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Abstract
Question: In	functional	biogeography	studies,	generalizable	patterns	in	the	relation‐
ship	between	plant	traits	and	the	environment	have	yet	to	emerge.	Local	drivers	(i.e.,	
soil,	land	use,	vegetation	structure)	can	increase	our	understanding	of	the	trait–en‐
vironment	relationship.	What	is	the	role	of	climate	and	local	drivers	in	shaping	abun‐
dance‐weighted	trait	patterns	of	forest	understories	at	biogeographic	scales?
Location: Italian	forests.
Methods: We	selected	201	sites	that	are	statistically	representative	for	the	hetero‐
geneity	of	Italian	forests	across	three	biogeographic	regions	(alpine,	continental,	and	
mediterranean).	Understorey	 vegetation	was	 recorded	 for	 each	 site	on	 an	 area	of	
400 m2,	together	with	25	environmental	variables	related	to	climate,	soil,	 land	use	
and	 forest	 structure.	Specific	 leaf	area	 (SLA),	plant	height	 (H)	 and	seed	mass	 (SM)	
were	obtained	from	databases.	Community‐weighted	mean	(CWM)	values	were	cal‐
culated.	Variance	partitioning	was	used	to	identify	the	relative	role	of	groups	of	en‐
vironmental	variables	on	the	CWM	of	traits.	Generalized	Additive	Models	were	used	
to	assess	the	relationship	between	traits	and	single	variables.
Results: Climate	alone	and	climate–soil	interactions	explained	the	largest	proportion	
of	the	variation	of	all	the	traits	(13.7%	to	22.8%).	Temperature‐related	factors	as	well	
as	soil	N	and	P	availability	were	the	climatic	and	edaphic	explanatory	variables	most	
correlated	to	trait	variation.	Forest	structure	and	 land	use	accounted	for	a	smaller	
percentage	of	the	variation	 in	traits.	Land‐use	factors	alone	were	 important	 in	ex‐
plaining	only	SLA	variation.
Conclusions: While	climate	plays	a	major	role	 in	trait–environment	relationships	 in	
forest	understories,	our	results	highlighted	the	need	to	integrate	at	least	soil	proper‐
ties	as	local	drivers	of	trait	variation	in	broad	scale	functional	biogeography	studies	
of	these	systems.
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1  | INTRODUC TION

Numerous	 studies	 have	 assessed	 the	 relationships	 between	 the	
environment	and	key	plant	functional	traits	on	a	broad	scale	(Moles	
et	al.,	2009,	2014;	Šímová	et	al.,	2018;	Wright	et	al.,	2004,	2005)	
that	reflect	fundamental	plant	strategies	[Leaf–Height–Seed	traits	
(LHS);	Westoby,	1998].	However,	generalizable	patterns	have	yet	
to	 emerge	 (Shipley	 et	 al.,	 2016):	 trait–environment	 correlations	
are	 often	weak,	 and	 the	 strength	 and	 sign	 of	 these	 correlations	
vary	across	studies	(Borgy	et	al.,	2017a;	Moles	et	al.,	2014;	Šímová	
et	 al.,	 2018).	 These	 inconsistent	 results	might	 be	 due	 to	 a	 vari‐
ety	of	factors,	including	differences	in	the	spatial	scale	examined	
in	 the	 studies,	 different	methodological	 approaches,	 sparsity	 of	
data,	and	differences	in	the	availability	of	trait	data	across	species	
and	plots	(Borgy	et	al.,	2017a;	Borgy	et	al.,	2017b;	Shipley	et	al.,	
2016).	 In	particular,	 large‐scale	studies	generally	 include	climatic	
drivers	but	tend	to	ignore	local	drivers	(Borgy	et	al.,	2017a)	such	as	
soil	nutrient	status	(Le	Bagousse‐Pinguet	et	al.,	2017;	Tautenhahn	
et	 al.,	 2008;	 Zemunik,	 Turner,	 Lambers,	 &	 Laliberté,	 2015)	 and	
land	use	(Hedwall	&	Brunet,	2016;	Pakeman,	Lepš,	Kleyer,	Lavorel,	
&	Garnier,	2009).	Additionally,	many	 studies	did	not	 account	 for	
plant	 community	 organization	 (i.e.,	 species	 abundance;	 Borgy	
et	al.,	2017b),	 thus	giving	the	same	weight	 to	all	species	present	
in	 the	 defined	 spatial	 unit.	 Therefore,	 to	 date,	 there	 is	 a	 lack	 of	
knowledge	 about	 the	 extent	 to	which	 climate,	 soil	 and	 land	 use	
control	the	variation	of	key	plant	functional	traits	at	biogeographi‐
cal	scales,	taking	into	account	species	abundances	(i.e.,	using	com‐
munity‐weighted	mean	values,	CWM;	Borgy	et	al.,	2017a;,	but	see	
also	Pakeman	et	al.,	2009;	Bruelheide	et	al.,	2018).

