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Abstract 
This paper presents a method to solve the American option pricing problem in the Black Scholes 
framework that generalizes the Barone-Adesi, Whaley method [1]. An auxiliary parameter is in-
troduced in the American option pricing problem. Power series expansions in this parameter of 
the option price and of the corresponding free boundary are derived. These series expansions 
have the Baroni-Adesi, Whaley solution of the American option pricing problem as zero-th order 
term. The coefficients of the option price series are explicit formulae. The partial sums of the free 
boundary series are determined solving numerically nonlinear equations that depend from the 
time variable as a parameter. Numerical experiments suggest that the series expansions derived 
are convergent. The evaluation of the truncated series expansions on a grid of values of the inde-
pendent variables is easily parallelizable. The cost of computing the n-th order truncated series 
expansions is approximately proportional to n as n goes to infinity. The results obtained on a set of 
test problems with the first and second order approximations deduced from the previous series 
expansions outperform in accuracy and/or in computational cost the results obtained with several 
alternative methods to solve the American option pricing problem [1]-[3]. For example when we 
consider options with maturity time between three and ten years and positive cost of carrying pa-
rameter (i.e. when the continuous dividend yield is smaller than the risk free interest rate) the 
second order approximation of the free boundary obtained truncating the series expansions im-
proves substantially the Barone-Adesi, Whaley free boundary [1]. The website:  
http://www.econ.univpm.it/recchioni/finance/w20 contains material including animations, an 
interactive application and an app that helps the understanding of the paper. A general reference 
to the work of the authors and of their coauthors in mathematical finance is the website:  
http://www.econ.univpm.it/recchioni/finance.  

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.62036
http://dx.doi.org/10.4236/am.2015.62036
http://www.scirp.org
mailto:lorella.fatone@unicam.it
mailto:francesca.mariani@univr.it
mailto:m.c.recchioni@univpm.it
mailto:zirilli@mat.uniroma1.it
http://creativecommons.org/licenses/by/4.0/
http://www.econ.univpm.it/recchioni/finance/w20
http://www.econ.univpm.it/recchioni/finance


L. Fatone et al. 
 

 
383 

Keywords 
American Option Pricing, Perturbation Expansion 

 
 

1. Introduction 
American call and put options are one of the most traded products in financial markets. They are traded either 
standing alone or embedded in a variety of financial contracts such as, for example, convertible bonds, mort-
gages or life insurance policies. The fast and accurate evaluation of American option prices and of the corres-
ponding free boundaries is an important problem in mathematical finance. Let us restrict our attention to the 
American option pricing problem in the Black Scholes framework. Many methods have been suggested to solve 
this problem. In particular several hybrid methods have been suggested. These methods combine analytical and 
numerical approximations. For example let us mention the hybrid methods proposed by Geske, Johnson (1984) 
[4], Barone-Adesi, Whaley (1987) [1], Kim (1990) [5], Bunch, Johnson, (1992) [6], Bjerksund, Stensland (1993) 
[7], Ju, Zhong (1999) [2], Barone-Adesi (2005) [8] and Zhu (2006) [9]. 

In [1] Barone-Adesi and Whaley write the American option price as the sum of the price of the corresponding 
European option and of a quantity called early exercise premium. The European option price is given by the 
Black Scholes formula and the early exercise premium is approximated with the solution of a free boundary 
value problem for an ordinary differential equation. This ordinary differential equation is obtained dropping the 
time derivative term in the partial differential equation satisfied by the early exercise premium. Barone-Adesi 
and Whaley [1] give a simple formula for the solution of this free boundary value problem for an ordinary diffe-
rential equation. Moreover they determine an approximation of the free boundary solving numerically a nonli-
near equation that depends from the time variable as a parameter. This approximate solution of the American 
option pricing problem is called Barone-Adesi, Whaley formula and is widely used in the financial markets by 
practitioners. An exhaustive review of the methods used to solve the American option pricing problem and of 
the developments of the Barone-Adesi, Whaley method during the period 1987-2005 can be found in Barone- 
Adesi (2005) [8]. For example in 1999 Ju, Zhong [2] reconsidered the Barone-Adesi, Whaley formula of the 
early exercise premium. The Ju, Zhong formula [2] introduces a correction to the Barone-Adesi, Whaley ap-
proximation of the early exercise premium. This correction consists in writing the early exercise premium as the 
product of the Barone-Adesi, Whaley early exercise premium times a time-independent function determined 
solving an ordinary differential equation. When long dated options are considered, the Ju, Zhong formula im-
proves the approximate option price obtained with the Barone-Adesi, Whaley formula. 

Given a positive integer n, Geske and Johnson [4] approximate the price of an American put option using an 
n-fold compound option. They assume that exercise decisions are taken only at some known time values. These 
time values are a set of n points. In [4] Geske and Johnson deduce a formula to approximate the American put 
option price with a piecewise solution of the Black Scholes partial differential equation subject to boundary 
conditions imposed at the decision times. Moreover, using Richardson extrapolation, they show how to ap-
proximate the Geske, Johnson formula with a simple polynomial expression. Bunch and Johnson [6] refine the 
results obtained in [4] determining the n exercise times that maximize the accuracy of the option prices obtained. 

In [7] Bjerksund and Stensland approximate the solution of the American option pricing problem assuming a 
flat early exercise boundary and using a trigger price. Bjerksund and Stensland reduce the evaluation of an 
American call option with exercise price E and maturity time T to the evaluation of a European call up-and-out 
barrier option with knock-out barrier X, strike price E and maturity time T. A rebate given by X E−  is re-
ceived by the holder of the option at the knock-out time when the option is exercised prior to maturity time. The 
barrier X is the flat boundary that approximates the free boundary of the American option pricing problem. In [7] 
the problem of choosing X is studied. In [10] the approximation of the free boundary used in [7] is refined. In 
fact in [10] the time interval where the problem is studied is divided in two disjoint subintervals and a flat early 
exercise boundary is used in each subinterval. 

