a small amount of trait variation, mainly in combination with 
other groups of variables. Land‐use factors alone were important in 
explaining only SLA variation (3.6%), while interactions among dif‐
ferent variables have some influence on trait variation, mainly for H 
(8.2%) and SLA (4.1%), followed by SM (2.2%; Figure 2; Appendix S1).

3.2 | Trait patterns along the gradients

For H, the final GAM explained 36.0% (adjusted R2) of the trait vari‐
ation. Four significant variables related to climate and soil were se‐
lected (temperature seasonality, precipitation seasonality, maximum 
temperature of the warmest month, subsoil P; Figure 3; Appendix 
S2). Understorey H decreased along the temperature seasonality 
gradient (p < 0.001) and increased along the gradient of maximum 
temperature of the warmest month (p < 0.001), especially for stands 
with maximum temperature >15°C. Community understorey H de‐
creased with increasing precipitation seasonality (p = 0.018) and in‐
creased with increasing subsoil P (p = 0.005).

For SLA, the final GAM explained 26.0% (Adj. R2) of the trait 
variation. Five significant variables related to climate, soil and forest 
structure were selected (Figure 3; Appendix S2): temperature sea‐
sonality (p = 0.014), PET (p < 0.001), total N (p = 0.006), litter cover 
(p = 0.004), and basal area (p = 0.025). Understorey SLA increased 
along temperature seasonality, total N and basal area gradients, 
whereas it decreased along the PET gradient from approximately 
600 mm. Finally, SLA and litter cover showed a quadratic relationship.

For SM, the final GAM explained 15.7% (Adj. R2) of the trait vari‐
ation. The four significant predictor variables selected refer to cli‐
mate and vegetation structure (PET, isothermality, P of the wettest 

month, moss cover; Figure  3; Appendix S2). Understorey SM in‐
creased along the PET gradient (p = 0.012) in stands with values 
>600 mm, and decreased in wetter stands characterized by precip‐
itation of the wettest month approximately >100 mm (p = 0.003). 
Additionally, SM increased along the isothermality gradient (p  = 
0.050), and decreased along the moss cover gradient (p = 0.033) but 
only for cover values <40%.

4  | DISCUSSION

4.1 | Climate and climate–soil interactions as the 
main drivers of LHS traits

Our approach quantified the role of climate and local environmental 
factors in shaping abundance‐weighted trait patterns of forest un‐
derstorey at the biogeographic scale. Climate was shown to exert the 
greatest independent effect on SLA, H and SM. This result is in line 
with several studies conducted in forest ecosystems (Shiono et  al., 
2015; Swenson & Weiser, 2010; Vanneste et al., 2019) and confirms 
the role of climate as a primary macro filter shaping the community 
mean plant traits. Local environmental factors alone (namely, soil, land 
use and forest structure) showed a minor role in influencing understo‐
rey traits. Our study area spans three biogeographic regions and prob‐
ably the large variability of climatic conditions may have contributed 
to climate being the key driver of trait patterns, overruling the effects 
of local environmental factors. However, local soil conditions in inter‐
action with climate play a significant role in explaining the variation 
of the three traits. Simpson et al. (2016) suggested the significance of 
climate–soil interactions in influencing plant traits of tree communi‐
ties. We provide evidence that climate–soil interactions are important 
drivers of community‐weighted mean traits also in forest understorey.

F I G U R E  2  Results of partitioning 
variance (adjusted R2 in %) from climate, 
soil, forest structure and land‐use 
variables for understorey CWM values of 
plant height (H), specific leaf area (SLA) 
and seed mass (SM). Negative effects of 
groups of variables are not shown (see 
Appendix S1 for detailed results)
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Other interactions
Land-use
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F I G U R E  3  The estimated smoothers for plant height (H), specific leaf area (SLA) and seed mass (SM) obtained by generalized additive 
models (GAMs) that include the selected explanatory variables (significant values: *** p < 0.001, ** p < 0.01, and * p < 0.05). Confidence 
intervals (95%) are indicated with the grey areas. The x‐axis represents the independent variable; the y‐axis represents the smooth effect of 
the independent variable on the dependent variable. For units of measurement and categories, see Table 1. Vertical tick marks on the x‐axis 
represent the values of covariates
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The limited effect of land use and forest structure on community 
mean plant traits of the understorey at the biogeographic scale is in 
line with the findings of Vanneste et al. (2019). Indeed, structure and 
land use were shown to significantly affect plant traits in local stud‐
ies where climate and soil parameters were relatively homogeneous 
(Aubin et al., 2007; Campetella et al., 2011). However, land‐use pa‐
rameters alone appeared to markedly influence only SLA, probably 
because they determine the light conditions of the ground layer. 
Indeed, light availability and patchiness are important drivers of un‐
derstorey SLA in managed forests (Campetella et al., 2011; Dahlgren 
et al., 2006; Vanneste et al., 2019).