Broad‐scale	approaches	dealing	with	functional	trait–environ‐
ment	 relationships	 in	 forest	 ecosystems	 have	 generally	 focused	
on	woody	species,	as	they	account	for	most	of	the	forest	biomass	
(Gilliam,	 2014).	 These	 studies	 found	 climate	 to	 be	 the	 primary	
macro	filter	acting	on	the	functional	structure	of	tree	communities	
(Shiono	et	al.,	2015;	Swenson	&	Weiser,	2010).	In	detail,	variables	
related	 to	 climate	 harshness	 (minimum/maximum	 temperature	
and	precipitation)	and	seasonality	 (temperature	and	precipitation	
seasonality)	showed	a	pervasive	effect	on	key	functional	traits	re‐
lated	to	fundamental	plant	strategies	(i.e.,	specific	leaf	area,	seed	
mass,	plant	height;	Swenson	&	Weiser,	2010;	Shiono	et	al.,	2015).	
However,	local	soil	properties	play	a	significant	role	in	determining	
community	traits	at	large	scales,	both	alone	and	in	interaction	with	
climate	 (Ordonez	 et	 al.,	 2009;	 Simpson,	 Richardson,	 &	 Laughlin,	
2016).	For	example,	soil	fertility	(available	phosphorus)	and	soil	pH	
in	combination	with	climate	drivers	were	found	to	be	important	de‐
terminants	of	leaf,	root	and	seed	traits	in	dominant	tree	species	of	
temperate	forests	(Simpson	et	al.,	2016).The	majority	of	the	plant	
diversity	in	temperate	forests	is	in	the	understorey	and	these	spe‐
cies	play	a	vital	role	in	forest	ecosystem	functioning	(Gilliam,	2014).	
Fewer	scholars	in	forest	ecosystems	have	considered	determinants	
of	understorey	functional	composition.	The	traits	of	the	understo‐
rey,	 like	those	of	trees,	are	strongly	shaped	by	macroclimate	(see	
Vanneste	et	al.,	2019,	for	boreo‐nemoral	forests	of	Europe).	Also,	

evidence	suggests	that	the	understorey	has	a	functional	response	
(e.g.,	changes	in	photosynthetic	rates)	to	local	variations	in	soil	nu‐
trient	 availability	 (Gilliam,	 2006;	Hättenschwiler	&	Körner,	 1996;	
Hedwall	&	Brunet,	2016).	However,	there	is	still	a	dearth	of	studies	
assessing	the	effect	of	soil	and	climate–soil	interactions	on	under‐
storey	 traits	on	a	broad	 scale.	Filling	 this	 gap	 is	 fundamental	 for	
improving	our	ability	to	predict	the	effects	of	global	changes	(e.g.,	
climate	change,	nitrogen	deposition)	on	forest	ecosystems	(Gilliam,	
2014;	Lavorel	&	Garnier,	2002).	Additional	 factors	related	to	for‐
est	 structure	and	 land	use	can	have	an	 impact	on	 the	 functional	
composition	of	the	understorey	(Campetella	et	al.,	2011;	Cervellini	
et	al.,	2017;	Verheyen,	Honnay,	Motzkin,	Hermy,	&	Foster,	2003).	
For	example,	 the	 tree	canopy	cover	and	structure,	which	 in	 turn	
are	shaped	by	logging	activities,	can	buffer	the	climate	variability	
(Hedwall	&	Brunet,	2016)	and	 influence	patterns	of	 light	and	soil	
nutrient	availability,	affecting	understorey	traits	related	to	disper‐
sal,	resource	acquisition	and	competition	(Aubin,	Gachet,	Messier,	
&	Bouchard,	2007;	Aubin,	Messier,	&	Bouchard,	2008;	Bartels	&	
Chen,	2013;	Canullo,	Campetella	et	al.,	2011;	Dahlgren,	Eriksson,	
Bolmgren,	 Strindell,	 &	 Ehrlen,	 2006;	 Tonteri	 et	 al.,	 2016).	 These	
relationships	 have	mainly	 been	 assessed	 in	 local	 studies	 charac‐
terized	by	homogeneous	climatic	and	edaphic	conditions,	 leaving	
uncertainty	about	 the	effect	of	 land	use	and	 forest	 structure	on	
understorey	 traits	 along	 broad	 biogeographical	 gradients	 (Borgy	
et	al.,	2017a).

The	aim	of	our	study	was	thus	to	assess	the	broad‐scale	rela‐
tionship	 between	 abundance‐weighted	mean	 trait	 values	 of	 the	
understorey	 vegetation	 and	 the	 environment,	 including	 climate,	
soil,	 land‐use	and	forest	structure	variables.	The	three	key	func‐
tional	 traits	of	 the	LHS	scheme	 (namely,	 specific	 leaf	 area,	plant	
height,	seed	mass;	Westoby,	1998)	were	used	since	they	are	asso‐
ciated	with	the	response	of	plants	to	the	environment	(Lavorel	&	
Garnier,	2002).

In	this	study,	we	considered	Italy	as	a	model	region	because	it	
spans	an	extensive	climatic	gradient	including	three	biogeographic	
regions	(alpine,	continental,	and	mediterranean)	and	has	a	high	di‐
versity	of	soil	types	due	to	the	great	variety	of	pedogenetic	pro‐
cesses	(Costantini	et	al.,	2013).	These	conditions	allow	for	a	broad	
variety	of	forest	types,	from	alpine	coniferous	forests	to	thermo‐
philous	 broadleaf	 deciduous	 and	 evergreen	 forests.	 Moreover,	
due	to	a	millennial	history	of	human	exploitation	 (Colombaroli	&	
Tinner,	 2013),	 Italy	provides	examples	of	 different	 land‐use	pat‐
terns	and	 its	 forests	 feature	different	 types	of	vegetation	struc‐
tures,	 from	 structurally	 complex	 old‐growth	 forests	 to	 heavily	
impacted	coppice	forests.