Zhu (2006) [9] considers the American put option pricing problem and derives an explicit formula of the 
American put option price associated to a numerically approximated free boundary. This formula is a Taylor’s 
series expansion with infinitely many terms. Each term of this Taylor’s expansion considered contains several 
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integrals that must be evaluated numerically. In [11] I. J. Kim, Jang, K. T. Kim show that the numerical evalua-
tion of Zhu’s formula is cumbersome and suggest a method to approximate the free boundary of the American 
option pricing problem. This method consists in the numerical solution of the integral equation satisfied by the 
free boundary deduced in [3] by Little, Pant, Hou. The solution of the American put option pricing problem 
suggested in [11] combines the integral formula of the option price obtained by I. J. Kim [5] with the approxi-
mation of the corresponding free boundary obtained solving numerically the integral equation presented in [3]. 
Note that in the option price formula contained in [5] there are several integrals that must be evaluated numeri-
cally. 

To solve the American option pricing problem instead of using hybrid methods it is possible to use only nu-
merical methods. For example the finite differences method (see [12]), the Monte Carlo method (see [13]-[18]), 
and the regression method (see [19] [20]) can be used to solve the American option pricing problem. 

Usually hybrid methods are computationally cheaper than numerical methods. However in many circums-
tances numerical methods provide approximate solutions of the American option pricing problem that are more 
accurate than those obtained with hybrid methods. In fact, at least in principle, the solutions provided by numer-
ical methods can be made arbitrarily accurate choosing appropriately the values of the parameters that define the 
approximation computed. Instead many hybrid methods have a certain accuracy that depends from the problem 
under consideration and this accuracy cannot be changed choosing parameter values. That is most of the solu-
tions found with hybrid methods do not converge to the exact solution of the American option pricing problem 
when a suitable limit is taken. Moreover most hybrid methods give satisfactory results when pricing problems 
with short maturity times are considered. The results obtained with these methods deteriorate when problems 
with medium or long maturity times are considered. 

This paper presents a hybrid method to solve the American option pricing problem. We introduce an auxiliary 
parameter in the American option pricing problem and we deduce power series expansions in this parameter of 
the option price and of the corresponding free boundary. Explicit formulae (depending from the free boundary) 
are given for the coefficients of the option price series. The partial sums of the free boundary series are deter-
mined solving numerically nonlinear equations that depend from the time variable as a parameter. These series 
expansions are a formal solution of the American option pricing problem. Numerical experiments suggest that 
the series obtained are convergent. The zero-th order term of the series expansions is the Barone-Adesi, Whaley 
solution of the American option pricing problem [1] (i.e. the Barone-Adesi, Whaley formula). The first order 
approximation of the option price deduced from the expansions developed here has some similarities with the 
early exercise premium formula suggested by Ju, Zhong [2]. 

Test problems taken from [1] [2] and [3] are studied. The behaviour of the truncated series expansions on 
these test problems is studied. In particular in the numerical experiments presented we use the n-th order ap-
proximate solutions deduced from the expansions when n = 0, 1, 2 to solve the test problems considered. These 
experiments show that each approximation order of the solution deduced from the expansions adds roughly one 
correct significant digit to the results obtained. Moreover for n = 0, 1, ∙∙∙ the computation of the n-th order ap-
proximation deduced from the expansions of the solution of the American option pricing problem on a grid of 
values of the independent variables is easily parallelizable and its computational cost is “substantially” linear in 
n as n goes to infinity. In particular the numerical experiments show that when we consider options with inter-
mediate maturity times (i.e.: maturity times ranging in the interval 3 - 10 years) the first and the second order 
approximations of the solution obtained from the series expansions improve substantially the approximate solu-
tion obtained using the Barone-Adesi, Whaley formula (see in Section 4, Table 1, Table 3, Table 4 and Figure 
2). For example the improvement obtained with the higher order terms of the expansions is significant when we 
compare the approximations of the free boundary of the American option pricing problem obtained using the 
Barone-Adesi, Whaley formula with those obtained using the n-th order truncated power series expansions, n = 
1, 2 (see Section 4, Table 1, Table 4 and Figure 2). Note that the Barone-Adesi, Whaley formula gives excel-
lent results when we consider options with short or with long maturity times and that in these circumstances 
there is no room for improvements of practical value (see [1]). 

The website: http://www.econ.univpm.it/recchioni/finance/w20 contains material including animations, an 
interactive application and an app that helps the understanding of the paper. More general references to the work 
of the authors and of their coauthors in mathematical finance are available in the website:  
http://www.econ.univpm.it/recchioni/finance.  

The paper is organized as follows. In Section 2 we formulate the American call option pricing problem in the 

http://www.econ.univpm.it/recchioni/finance/w20
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Black Scholes framework and we introduce the auxiliary parameter that is used to solve it. In Section 3 we de-
duce the perturbation expansions in this auxiliary parameter of the American call option price and of the corres-
ponding free boundary. The analysis of Sections 2 and 3 can be easily extended from the case of the American 
call option pricing problem to the case of the American put option pricing problem. This extension is omitted for 
simplicity. In Section 4 we present the results obtained with the method developed in Sections 2 and 3 on a set 
of test problems involving American call and put options. These results are compared with those discussed in 
the scientific literature obtained with some alternative methods to solve the American option pricing problem. 

2. The American Option Pricing Problem in the Black Scholes Framework 
We follow Barone-Adesi and Whaley [1] and we consider the problem of pricing American call and put options 
on commodities in the Black Scholes framework. 

Let t be a real variable that denotes time and St, t > 0, be a real stochastic process that models the commodity 
price, that is for t > 0 the random variable St represents the commodity price at time t. We assume that under the 
risk neutral measure the commodity price satisfies the following stochastic differential equation:  

d d d ,  0,t t t tS bS t S z tσ= + >                                  (1) 

where b, σ  are real parameters, zt, t > 0, is the standard Wiener process such that 0 0z =  and dzt is its sto-
chastic differential. Equation (1) is known as Black Scholes asset price equation. The parameter 0σ >  is the 
volatility or instantaneous standard deviation and b is the cost of carrying parameter. In the most common situa-
tions we have b r d= −  where r > 0 is the risk free interest rate and d > 0 is the continuous dividend yield, see  
[1]. When needed Equation (1) is equipped with an initial condition. 

To keep the exposition simple we study only the American call option pricing problem. The American put op-
tion pricing problem can be studied analogously. However in the test problems presented in Section 4 the me-
thod developed here to solve the American option pricing problem is used to evaluate both call and put options. 