These findings imply that (a) broad scale trait–environment re‐
lationship in forests can be captured by the interaction of macrocli‐
mate and local soil conditions, and (b) climate change as well as soil 
nutrient variation, and to a less extent land‐use change, can poten‐
tially affect the future functioning of forest understories. However, 
further studies including traits related to other functions (i.e., space 
occupancy and recovery after damage) and based on direct measures 
of land‐use type and intensity are needed to confirm our results.

4.2 | Direction of trait–environment relationships

Temperature‐related variables were correlated with all three plant 
traits, which is in line with recent findings (Moles et al., 2014; Reich & 
Oleksyn, 2004; Šímová et al., 2018). In particular, temperature season‐
ality was an important driver of changes in understorey mean values of 
H and SLA: forest stands characterized by high temperature variation 
across seasons (thermophilous deciduous and broadleaved evergreen 
forests located in the Mediterranean Region of Italy) were character‐
ized by shorter understorey communities with high‐SLA values, while 

forest stands with low temperature variation across seasons (forests 
of the hilly and mountainous belt of northern and central Italy) were 
characterized by taller understorey communities with low SLA values.

PET was shown to control both SLA and SM variation. 
Understorey communities with lower SLA and higher SM occurred 
in drier forest stands. SLA is related to the water use strategy of spe‐
cies: a lower SLA is associated with a slower plant growth rate, which 
usually occurs under water stress in order to improve the efficiency 
of water use (Wellstein et  al., 2017). In parallel, larger seeds may 
act as a buffer against low water availability (Dainese et al., 2012; 
Tautenhahn et al., 2008), favoring establishment success and seed‐
ling performance (Leishman & Westoby, 1994).

Furthermore, understorey plants are taller on soils with higher 
productivity (higher subsoil P), confirming previous findings (Davis, 
Thompson, & Grime, 2005; Diaz et  al., 2004; Tautenhahn et  al., 
2008). Indeed, phosphorus is an essential soil element related to plant 
growth in many ecosystems (Lambert, Raven, Shaver, & Smith, 2008; 
Quesada et al., 2012). In addition, high SLA values are associated with 
soils containing high total N. As a leaf economic trait, SLA has been 
found to be controlled by soil fertility, since nutrient supply has an 
important role as modulator of leaf level photosynthetic properties 
(Lloyd et al., 2015; Ordonez et al., 2009). Also, high‐SLA understorey 
communities occur in mature forest stands with a greater amount of 
woody biomass (i.e., higher values of basal area). Mature forests are 
usually characterized by a shady understorey environment which in 
turn can favor species with large SLA (Dahlgren et al., 2006). Indeed, 
large SLA is associated with high photosynthetic capacity and short 
leaf turnover time, characteristics that may enable flexible responses 
to light patchiness and appear to be particularly advantageous in 
late‐succession forest stands (Campetella et al., 2011).
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4.3 | Data limitation and future perspectives

The total variation of CWM trait values explained by the selected en‐
vironmental variables (H, 29.6%; SLA, 23.2%; SM, 8.2%) was similar to 
that found in studies performed in forests (e.g., 9%–31%; Vanneste 
et al., 2019) and lower than that found in studies performed in grass‐
lands (e.g., 45–50%; Pakeman et al., 2009). Probably the complexity 
of forest ecosystems calls for the inclusion of more biotic and abiotic 
variables. For instance, several approaches demonstrated how the 
light reaching the ground layer conditioned plant functional traits of 
the understorey (see Campetella et  al., 2011; Dahlgren et al., 2006; 
Hedwall & Brunet, 2016). Direct measurements of parameters that 
better describe the understorey environment (i.e., Photosynthetic 
Active Radiation) instead of the use of proxy variables, could be fun‐
damental for increasing the explained variance in such forest contexts.

The trait–environment patterns reported in the present study 
depend on species turnover or changes in species cover values, 
and not on intraspecific variation. Thus, future studies that account 
for intraspecific trait variability could be useful, since it can play a 
fundamental role in plant community responses to environmental 
gradients (Kichenin, Wardle, Peltzer, Morse, & Freschet, 2013).

5  | CONCLUSIONS

This study spanned a large biogeographical gradient using a dataset 
representative of the Italian forests, and demonstrated how the vari‐
ation in abundance‐weighted mean trait values of the understorey is 
mainly influenced by macroclimate alone and in interaction with local 
soil conditions. Land use and forest structure had a smaller influence 
on trait patterns. However, the land‐use variables alone showed 
a significant effect on SLA. These results highlighted the need to 
integrate at least soil features as local drivers of trait variation in 
functional biogeography studies aimed at exploring broad‐scale 
trait–environment relationships (Bruelheide et al., 2018). Moreover, 
our findings could be significant in the light of global changes: in‐
corporating local‐scale soil parameters in modeling frameworks can 
significantly improve our ability to predict the functional responses 
of forest understorey (Simpson et al., 2016, for trees).
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