We	ask	if:	(a)	climate	acts	as	the	main	factor	affecting	the	abun‐
dance‐weighted	trait	pattern	of	the	understorey	forest	vegetation;	
and	 (b)	 local	environmental	 factors	 (including	soil,	 forest	structure	
and	land	use)	significantly	shape	CWM	traits	of	the	understorey	at	
the	studied	biogeographical	scale.

In	 addition,	we	explored	 the	 single	 trait–environment	 relation‐
ships	in	order	to	assess	the	strength	and	sign	of	these	correlations	in	
forest	understories.
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2  | MATERIAL S AND METHODS

2.1 | Study area and sampling design

The	study	area	covers	the	Italian	forests,	estimated	to	be	around	
9	million	hectares,	mainly	 concentrated	along	 the	N–S	Apennine	
chains	and	the	W–E	disposition	of	the	Alps.	Annual	mean	temper‐
ature	 ranges	 from	 −1.2°C	 to	 17.5°C;	 annual	 average	 rainfall	 var‐
ies	 between	 458	 and	 1,437	mm.	 Latitude	 is	 comprised	 between	
37.1°N	 and	 46.9°N,	 including	 mediterranean,	 continental	 and	
alpine	 climatic	 regions.	 The	 data	 used	 for	 the	 present	 investiga‐
tion	were	collected	during	the	BioSoil	biodiversity	project	(WGFB	
2011).	The	sampling	design	is	systematic	and	probabilistic,	allow‐
ing	 a	 representative	 picture	 of	 Italian	 forests,	 useful	 for	 avoid‐
ing	 most	 of	 the	 biases	 contained	 in	 traditional	 vegetation	 data,	
for	 example,	 subjective	decisions	on	where	 to	 locate	 the	 sample	
plots,	and	for	enabling	sound	generalisations	(Chiarucci,	2007).	 It	
is	based	on	a	grid	superimposed	upon	the	whole	country	with	cells	
of	16	km	×	16	km.	Each	corner	of	the	grid	was	included	as	a	sample	
point	 if	 a	 field	 check	 found	 a	 forest	 larger	 than	1	 ha	 there.	 This	
system	belongs	to	the	transnational	Level	 I	network	for	monitor‐
ing	the	forest	health	status	in	Europe	(ICP	Forests,	http://icp‐fores	
ts.net/).	 For	 Italy,	 this	 resulted	 in	 a	 sample	 of	 201	 forest	 stands	

(Figure	 1),	 which	 were	 visited	 in	 order	 to	 record	 the	 local	 plant	
community	composition.

In	each	forest	stand,	a	total	area	of	400	m2	was	sampled.	Data	
on	the	presence/absence	and	coverage	(%)	were	visually	assessed	
for	 all	 vascular	 plants	 of	 the	 understorey	 (including	 shrub	 layer,	
h	≤	5	m).	The	field	sampling	was	done	during	the	spring	and	sum‐
mer	of	2006,	following	common	protocols,	with	trained	and	inter‐
calibrated	 surveyor	 teams	 (see	 Allegrini,	 Canullo,	 &	 Campetella,	
2009;	2011b).

2.2 | Explanatory variables

For	each	sampling	area,	we	recorded	25	explanatory	variables	con‐
cerning	climate,	soil,	forest	structure	and	land	use	(Table	1).	Variables	
were	either	not	correlated	or	very	weak	to	moderate	(r	<	0.50;	Evans,	
1996).	Climate	variables	were	obtained	from	the	WorldClim	global	
database	(version	1;	Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005,	
time	span	1970–2000);	among	the	available	parameters,	we	selected	
those	 representing	 temperature	 stress	 (isothermality,	 temperature	
seasonality,	maximum	 temperature	 of	 the	warmest	month),	 water	
stress	[total	potential	evapotranspiration	(PET;	Trabucco	and	Zomer,	
2009),	precipitation	seasonality]	and	moisture	availability	(precipita‐
tion	of	the	wettest	month).

F I G U R E  1  Map	showing	the	location	
of	the	201	sampling	areas	in	the	context	
of	forest	cover	in	Italy

http://icp-forests.net/
http://icp-forests.net/
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The	soil	variables,	measured	according	 to	standard	procedures	
(Andreetta,	 Macci,	 Giansoldati,	 Masciandaro,	 &	 Carnicelli,	 2013;	
Andreetta	et	al.,	2011,	2016),	 are	 indicative	of	 soil	nutrient	 status	
[topsoil	available	potassium	(K),	and	total	nitrogen	TN]	and	N	avail‐
ability	(N/C;	Rowe,	Emmett,	Smart,	&	Frogbrook,	2011),	they	serve	
as	 properties	 of	 the	 parent	 material	 (subsoil	 P),	 regulate	 nutrient	
availability	(soil	pH)	and	are	considered	a	good	proxy	of	water‐hold‐
ing	capacity	(effective	soil	volume).