Let t = 0 be the current time, consider the problem of pricing an American call option having exercise price  
E > 0 and maturity time T > 0 written on a commodity whose price St, t > 0, satisfies (1). The price ( ),AV S t , 

( )0 fS S t< < , 0 t T< < , of this option and the corresponding free boundary ( )fS t , 0 t T< < , solve the 
following problem [21]:  

( )
22

2
2 0, 0 , 0 ,

2
A A A

A f
V V VS bS rV S S t t T
t SS

σ∂ ∂ ∂
+ + − = < < < <

∂ ∂∂
                 (2) 

with boundary conditions:  

( )0, 0, 0 ,AV t t T= < <                                    (3) 

( )( ) ( ), , 0 ,A f fV S t t S t E t T= − < <                              (4) 

( )( ), 1, 0 ,A
f

V S t t t T
S

∂
= < <

∂
                                (5) 

and final condition:  

( ) ( ) ( ), max ,0 , 0 .A fV S T S E S S T= − < <                           (6) 

Problem (2), (3), (4), (5), (6) is the American call option pricing problem in the Black Scholes framework. It 
is a free boundary value problem for the partial differential Equation (2) whose unknowns are: the option price 

( ),AV S t , ( )0 fS S t< < , 0 t T< < , and the free boundary ( )fS t , 0 t T< < , see [22]. Note that the boundary 
condition (3) can be omitted. In fact condition (3) follows from the degeneracy in 0S =  of (2) and from the 
fact that in mathematical finance only bounded solutions of (2) are meaningful (see [21] Chapter 3, p. 48-49). 
However to make easier the understanding of some choices made later (see Section 3) we prefer to state (3) ex-
plicitly. 

Let us consider the change of variable: T tτ = − , 0 t T≤ ≤ , the variable τ  is called time to maturity, and 
let us define: ( ) ( ), ,A AC S V S Tτ τ= − , ( )0 S S τ∗< < , 0 Tτ≤ ≤ , ( ) ( )fS S Tτ τ∗ = − , 0 Tτ≤ ≤ . Problem 
(2), (3), (4), (5), (6) rewritten in the variables S, τ  for the unknowns CA, S* becomes: 
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( )
22

2
2 0, 0 , 0 ,

2
A A A

A
C C CS bS rC S S T

SS
σ τ τ

τ
∗∂ ∂ ∂

− + + − = < < < <
∂ ∂∂

                  (7) 

with boundary conditions:  

( )0, 0, 0 ,AC Tτ τ= < <                                    (8) 

( )( ) ( ), , 0 ,AC S S E Tτ τ τ τ∗ ∗= − < <                               (9) 

( )( ), 1, 0 ,AC S T
S

τ τ τ∗∂
= < <

∂
                               (10) 

and initial condition:  

( ) ( ) ( ),0 max ,0 , 0 0 .AC S S E S S∗= − < <                           (11) 

Let ( ),EC S τ , 0S > , 0 Tτ< < , be the Black Scholes price of the European call option having strike price 
E, maturity time T and parameters r, b, σ . The price ( ),EC S τ , 0S > , 0 Tτ< < , has a simple expression 
given by the Black Scholes formula [21]. Note that CE is defined for 0S > , 0 Tτ< < . As done in [1] we seek 
a solution of problem (7), (8), (9), (10), (11) given by the sum of ( ),EC S τ , ( )0 S S τ∗< < , 0 Tτ< < , and of 
a quantity called early exercise premium denoted with ( ),e S τ , ( )0 S S τ∗< < , 0 Tτ< < . That is we assume 
that:  

( ) ( ) ( ) ( ), , , , 0 , 0 ,A EC S C S e S S S Tτ τ τ τ τ∗= + < < < <                     (12) 

Substituting (12) in (7), (8), (9), (10), (11) and using the fact that CE satisfies the Black Scholes partial diffe-
rential Equation (7), the boundary condition (8) and the initial condition (11) we obtain the following problem:  

( )
2 2

2
2 0, 0 , 0 ,

2
e e eS bS re S S T

SS
σ τ τ

τ
∗∂ ∂ ∂

− + + − = < < < <
∂ ∂∂

                  (13) 

with boundary conditions:  

( )0, 0, 0 ,e Tτ τ= < <                                   (14) 

( )( ) ( ) ( )( ), , , 0 ,Ee S S E C S Tτ τ τ τ τ τ∗ ∗ ∗= − − < <                      (15) 

( )( ) ( )( ), 1 , , 0 ,ECe S S T
S S

τ τ τ τ τ∗ ∗∂∂
= − < <

∂ ∂
                       (16) 

and initial condition:  

( ) ( ),0 0, 0 0 .e S S S∗= < <                                 (17) 

Problem (13), (14), (15), (16), (17) is a free boundary value problem for the partial differential Equation (13) 
in the unknowns ( ),e S τ , ( )0 S S τ∗< < , 0 Tτ< < , and ( )S τ∗ , 0 Tτ< < . 

We assume that the early exercise premium e has the following form (see [1]):  

( ) ( ) ( )( ) ( ), , , 0 , 0 ,e S K f S K S S Tτ τ τ τ τ∗= < < ≤ ≤                   (18) 

where ( )K τ , 0 Tτ< < , is a sufficiently regular function that will be chosen later and ( )( ),f S K τ , 
( )0 S S τ∗< < , 0 Tτ< < , is an auxiliary unknown that must be determined solving (13), (14), (15), (16), (17), 

(18). Substituting (18) in (13) we have: 

( ) ( )
2

2
2

11 1 0, 0 , , 0 ,f f K K fS NS Mf S S K K T
S rK f KS

τ τ τ
τ

∗  ∂ ∂ ∂ ∂
+ − + + = < < = < <  ∂ ∂ ∂∂   

     (19) 

where 22M r σ=  and 22N b σ= . Choosing ( ) 1 e rK ττ −= − , 0 Tτ≤ ≤ , (see [1]), Equation (19) becomes:  

( ) ( ) ( )
2

2
2 1 0, 0 , , 0 ,f f M fS NS f K M S S K K T

S K KS
τ τ τ∗∂ ∂ ∂ + − − − = < < = < < ∂ ∂∂  

       (20) 
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Equation (18) and the previous choice of K imply that the boundary conditions (14), (15), (16) can be rewritten 
respectively as:  