Variables	 related	 to	 forest	 structure	 were	 measured	 in	 the	
field,	including	the	number	of	tree	layers	as	an	indicator	of	struc‐
tural	 complexity,	 basal	 area,	which	 is	 related	 to	 the	 total	woody	
biomass	 (and	 consequently,	 to	 productivity),	 and	 stem	 density, 
related	 to	 the	 successional	 stage	 and	 competition	 within	 forest	

stands.	Furthermore,	four	additional	structural	variables	were	vi‐
sually	assessed:	total	vegetation	cover	(including	overstorey),	litter	
cover,	 moss	 cover	 and	 bare	 soil	 cover,	 representing	 the	 general	
condition	of	forest	ground.	They	are	recognized	as	biotic	drivers	
and	 suitable/unsuitable	 microhabitats	 especially	 for	 the	 under‐
storey	 (e.g.,	 germination,	 seedling	 establishment;	 Kovács,	 Tinya,	
&	Ódor,	2017).

Each	plot	was	assigned	to	different	classes	describing	previous	
land	use	(in	terms	of	years	since	a	plot	has	been	forested,	i.e.,	<25,	
25–100	 years,	 etc.),	 current	 land	 use	 (if	 logged,	 distinguishing	 re‐
cent	from	dated	treatments),	and	the	current	type	of	management	
(i.e.,	 high	 forest,	 under	 development	 to	 high	 forest,	 coppice;	 see	
Nieuwenhuis,	2000).	For	instance,	in	a	plot	managed	as	coppice	since	

TA B L E  1  Description	of	the	explanatory	variables	with	units	and	ranges

Group Variable Unit Range Notes

Climate Total	potential	evapotranspiration	(PET) mm 370–1,065 Source:	Trabucco	and	Zomer	(2009)

Isothermality % 23–38 Source:	Hijmans	et	al.	(2005),	WorldClim

Temperature	seasonality CV	(%) 51–75 Source:	Hijmans	et	al.	(2005),	WorldClim

Max.	temperature	of	the	warmest	
month

°C 9.2–31.5 Source:	Hijmans	et	al.	(2005),	WorldClim

Precipitation	of	the	wettest	month mm 65–155 Source:	Hijmans	et	al.	(2005),	WorldClim

Precipitation	seasonality CV	(%) 7–64 Source:	Hijmans	et	al.	(2005),	WorldClim

Soil Soil	pH –log(H+) 4–8.6 Source:	Andreetta	et	al.	(2016)

Total	N g/kg 1.2–16.1 Source:	Andreetta	et	al.	(2013)

N/C na 0.05–0.19 Source:	Andreetta	et	al.	(2016)

Subsoil P mg/kg 55–4,450 Source:	Andreetta	et	al.	(2016)

Topsoil	available	K cmol+/Kg 0.01–7 Unpublished	data

Effective	soil	volume cm 4.5–170 A	good	proxy	of	water	holding	capacity.	
Source:	Andreetta	et	al.	(2016)

Forest	
Structure

Total	vegetation	cover % 40–100 As	biotic	driver	of	vegetation

Litter	cover % 2–100 As	biotic	driver	of	vegetation

Baresoil cover % 0–68 As	biotic	driver	of	vegetation

Moss cover % 0–72 As	biotic	driver	of	vegetation

Number	of	tree	layers Classes 1–4 1,	2,	3,	>3	tree	layers;	as	indicator	of	
structural	complexity

Basal area m2/ha 2.8–69 Related	to	the	total	woody	biomass

Stem	density n.stems/ha 100–2,000 Related	to	the	dynamic	state	and	compe‐
tition	within	forest	stands

Land	use Previous land use Classes 1–5 1,	Forested	>300	years;	2,	forested	
>100	years;	3,	forested	25–100	years;	
4,	forested	<25	years;	5,	unknown

Current	land	use Classes 1–4 1,	Unmanaged;	2,	logged	>10	years	ago;	
3,	logged	within	10	years;	4,	unknown

Stand	age Age	classes 8 classes of 20 years each Mean	age	of	the	dominant	storey

Type	of	management Classes 1–4 1,	High	forest	(i.e.,	regeneration	by	
seeds);	2,	under	development	to	high	
forest;	3,	coppice	(i.e.,	vegetative	
regeneration	of	trees;	4,	other

Total	deadwood m3/400 m2 0–15 A	good	proxy	of	disturbance	intensity

Deadwood removal Binary 0–1 0, No; 1, yes
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350	years,	under	current	treatments	(i.e.,	within	10	years),	the	vari‐
able	previous	 land	use	assumes	value	1	 (i.e.,	 forested	>300	years),	
the	current	 land	use	value	3	 (i.e.,	 logged	within	10	years),	and	 the	
type	of	management	value	3	 (i.e.,	coppice;	see	Table	1).	The	stand	
age	was	defined	as	the	mean	age	of	the	dominant	storey	(expressed	
in	classes,	Table	1).	Furthermore,	two	variables	related	to	deadwood	
were	 considered.	Deadwood	 removal	 (binary,	 Table	 1)	 is	 linked	 to	
management	practices	undertaken	in	fear	of	the	spread	of	diseases,	
pests,	or	 fires	 (Travaglini	et	al.,	2007).	Total	deadwood	 is	 the	total	
volume	of	deadwood	(standing	and	fallen	dead	trees,	coarse	woody	
debris,	stumps	and	snags,	expressed	in	m3;	Puletti,	Giannetti,	Chirici,	
&	Canullo,	2017)	and	is	often	used	as	a	proxy	of	disturbance	intensity	
(Duncker	et	al.,	2012;	Green	&	Peterken,	1997;	Lombardi,	Lasserre,	
Tognetti,	&	Marchetti,	2008).	Structural	and	land‐use	variables	were	
defined	according	to	the	reference	manual	of	the	ICP	Forests,	and	
collected	 by	 coordinated	 crews	 of	 professionals	 and	 staff	 of	 the	
National	Forest	Service	(WGFB	2011).