( )( )0, 0, 0 ,f K Tτ τ= < <                                 (21) 

( ) ( )( ) ( ) ( )( )( ) ( )
1, , , 0 ,Ef S K S E C S T

K
τ τ τ τ τ τ

τ
∗ ∗ ∗= − − < <                  (22) 

( ) ( )( ) ( )( ) ( )
1, 1 , , 0 .ECf S K S T

S S K
τ τ τ τ τ

τ
∗ ∗∂∂  = − < < ∂ ∂ 

                   (23) 

Note that in the formulation of problem (20), (21), (22), (23) we use the two variables τ  and K, and recall 
that these two variables are linked by the condition ( ) 1 e rK K ττ −= = − , 0 Tτ< < . Moreover from the choice 

( ) 1 e rK ττ −= − , 0 Tτ≤ ≤ , it follows that ( )0 0K = . This implies that when the function f is well behaved in 
0τ =  the function e defined in (18) satisfies the initial condition (17). 

In [1] Barone-Adesi and Whaley dropped the term ( ) ( )1 K M f K− ∂ ∂  in Equation (20) and solved the 
problem that remains. This is an ingenious and fruitful idea. In fact after dropping the term ( ) ( )1 K M f K− ∂ ∂  
in (20) the problem that remains is easy to solve, see [1], moreover the term dropped tends to zero when τ  
goes to zero and when τ  goes to T and T goes to infinity. Let f0, 0S∗  be the solution of the problem obtained 
from (20), (21), (22), (23) dropping the term ( ) ( )1 K M f K− ∂ ∂  in (20) determined by Barone-Adesi and 
Whaley in [1]. The function f0 has a closed form expression that contains the free boundary ( )0S τ∗ , 0 Tτ< < . 
The free boundary ( )0S τ∗  is defined implicitly as solution of the nonlinear Equation (23) when we have 

0f f= , 0 Tτ< < . The approximation of the free boundary of Barone-Adesi and Whaley [1] is obtained solv-
ing numerically the nonlinear equation (23) when 0f f= , 0 Tτ< < . Note that the nonlinear Equation (23) that 
defines 0S∗  depends from f0. The approximate solution of the American option pricing problem given by the 
functions f0, 0S∗  is called Barone-Adesi, Whaley formula. With abuse of notation in this paper ( )0S τ∗ , 
0 Tτ< < , denotes both the Barone-Adesi, Whaley free boundary defined implicitly by the nonlinear equation 
(23) when 0f f= , 0 Tτ< < , and its numerical approximation. 

In problem (20), (21), (22), (23) we introduce a real parameter  , 0 1≤ ≤ . The parameter   is the aux-
iliary parameter mentioned in the introduction that is used to solve the American call option pricing problem. 
That is instead of problem (20), (21), (22), (23) we consider problem:  

( ) ( ) ( )
2

2
2 1 0, 0 , , 0 , 0 1,
f f fMS NS f K M S S K K T

S K KS
τ τ τ∗∂ ∂ ∂ + − − − = < < = < < ≤ ≤ ∂ ∂∂  

  
       (24) 

( )( )0, 0, 0 , 0 1,f K Tτ τ= < < ≤ ≤                              (25) 

( ) ( )( ) ( ) ( )( )( ) ( )
1, , , 0 , 0 1,Ef S K S E C S T

K
τ τ τ τ τ τ

τ
∗ ∗ ∗= − − < < ≤ ≤                (26) 

( ) ( )( ) ( )( ) ( )
1, 1 , , 0 , 0 1,Ef CS K S T

S S K
τ τ τ τ τ

τ
∗ ∗∂ ∂ = − < < ≤ ≤ ∂ ∂ 


                 (27) 

in the unknowns f , S∗
 , 0 1≤ ≤ . The initial condition (17) and Equation (18) rewritten for the functions 

f , S∗
  become respectively:  

( ) ( ),0 0, 0 0 , 0 1,e S S S∗= < < ≤ ≤                             (28) 

and  

( ) ( ) ( )( ) ( ), , , 0 , 0 , 0 1.e S K f S K S S Tτ τ τ τ τ∗= < < ≤ ≤ ≤ ≤                   (29) 

Note that when 1=  Equation (24) reduces to Equation (20), that is when 1=  problem (24), (25), (26), 
(27), (28), (29) reduces to the American call option pricing problem (20), (21), (22), (23), (17), (18). Moreover 
when 0=  problem (24), (25), (26), (27) reduces to the problem obtained from (20), (21), (22), (23) dropping  

the term ( )1 fK M
K
∂

−
∂
  in (20), that is when 0=  problem (24), (25), (26), (27) reduces to the problem con-  
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sidered by Barone-Adesi and Whaley in [1]. Note that the solution determined in [1] of (24), (25), (26), (27) 
when 0=  satisfies the conditions (28), (29) with 0= . 

Moreover problem (24), (25), (26), (27), (28), (29) when 0+→  is a singular perturbation problem. In fact 
when 0=  in Equation (24) the term containing the higher order derivative with respect to K is multiplied by 
zero. This fact suggests that when 0+→  an expansion of f , S∗

  in powers of   with base point 0=  
cannot hold uniformly in K and S when 0 1 e rTK −< < − , ( )0 S S τ∗< <  , 0 Tτ≤ ≤ , due to the presence of a 
boundary layer in K = 0. In singular perturbation theory this kind of problems is approached using the method of 
matched asymptotic expansions [23]. The matched asymptotic expansion method builds a uniform approxima-
tion of the solution of problem (24), (25), (26), (27), (28), (29) when 0 1 e rTK −< < − , ( )0 S S τ∗< <  , 
0 Tτ< < , and 0+→  matching two series (called inner and outer expansions). Let ( )O ⋅  be the Landau 
symbol, roughly speaking in the K variable the inner expansion of the option price holds when [ ]10,K η∈ , 

( )1 Oη =  , 0+→ , and the outer expansion of the option price holds when 2K η> , ( )2 Oη =  , 0+→ , and 
only the matched expansion holds uniformly in the entire solution domain (see [23] for further details). However 
it is important to point out that in problem (24), (25), (26), (27), (28), (29)   is not a parameter of the model, 
  is only an auxiliary parameter added to the model and that in finance only the solution of the previous prob-
lem when 1=  is meaningful. The behaviour of the solution of problem (24), (25), (26), (27), (28), (29) when 

0+→  is of no interest in finance. This observation suggests that in the solution of the problem (24), (25), (26), 
(27), (28), (29) it should be possible to avoid the study of the boundary layer in K = 0 that appears when 0+→ . 
That is it should be possible to solve problem (24), (25), (26), (27), (28), (29) when 1=  with an ad hoc pro-
cedure avoiding the matched asymptotic expansions of singular perturbation theory needed to study the problem 
when 0+→ . In fact in Section 3 we build a kind of outer series expansion of the solution of problem (24), 
(25), (26), (27), (28), (29). More specifically in Section 3 we neglect the initial condition (28) and we impose 
Equation (24) and the boundary conditions (25), (26), (27) in 1=  order by order in perturbation theory to a 
series expansion of the solution of problem (4), (25), (26), (27), (28), (29). This procedure is a straightforward 
generalization of the procedure followed by Barone-Adesi and Whaley in [1] to solve problem (24), (25), (26), 
(27), (28), (29) when 0= . 

The zero-th order term of the expansions in powers of   of f , S∗
  obtained in Section 3 when 1=  are 

the functions f0, 0S∗  determined by Barone-Adesi and Whaley in [1]. Moreover the expansions developed in 
Section 3 rewritten in the variables S, τ  evaluated in 1=  and (29) are a formal series expansion of the solu-
tion of the American option pricing problem (13), (14), (15), (16), (17). 

Let us recall that in [24] a similar approach has been used in the study of barrier options. In fact in [24] it is 
considered the problem of pricing (put up-and-out) barrier options with time-dependent parameters in the Black 
Scholes framework. An auxiliary parameter is introduced in the barrier option pricing problem and a perturba-
tion expansion in this parameter of the barrier option price is deduced. Note that the perturbation problem stu-
died in [24] is a regular perturbation problem, while the perturbation problem considered here when 0+→  is 
a singular perturbation problem. 

3. A Series Expansion of the Solution of the American Option Pricing Problem 
Let us drop the initial condition (28) from problem (24), (25), (26), (27), (28), (29). That is let us consider the 
equation:  

( ) ( ) ( )
2

2
2 1 , 0 , , 0 , 0 1,
f f fMS NS f K M S S K K T

S K KS
τ τ τ∗∂ ∂ ∂ + − = − < < = < < ≤ ≤ ∂ ∂∂  

  
         (30) 

with the boundary conditions:  

( )( )0, 0, 0 , 0 1,f K Tτ τ= < < ≤ ≤                              (31) 

( ) ( )( ) ( ) ( )( )( ) ( )
1, , , 0 , 0 1,Ef S K S E C S T

K
τ τ τ τ τ τ

τ
∗ ∗ ∗= − − < < ≤ ≤                  (32) 

( ) ( )( ) ( )( ) ( )
1, 1 , , 0 , 0 1.Ef CS K S T

S S K
τ τ τ τ τ

τ
∗ ∗∂ ∂ = − < < ≤ ≤ ∂ ∂ 


                  (33) 
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Recall that once determined f , S∗
  as solution of (30), (31), (32), (33) we will recover the function e using 

(29) and that when f  is well behaved in 0τ =  the function e determined in this way will satisfy the initial 
condition (28) as a consequence of the choice ( ) 1 e rK ττ −= − , 0 Tτ< < , that implies ( )0 0K = . Let us as-
sume that the following expansions in powers of   of the functions f , S∗

 , 0 1≤ ≤ , hold:  

( )( ) ( )( ) ( )
0

ˆ, , , 0 , 0 , 0 1,j
j

j
f S K f S K S S Tτ τ τ τ

+∞
∗

=

= < < ≤ ≤ ≤ ≤∑                  (34) 

( ) ( )
0

ˆ , 0 , 0 1,j
j

j
S S Tτ τ τ

+∞
∗ ∗

=

= ≤ ≤ ≤ ≤∑                             (35) 

where the functions ˆ
jf , ˆ

jS∗ , 0,1,j =   are independent of  . 
For later convenience we define the partial sums ,nb  , ,nS∗

 , 0 1≤ ≤ , 0,1,n =  , of the series (34), (35), 
that is: 

( ) ( )( ) ( )*
, ,

0

ˆ, , , 0 , 0 , 0 1, 0,1, ,
n

j
n j n

j
b S f S K S S T nτ τ τ τ

=

= < < ≤ ≤ ≤ ≤ =∑               (36) 

( ) ( ),
0

ˆ , 0 , 0 1, 0,1, .
n

j
n j

j
S S T nτ τ τ∗ ∗

=

= ≤ ≤ ≤ ≤ =∑                         (37) 

Note that for 0,1,j =   the problems that follow define the function ˆ
jf  for ( ), 10 jS S τ∗

=< <  , 0 Tτ< < . 
To give a meaning to the sums contained in (34) and (36) we extend with zero the function ˆ

jf  when 
( ), 1jS S τ∗

=>  , 0 Tτ< < , 0,1,j =  . With abuse of notation ˆ
jf  denotes both the original function and the 

extended function 0,1,j =  . 
We impose (30), (31), (32), (33) to the series expansions (34), (35), order by order in powers of  . For n = 0, 

1, ∙∙∙ the unknowns of the n-th order problem are the functions n̂f , , 1nS∗
= . Note that as unknown of the n-th or-

der problem, we use , 1nS∗
=  instead of ˆ

nS∗ , n = 0, 1, ∙∙∙. This is due to the fact that since we are interested only 
in the solution of problem (30), (31), (32), (33) when 1=  we impose the boundary conditions (32), (33) in 

1=  instead of imposing them in 0= . This is what has been done by Barone-Adesi and Whaley [1] in the 
solution of the zero-th order problem. We simply extend the idea of Barone-Adesi and Whaley from the zero-th 
order problem to the n-th order problem, n = 1, 2, ∙∙∙. Proceeding in this way we obtain: 

For n = 0 the zero-th order problem is: 