2.3 | Plant functional traits

We	 selected	 the	 three	 key	 functional	 traits	 of	 the	 LHS	 scheme	
(Westoby,	1998)	that	are	independent	of	each	other	and	represent	
the	major	axes	of	plant	strategies.	They	are	associated	with	the	re‐
sponse	 of	 plants	 to	 environmental	 factors	 (response	 traits,	 sensu	
Lavorel	&	Garnier,	2002).	These	 traits	 are	 specific	 leaf	 area	 (SLA),	
a	proxy	of	plant	growth	and	a	good	surrogate	for	ability	to	use	light	
efficiently;	plant	height	(H),	related	to	competitive	ability	and	access	
to	 the	 vertical	 light	 gradient;	 and	 seed	mass	 (SM),	 having	 implica‐
tions	for	the	space/time	dispersal	ability	and	indicative	of	seedling	
establishment	(Westoby,	1998).	They	have	been	found	to	be	respon‐
sive	to	the	above‐mentioned	climatic,	soil,	vegetation	structure	and	
land‐use	factors	(Campetella	et	al.,	2011;	Le	Bagousse‐Pinguet	et	al.,	
2017;	Moles	et	al.,	2009,	2014;	Pakeman	et	al.,	2009).

The	effect	of	 individual	species	on	ecosystem	properties	 is	 re‐
lated	to	their	relative	abundance	in	the	community,	and	trait	values	
of	 the	dominant	 species	have	a	proportionally	 greater	 effect	 than	
those	 of	 less	 abundant	 ones	 (Grime,	 1998;	 Wasof	 et	 al.,	 2018).	
Therefore,	we	(a)	selected	from	each	plot	all	the	species	contributing	
to	reach	a	relative	cumulative	coverage	of	80%	at	the	plot	level;	(b)	
attributed	trait	values	to	these	species;,	and	(c)	weighted	trait	values	
according	to	species	coverage	at	plot	level,	in	order	to	obtain	com‐
munity‐weighted	mean	(CWM)	values	for	each	trait	 (Garnier	et	al.,	
2004;	Lavorel	&	Garnier,	2002).	Seedlings	of	tree	species	were	ex‐
cluded.	Trait	values	were	obtained	from	the	literature	and	databases	
(Campetella	et	al.,	2011;	Kleyer	et	al.,	2008;	Royal	Botanical	Gardens	
Kew,	2008).

2.4 | Data analysis

2.4.1 | Data preparation

The	matrix	of	plot	×	species	data	was	combined	with	the	matrix	of	
species	×	 trait	data	 to	provide	a	matrix	of	 trait	×	plot	data,	which	

formed	 the	 basis	 for	 all	 the	 analyses.	Weighted	mean	 traits	were	
log‐transformed	(Dainese,	Scotton,	Clementel,	Pecile,	&	Lepš,	2012;	
Pakeman	et	al.,	2009;	Westoby,	1998),	since	the	original	values	were	
not	 normally	 distributed,	 and	 the	 transformation	 significantly	 in‐
creased	the	level	of	variation	explained	for	all	the	selected	traits.

2.4.2 | Variance partitioning

Variance	 partitioning	 (Borcard,	 Legendre,	 &	 Drapeau,	 1992)	 was	
used	to	identify	the	contributions	of	climate,	soil,	vegetation	struc‐
ture	and	land	use,	alone	and	in	combination,	to	explaining	the	varia‐
tion	in	community‐weighted	mean	trait	values.	Variance	partitioning	
has	frequently	been	used	to	look	at	how	different	groups	of	environ‐
mental	factors	control	species	and	trait	distributions	(Pakeman	et	al.,	
2009).	In	effect,	it	is	redundancy	analysis,	linearly	relating	CWM	val‐
ues	to	groups	of	variables.

2.4.3 | Generalized additive models

In	 order	 to	 explore	 the	 single	 trait–environment	 relationships,	we	
used	 generalized	 additive	models	 (GAMs),	which	 are	 nonparamet‐
ric	 extensions	 of	 generalized	 linear	 models	 (GLMs),	 in	 which	 the	
linear	predictor	 is	substituted	with	an	additive	predictor	 (Hastie	&	
Tibshirani,	 1990).	 Due	 to	 their	 nonparametric	 nature,	 GAMs	 are	
more	data‐driven	than	their	parametric	counterpart	GLMs,	and	per‐
mit	 both	 linear	 and	 complex	 additive	 response	 shapes	 within	 the	
same	models	(Venables	&	Ripley,	2002,	pp.	271–300).	For	these	spe‐
cific	models,	the	response	variables	(y)	were	defined	as	the	commu‐
nity‐weighted	mean	for	each	of	the	three	selected	plant	functional	
traits,	while	 climatic,	 soil,	 structural	 and	 land‐use	 covariates	were	
used	as	predictor	variables.	To	avoid	multicollinearity,	GAM	model	
selection	was	done	by	Restricted	Maximum	Likelihood	(REML)	with	
automatic	variable	selection	based	on	adding	penalties	to	successive	
variables	(Bradbury	et	al.,	2014;	Marra	&	Wood,	2011).	In	order	to	
reduce	overfitting	of	the	regression	models,	we	reduced	the	number	
of	nods	in	the	smoothed	functions	and	used	a	restricted	maximum	
likelihood	estimator	(Madani	et	al.,	2018).

All	 statistical	 analyses	 were	 performed	 in	 R,	 version	 3.4.4	 (R	
Foundation	 for	 Statistical	 Computing,	Vienna,	Austria).	 In	 particu‐
lar,	the	mgcv	R	package	(function	gam)	was	used	for	the	generalized	
additive	models	and	the	vegan	R	package	(function	varpart)	served	
for	variance	partitioning	(Borcard	et	al.,	1992;	Legendre	&	Legendre,	
2012;	Wood,	2006).	The	chosen	methods	treat	both	numerical	and	
categorical	predictors	(see	Pakeman	et	al.,	2009	for	variance	parti‐
tioning,	and	Pöyry,	Luoto,	Heikkinen,	&	Saarinen,	2008	for	GAMs).

3  | RESULTS

3.1 | Partitioned trait–environment relationships

Climate	alone	explained	the	largest	proportion	of	the	variation	of	H 
(12.6%),	SLA	 (7.7%)	and	SM	(8.6%).	Soil	properties	alone	explained	
a	 small	 fraction	 of	 the	 H	 (1.0%)	 and	 SLA	 (2.1%)	 variation,	 while	
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climate–soil	interactions	explained	a	higher	amount	of	trait	variation	
(H,	9.8%;	SLA,	6.1%	and	SM,	5.1%).	Forest	structure	and	land	use	con‐
trolled	a	small	amount	of	trait	variation,	mainly	in	combination	with	
other	groups	of	variables.	Land‐use	factors	alone	were	important	in	
explaining	only	SLA	variation	 (3.6%),	while	 interactions	among	dif‐
ferent	variables	have	some	influence	on	trait	variation,	mainly	for	H 
(8.2%)	and	SLA	(4.1%),	followed	by	SM	(2.2%;	Figure	2;	Appendix	S1).

3.2 | Trait patterns along the gradients

For H,	the	final	GAM	explained	36.0%	(adjusted	R2)	of	the	trait	vari‐
ation.	Four	significant	variables	related	to	climate	and	soil	were	se‐
lected	(temperature	seasonality,	precipitation	seasonality,	maximum	
temperature	of	 the	warmest	month,	 subsoil	P;	Figure	3;	Appendix	
S2).	 Understorey	H	 decreased	 along	 the	 temperature	 seasonality	
gradient	 (p < 0.001)	and	 increased	along	the	gradient	of	maximum	
temperature	of	the	warmest	month	(p <	0.001),	especially	for	stands	
with	maximum	temperature	>15°C.	Community	understorey	H de‐
creased	with	increasing	precipitation	seasonality	(p = 0.018)	and	in‐
creased	with	increasing	subsoil	P	(p =	0.005).

For	 SLA,	 the	 final	 GAM	 explained	 26.0%	 (Adj.	R2)	 of	 the	 trait	
variation.	Five	significant	variables	related	to	climate,	soil	and	forest	
structure	were	selected	(Figure	3;	Appendix	S2):	temperature	sea‐
sonality	(p =	0.014),	PET	(p	<	0.001),	total	N	(p =	0.006),	litter	cover	
(p =	0.004),	and	basal	area	(p =	0.025).	Understorey	SLA	increased	
along	 temperature	 seasonality,	 total	 N	 and	 basal	 area	 gradients,	
whereas	 it	 decreased	 along	 the	 PET	 gradient	 from	 approximately	
600	mm.	Finally,	SLA	and	litter	cover	showed	a	quadratic	relationship.

For	SM,	the	final	GAM	explained	15.7%	(Adj.	R2)	of	the	trait	vari‐
ation.	The	four	significant	predictor	variables	selected	refer	 to	cli‐
mate	and	vegetation	structure	(PET,	isothermality,	P	of	the	wettest	

month,	 moss	 cover;	 Figure	 3;	 Appendix	 S2).	 Understorey	 SM	 in‐
creased	 along	 the	 PET	 gradient	 (p =	 0.012)	 in	 stands	with	 values	
>600	mm,	and	decreased	in	wetter	stands	characterized	by	precip‐
itation	of	 the	wettest	month	approximately	>100	mm	 (p =	0.003).	
Additionally,	 SM	 increased	 along	 the	 isothermality	 gradient	 (p = 
0.050),	and	decreased	along	the	moss	cover	gradient	(p =	0.033)	but	
only	for	cover	values	<40%.