( ) ( )
2

2 0 0
0 0, 12

ˆ ˆ
ˆ 0, 0 , , 0 ,

f f MS NS f S S K K T
S KS

τ τ τ∗
=

∂ ∂  + − = < < = < < ∂∂  
               (38) 

with boundary conditions: 

( )( )0̂ 0, 0, 0 ,f K Tτ τ= < <                                  (39) 

( ) ( )( ) ( ) ( )( )( ) ( )0 0, 1 0, 1 0, 1
1ˆ , , , 0 ,Ef S K S E C S T

K
τ τ τ τ τ τ

τ
∗ ∗ ∗

= = == − − < <                  (40) 

( ) ( )( ) ( )( ) ( )
0

0, 1 0, 1

ˆ 1, 1 , , 0 ,Ef CS K S T
S S K

τ τ τ τ τ
τ

∗ ∗
= =

∂ ∂ = − < < ∂ ∂ 
                    (41) 

for n = 1, 2, ∙∙∙ the n-th order problem is: 

( ) ( ) ( )
2

2 1
, 12

ˆ ˆ ˆ
ˆ 1 0, 0 , , 0 ,n n n
n n

f f fMS NS f K M S S K K T
S K KS

τ τ τ∗−
=

∂ ∂ ∂
+ − − − = < < = < <

∂ ∂∂          (42) 

with boundary conditions: 

( )( )ˆ 0, 0, 0 ,nf K Tτ τ= < <                                 (43) 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ), 1 , 1 , 1 1, 1 , 1
1 1ˆ , , , , 0 ,n n n E n n nf S K S E C S b S T

K K
τ τ τ τ τ τ τ τ

τ τ
∗ ∗ ∗ ∗

= = = − = == − − − < <        (44) 
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( ) ( )( ) ( )( ) ( )( ) ( )
1, 1

, 1 , 1 , 1

ˆ 1, 1 , , , 0 .nn E
n n n

bf CS K S S T
S S S K

τ τ τ τ τ τ τ
τ

− =∗ ∗ ∗
= = =

∂ ∂ ∂
= − − < < ∂ ∂ ∂ 


           (45) 

The problems (38), (39), (40), (41) and (42), (43), (44), (45) are respectively free boundary value problems 
for the ordinary differential Equations (38) and (42). These problems depend from the parameter τ , 0 Tτ< < . 
The boundary conditions (40), (41) and (44), (45) are the boundary conditions imposed in 1=  derived from 
(32), (33). Note that we have: 0 0̂f f= , 0 0 0, 1

ˆS S S∗ ∗ ∗
== =   where f0, 0S∗  is the Barone-Adesi, Whaley solution of 

the American option pricing problem deduced in [1]. Numerical experiments have shown that the approxima-
tions of the first few orders of f and S∗  deduced from the series expansions (34), (35) with the boundary con-
ditions (40), (41) and (44), (45) imposed to the partial sums (37) evaluated in 1=  are of higher quality than 
the corresponding approximations of the same order in   obtained imposing the boundary conditions (32), (33) 
order by order in powers of   in 0= . In particular these numerical experiments show that the approxima-
tions of , 1nS∗

= , 1, 2n = , obtained solving problem (42), (43), (44), (45) are more accurate than the correspond-
ing approximations obtained evaluating in 1=  the partial sums 0

ˆn i
ii S∗

=∑  , 0 1≤ ≤ , 1, 2n = , where ˆ
iS∗ , 

1, 2i =  are the terms obtained imposing in 0=  the boundary conditions (32), (33) at the first and at the 
second order in powers of  . 

Let us consider the zero-th order problem (38), (39), (40), (41). 
From now on instead of using the notation 0̂f , 0, 1S∗

=  introduced previously we denote the solution of the 
zero-th order problem (38), (39), (40), (41) with the notation f0, 0S∗ . This choice emphasizes the fact that the 
zero-th order term of the expansions (34), (35) determined solving the previous problems is the Barone-Adesi, 
Whaley solution of the American option pricing problem. As done in [1] we seek a solution f0 of (38), (39), (40), 
(41) of the following form:  

( )( ) ( )( ) ( )( ) ( )0 0,0 0, , 0 , 0 ,q Kf S K A K S S S Tττ τ τ τ∗= < < ≤ ≤                    (46) 

where in (46) the functions 0,0A  and q are auxiliary unknowns that must be determined. Substituting (46) in 
(38) we have:  

( )( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )2
0,0 01 0, 0 , 0 .q K MA K S q K N q K S S T

K
ττ τ τ τ τ

τ
∗ 

+ − − = < < ≤ ≤  
 

      (47) 

Equation (47) is satisfied if we impose that:  

( )( ) ( ) ( )( ) ( )
2 1 0, 0 ,Mq K N q K T

K
τ τ τ

τ
+ − − = < <                       (48) 

the quadratic Equation (48) in the unknown q is easily solved, and one of its solutions is:  

( )( ) ( ) ( )( )21 1 1 4 , 0 .
2

q K N N M K Tτ τ τ= − + − + < <                     (49) 

From (49) it follows that ( )q K  is positive when K is positive. This means that when ( )q k  is given by (49) 
the function ( )( )0 ,f S K τ , ( )00 S S τ∗< < , 0 Tτ< < , given by (46) satisfies (39). The second solution of (48) 
is negative when K  is positive and must be discarded since the corresponding function f0 given by (46) does 
not satisfy (39). 

Substituting the formulae (46), (49) in the Equations (40), (41) we obtain respectively:  

( )( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )
1

0,0 0 0
11 , , 0 ,q K ECA K S S T

S K q K
ττ τ τ τ τ

τ τ
−∗ ∗∂ = − < < ∂ 

             (50) 

and  

( )( )( ) ( ) ( )( ) ( )( )( ) ( )( )0 0 0 01 , , , 0 .E
E

Cq K S q K E C S S S T
S

τ τ τ τ τ τ τ τ∗ ∗ ∗ ∗∂
− = + − < <

∂
            (51) 

For 0 Tτ< <  Equation (50) defines 0,0A  as a function of ( )0S τ∗  and Equation (51) is a nonlinear equa-
tion in the unknown ( )0S τ∗  that depends from the parameter τ . Given τ  this last equation is easily trans-
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formed in a fixed point problem and solved numerically using Banach iteration, 0 Tτ≤ ≤ . The approximate 
solution of (51) determined in this way is substituted in (50) to obtain 0,0A . The zero-th order term f0 given by 
(46), (49), (50) with the numerical approximation of 0S∗  substituted in 0,0A  multiplied by K (see (18)) is the 
Baroni-Adesi, Whaley formula of the early exercise premium (see [1] formula (20)). The numerical approxima-
tion of 0S∗  obtained solving numerically (51) is the Barone-Adesi, Whaley approximation of the free boundary 
(see [1], formula (19)). Note that as already said with abuse of notation in the previous formulae ( )0S τ∗ , 
0 Tτ< < , denotes both the unknown of the nonlinear Equation (51) and its numerical approximation. This am-
biguity is reflected in the functions 0,0A  and f0. 

Let 1, 2,n =   we seek a solution n̂f  of the n-th order problem (42), (43), (44), (45) of the following form:  

( )( ) ( )( ) ( )( )( ) ( )( ) ( )
2

,0 , , 1
1

ˆ , ln , 0 , 0 , 1, 2, ,
n j q K

n n n j n
j

f S K A K A K S S S S T nττ τ τ τ τ∗
=

=

 
= + < < ≤ ≤ = 
 

∑    (52) 

where the functions ,j nA , 0,1, , 2j n=  , 1, 2,n =  , are auxiliary unknowns that must be determined impos-
ing (42), (43), (44), (45). Substituting formula (52) in Equation (42) it is easy to see that in order to satisfy (42) 
it is sufficient to impose that the functions ,n jA , 1, 2, , 2j n=  , 1, 2,n =  , satisfy the following systems of 
linear equations:  

( ) ( ) ( ),2 1,2 12 2 1 1 , 1, 2, ,n n n n
qn q N A K M A n
K − −

∂
− + = − =

∂
                      (53) 

( ) ( ) ( ) 1, 1
, , 1 1, 22 1 1 1 , 2,3, , 2 1, 1,2, ,n j

n j n j n j

Aqq N jA j j A K M A j n n
K K

− −
+ − −

∂ ∂
− + + + = − + = − = ∂ ∂ 

 
   (54) 

( ) ( ) 1,0
,1 ,22 1 2 1 , 1,2, .n

n n

A
q N A A K M n

K
−∂

− + + = − =
∂

                       (55) 

To keep the notation simple in (53), (54), (55) we have omitted the dependence from K of the functions ,n jA , 
1, 2, , 2j n=  , 1, 2,n =  . For 1, 2,n =   the unknowns ,n jA , 1, 2, , 2j n=  , are determined solving the 

n-th linear system of linear equations contained in (53), (54), (55). In fact for 1, 2,n =   the n-th system of li-
near equations contained in (53), (54), (55) is a system of 2n linear equations in the 2n unknowns ,n jA , 

1, 2, , 2j n=  , that can be solved by backward substitution starting from the n-th Equation (53). Note that due 
to its special form the computational cost of solving these linear systems obtained in (53), (54), (55) grows li-
nearly in n when n goes to infinity. Finally for 1, 2,n =   the coefficient ,0nA  and the unknown , 1nS∗

=  are 
determined imposing the boundary conditions (44), (45), that is imposing respectively:  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2
1, 1

,0 , 1 , 1 , , 11
1

, 1

2 1

, , 1
1

1 1 1 , , ln

1                ln , 0 , 1, 2, ,

n jnE
n n n n j nq

j
n

n j

n j n
j

bCA K S S A S
Kq K S SS

jA S T n
q K

∫

∫

τ τ

τ

− =∗ ∗ ∗
= = =−∗ =

=

−∗
=

=

∂ ∂
= − − − ∂ ∂ 

− < < =

∑

∑ 


 

         (56) 

and  

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

, 1 1, 1
, 1 , 1 1, 1 , 1 , 1 , 1

2 1, 1
, , 1

1

11 , , , ,

                       ln , 0 , 1, 2, .

n nE
n E n n n n n

q
n jn

n j n
j

S bCS E C S b S S S
q K q K S S

S K
jA S T n

q K ∫

τ τ τ τ

τ

∗
= − =∗ ∗ ∗ ∗ ∗

= = − = = = =

∗
−= ∗

=
=

  ∂ ∂
− = + + + − −     ∂ ∂  

− < < =∑ 

 
     



     (57) 

To keep the notation simple in (56), (57) we have omitted the dependence from τ  of , 1nS = , 1, 2,n =  . 
For 1, 2,n =   Equation (56) defines ,0nA  as a function of , 1nS∗

=  and of the solution of the n-th linear system 
contained in (53), (54), (55), 0 Tτ< < . Equation (57) is a nonlinear equation in the unknown ( ), 1nS τ∗

= , 
0 Tτ< < , depending from the parameter τ , that defines implicitly ( ), 1nS τ∗

= , 0 Tτ< < , 1, 2,n =  . In the 
numerical experiments of Section 4 this equation is transformed in a fixed point problem and solved numerically 
using Banach iteration. The numerical approximation of ( ), 1nS τ∗

= , 1, 2,n =  , obtained from the solution of 
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(57) is substituted in (56) and together with the solution of the n-th linear system contained in (53), (54), (55) 
determines (56). Note that when 1,2,n =  , for simplicity with abuse of notation we denote with ( ), 1nS τ∗

= , 
0 Tτ< < , both the unknown of (57) and its numerical approximation. 

A careful inspection of formulae (46), (51) and (52), (57) shows that for 0,1,n =   the numerical evaluation 
on a grid of values of the S and τ  variables of the n-th order approximations n̂f , , 1nS∗

=  of the solution of the 
American call option pricing problem is easily parallelized. 

4. Numerical Results 
Let us discuss the numerical results obtained on a set of test problems with the solution method of the American 
option pricing problem developed in Sections 2 and 3. 