4  | DISCUSSION

4.1 | Climate and climate–soil interactions as the 
main drivers of LHS traits

Our	approach	quantified	the	role	of	climate	and	local	environmental	
factors	 in	 shaping	 abundance‐weighted	 trait	 patterns	 of	 forest	 un‐
derstorey	at	the	biogeographic	scale.	Climate	was	shown	to	exert	the	
greatest	independent	effect	on	SLA,	H	and	SM.	This	result	is	in	line	
with	 several	 studies	 conducted	 in	 forest	 ecosystems	 (Shiono	et	 al.,	
2015;	Swenson	&	Weiser,	2010;	Vanneste	et	al.,	2019)	and	confirms	
the	role	of	climate	as	a	primary	macro	filter	shaping	the	community	
mean	plant	traits.	Local	environmental	factors	alone	(namely,	soil,	land	
use	and	forest	structure)	showed	a	minor	role	in	influencing	understo‐
rey	traits.	Our	study	area	spans	three	biogeographic	regions	and	prob‐
ably	the	large	variability	of	climatic	conditions	may	have	contributed	
to	climate	being	the	key	driver	of	trait	patterns,	overruling	the	effects	
of	local	environmental	factors.	However,	local	soil	conditions	in	inter‐
action	with	climate	play	a	significant	role	 in	explaining	the	variation	
of	the	three	traits.	Simpson	et	al.	(2016)	suggested	the	significance	of	
climate–soil	interactions	in	influencing	plant	traits	of	tree	communi‐
ties.	We	provide	evidence	that	climate–soil	interactions	are	important	
drivers	of	community‐weighted	mean	traits	also	in	forest	understorey.

F I G U R E  2  Results	of	partitioning	
variance	(adjusted	R2	in	%)	from	climate,	
soil,	forest	structure	and	land‐use	
variables	for	understorey	CWM	values	of	
plant	height	(H),	specific	leaf	area	(SLA)	
and	seed	mass	(SM).	Negative	effects	of	
groups	of	variables	are	not	shown	(see	
Appendix	S1	for	detailed	results)
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F I G U R E  3  The	estimated	smoothers	for	plant	height	(H),	specific	leaf	area	(SLA)	and	seed	mass	(SM)	obtained	by	generalized	additive	
models	(GAMs)	that	include	the	selected	explanatory	variables	(significant	values:	***	p	<	0.001,	**	p	<	0.01,	and	*	p	<	0.05).	Confidence	
intervals	(95%)	are	indicated	with	the	grey	areas.	The	x‐axis	represents	the	independent	variable;	the	y‐axis	represents	the	smooth	effect	of	
the	independent	variable	on	the	dependent	variable.	For	units	of	measurement	and	categories,	see	Table	1.	Vertical	tick	marks	on	the	x‐axis	
represent	the	values	of	covariates
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The	limited	effect	of	land	use	and	forest	structure	on	community	
mean	plant	traits	of	the	understorey	at	the	biogeographic	scale	is	in	
line	with	the	findings	of	Vanneste	et	al.	(2019).	Indeed,	structure	and	
land	use	were	shown	to	significantly	affect	plant	traits	in	local	stud‐
ies	where	climate	and	soil	parameters	were	relatively	homogeneous	
(Aubin	et	al.,	2007;	Campetella	et	al.,	2011).	However,	land‐use	pa‐
rameters	alone	appeared	to	markedly	influence	only	SLA,	probably	
because	 they	 determine	 the	 light	 conditions	 of	 the	 ground	 layer.	
Indeed,	light	availability	and	patchiness	are	important	drivers	of	un‐
derstorey	SLA	in	managed	forests	(Campetella	et	al.,	2011;	Dahlgren	
et	al.,	2006;	Vanneste	et	al.,	2019).

These	 findings	 imply	 that	 (a)	broad	scale	 trait–environment	 re‐
lationship	in	forests	can	be	captured	by	the	interaction	of	macrocli‐
mate	and	local	soil	conditions,	and	(b)	climate	change	as	well	as	soil	
nutrient	variation,	and	to	a	less	extent	land‐use	change,	can	poten‐
tially	affect	the	future	functioning	of	forest	understories.	However,	
further	studies	including	traits	related	to	other	functions	(i.e.,	space	
occupancy	and	recovery	after	damage)	and	based	on	direct	measures	
of	land‐use	type	and	intensity	are	needed	to	confirm	our	results.

4.2 | Direction of trait–environment relationships

Temperature‐related	 variables	 were	 correlated	 with	 all	 three	 plant	
traits,	which	is	in	line	with	recent	findings	(Moles	et	al.,	2014;	Reich	&	
Oleksyn,	2004;	Šímová	et	al.,	2018).	In	particular,	temperature	season‐
ality	was	an	important	driver	of	changes	in	understorey	mean	values	of	
H	and	SLA:	forest	stands	characterized	by	high	temperature	variation	
across	seasons	(thermophilous	deciduous	and	broadleaved	evergreen	
forests	located	in	the	Mediterranean	Region	of	Italy)	were	character‐
ized	by	shorter	understorey	communities	with	high‐SLA	values,	while	

forest	stands	with	low	temperature	variation	across	seasons	(forests	
of	the	hilly	and	mountainous	belt	of	northern	and	central	Italy)	were	
characterized	by	taller	understorey	communities	with	low	SLA	values.

PET	 was	 shown	 to	 control	 both	 SLA	 and	 SM	 variation.	
Understorey	communities	with	lower	SLA	and	higher	SM	occurred	
in	drier	forest	stands.	SLA	is	related	to	the	water	use	strategy	of	spe‐
cies:	a	lower	SLA	is	associated	with	a	slower	plant	growth	rate,	which	
usually	occurs	under	water	stress	in	order	to	improve	the	efficiency	
of	water	 use	 (Wellstein	 et	 al.,	 2017).	 In	 parallel,	 larger	 seeds	may	
act	as	a	buffer	against	 low	water	availability	 (Dainese	et	al.,	2012;	
Tautenhahn	et	al.,	2008),	favoring	establishment	success	and	seed‐
ling	performance	(Leishman	&	Westoby,	1994).

Furthermore,	understorey	plants	 are	 taller	on	 soils	with	higher	
productivity	 (higher	subsoil	P),	confirming	previous	findings	 (Davis,	
Thompson,	 &	 Grime,	 2005;	 Diaz	 et	 al.,	 2004;	 Tautenhahn	 et	 al.,	
2008).	Indeed,	phosphorus	is	an	essential	soil	element	related	to	plant	
growth	in	many	ecosystems	(Lambert,	Raven,	Shaver,	&	Smith,	2008;	
Quesada	et	al.,	2012).	In	addition,	high	SLA	values	are	associated	with	
soils	containing	high	total	N.	As	a	leaf	economic	trait,	SLA	has	been	
found	to	be	controlled	by	soil	fertility,	since	nutrient	supply	has	an	
important	role	as	modulator	of	leaf	level	photosynthetic	properties	
(Lloyd	et	al.,	2015;	Ordonez	et	al.,	2009).	Also,	high‐SLA	understorey	
communities	occur	in	mature	forest	stands	with	a	greater	amount	of	
woody	biomass	(i.e.,	higher	values	of	basal	area).	Mature	forests	are	
usually	characterized	by	a	shady	understorey	environment	which	in	
turn	can	favor	species	with	large	SLA	(Dahlgren	et	al.,	2006).	Indeed,	
large	SLA	is	associated	with	high	photosynthetic	capacity	and	short	
leaf	turnover	time,	characteristics	that	may	enable	flexible	responses	
to	 light	 patchiness	 and	 appear	 to	 be	 particularly	 advantageous	 in	
late‐succession	forest	stands	(Campetella	et	al.,	2011).
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4.3 | Data limitation and future perspectives

The	total	variation	of	CWM	trait	values	explained	by	the	selected	en‐
vironmental	variables	(H,	29.6%;	SLA,	23.2%;	SM,	8.2%)	was	similar	to	
that	 found	 in	 studies	 performed	 in	 forests	 (e.g.,	 9%–31%;	Vanneste	
et	al.,	2019)	and	lower	than	that	found	in	studies	performed	in	grass‐
lands	 (e.g.,	45–50%;	Pakeman	et	al.,	2009).	Probably	 the	complexity	
of	forest	ecosystems	calls	for	the	inclusion	of	more	biotic	and	abiotic	
variables.	 For	 instance,	 several	 approaches	 demonstrated	 how	 the	
light	reaching	the	ground	 layer	conditioned	plant	functional	 traits	of	
the	understorey	 (see	Campetella	et	 al.,	2011;	Dahlgren	et	al.,	2006;	
Hedwall	 &	 Brunet,	 2016).	 Direct	measurements	 of	 parameters	 that	
better	 describe	 the	 understorey	 environment	 (i.e.,	 Photosynthetic	
Active	Radiation)	instead	of	the	use	of	proxy	variables,	could	be	fun‐
damental	for	increasing	the	explained	variance	in	such	forest	contexts.

The	trait–environment	patterns	reported	in	the	present	study	
depend	 on	 species	 turnover	 or	 changes	 in	 species	 cover	 values,	
and	not	on	intraspecific	variation.	Thus,	future	studies	that	account	
for	intraspecific	trait	variability	could	be	useful,	since	it	can	play	a	
fundamental	role	in	plant	community	responses	to	environmental	
gradients	(Kichenin,	Wardle,	Peltzer,	Morse,	&	Freschet,	2013).

5  | CONCLUSIONS

This	study	spanned	a	large	biogeographical	gradient	using	a	dataset	
representative	of	the	Italian	forests,	and	demonstrated	how	the	vari‐
ation	in	abundance‐weighted	mean	trait	values	of	the	understorey	is	
mainly	influenced	by	macroclimate	alone	and	in	interaction	with	local	
soil	conditions.	Land	use	and	forest	structure	had	a	smaller	influence	
on	 trait	 patterns.	 However,	 the	 land‐use	 variables	 alone	 showed	
a	 significant	 effect	 on	 SLA.	 These	 results	 highlighted	 the	 need	 to	
integrate	 at	 least	 soil	 features	 as	 local	 drivers	 of	 trait	 variation	 in	
functional	 biogeography	 studies	 aimed	 at	 exploring	 broad‐scale	
trait–environment	relationships	(Bruelheide	et	al.,	2018).	Moreover,	
our	 findings	could	be	 significant	 in	 the	 light	of	global	 changes:	 in‐
corporating	local‐scale	soil	parameters	in	modeling	frameworks	can	
significantly	improve	our	ability	to	predict	the	functional	responses	
of	forest	understorey	(Simpson	et	al.,	2016,	for	trees).
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