We use the trinomial tree method [17] with nT = 1000 time steps to compute the “true value” of the option 
prices considered in our experiments. The choice nT = 1000 guarantees four correct significant digits in the op-
tion prices computed in this Section. The “true value” of the corresponding free boundaries of the American call 
options considered in our experiments is computed solving numerically the following integral equation (see [25], 
[3] and the reference therein):  

( ) ( ) ( ) ( )( )( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( )( )0

e , e ,

            e , e , d ,

            0 .

r b r

r b r

S E S N d S E N d S

r b S N d S S rE N d S S

T

τ τ

τ ξ ξ
ξ ξ

τ τ τ τ τ τ σ τ

τ τ τ ξ τ τ ξ σ ξ ξ

τ

− −∗ ∗ ∗ − ∗

− −∗ ∗ ∗ − ∗ ∗

= + − −

+ − − − − −

< ≤

∫  (58) 

The free boundary ( )S τ∗ , 0 Tτ< < , is the unknown of the integral Equation (58), moreover in (58) the  

function ( ) 2 21 e d
2π

x ux u−

−∞
= ∫  is the standard normal cumulative distribution and the functions d and dξ  

are given by:  

( )( ) ( )1, ln 2 , 0 , 0,
2

S bd S T
E
τ στ τ τ τ σ

σσ τ

∗
∗    = + − < ≤ >       

               (59) 

( ) ( )( ) ( )
( )

1, ln 2 , 0 , 0,
2

S bd S S T
Sξ

τ στ τ ξ ξ τ σ
στ ξσ ξ

∗
∗ ∗

∗

   − = + − < ≤ >    −   
          (60) 

where in (58), (59), (60) T is the maturity time and E is the strike price of the American call option considered. 
The integral operator contained in (58) is approximated with the composite rectangular rule with time step 

0τ∆ >  and ( )S τ∗ , 0 Tτ< < , is approximated on the set of evenly spaced nodes of step 0τ∆ >  used to 
discretize the integral operator. This discretized version of the integral Equation (58) is solved as a fixed point 
problem using Banach iteration. Let     denote the integer part of ∙, for 0τ∆ >  let ντ ν τ= ∆  and ( )aS τ ντ∆  
be the solution of the discretized version of the integral Equation (58) at the node ντ , 1, 2, , Tν τ= ∆   . For 
0 Tτ< <  let ( )S τ∗  be the solution of (58) it is easy to see that we have: ( ) ( )0lim lim aS Sτ ν τ ν τ τ∗

∆ → →+∞ ∆ ∆ = , 
when τ ν τ= ∆  is fixed. When we consider an American call option and we have b r<  the algorithm that 
solves the discretized version of (58) starts from 0τ =  choosing ( ) ( )0 0aS S Eτ

∗
∆ = =  when 0 r r b< ≤ −  or 

choosing ( ) ( ) ( )0 0aS S rE r bτ
∗

∆ = = −  when r r b> − . Recall that when b r≥  (i.e. when the continuous 
dividend yield d is smaller or equal to zero) in [1] page 307 it is shown that the American call option price re-
duces to the corresponding European call option price. In fact in this case the free boundary is “at infinity” and 
the American call option must be exercised at maturity time, that is the value of the early exercise premium is 
identically zero. 

The integral Equation (58) must be modified to deal with American put options (see [3]). Moreover in the 
case of put options the algorithm that solves the corresponding discretized integral equation starts from 0τ =  
choosing ( ) ( )0 0aS S Eτ

∗
∆ = =  when r r b≤ −  or choosing ( ) ( ) ( )0 0aS S rE r bτ

∗
∆ = = −  when r r b> − . 

In the numerical experiments discussed below the discretized versions of Equation (58) for call options and of 
the analogous equation for put options (see [3]) are solved iteratively at the points ντ τ ν τ= = ∆ , 1, 2, , mν =  , 
when m T τ= ∆    and 0.001τ∆ = . That is we consider the unknowns ( ),

a aS Sν τ τ ντ∆ ∆= , 1, 2, , mν =  ,  
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implicitly defined as solution of the following set of equations (see [25] for further details):  

( ), , , 1, 2, , ,a aS F S mν τ ν τ ν∆ ∆= =                                 (61) 

where in the case of call options from Equation (58) we have:  

( ) ( ) ( )( ) ( )( )
( ) ( )

( )( )( ) ( )( )
, , , ,

1

, , , ,,
0

e , e ,

                e , e , ,

                 1, 2, , ,

r ba a a r a

r b ia a a ri a a
i i ii

i

F S E S N d S E N d S

r b S N d S S rE N d S S i

m

ν τ ν τ
ν τ ν τ ν τ ν τ

ν
τ τ

ν τ τ ν τ τ ν τ ν τν τ

ν τ ν τ σ ν τ

τ σ τ

ν

− − ∆ − ∆
∆ ∆ ∆ ∆

−
− − ∆ − ∆

∆ ∆ ∆ ∆ ∆ − ∆− ∆
=

= + ∆ − ∆ − ∆

 + ∆ − − − ∆  
=

∑


 (62) 

and 0,
aS τ∆  is assigned as specified above. Of course when we consider put options Equation (58) must be subs-

tituted with a different integral equation, see [3], and as a consequence Equation (62) must be modified cohe-
rently. Equations (61), (62) (and their analogous for put options) are solved using Banach iteration. For 

1, 2, , mν =   and 0,1,j =   let ,
,

a jSν τ∆  be the j-th element of the sequence generated by Banach iteration ap-
plied to (61), (62), 1, 2, , mν =  . The Banach iteration associated to (61) is stopped at the smallest value of the 
index j that satisfies the condition:  

( ), 1 ,
, ,

0.001, 1,2, , .
a j a jS F S

m
E

ν τ ν τ
ν

+
∆ ∆−

< = 
                          (63) 

Note that in general the stopping value of the index j defined by (63) depends from ν , 1, 2, , mν =  . The 
“true values” of the option prices and of the corresponding free boundaries defined previously are used as 
benchmarks to test the approximate solutions of the American option pricing problem computed with the me-
thod developed in Sections 2 and 3 and with some alternative methods taken from the scientific literature. 

We begin our numerical experiments studying some test problems taken from [1] Section C.4. These test 
problems consider options on long-term U.S. Treasury bonds (time to maturity up to three years) and long term 
care insurance inflation options (time to maturity up to ten years and beyond). 

In the first experiment we use the values of the Black Scholes parameters of Table V in [1]. That is we consider 
the following three sets of parameter values: 0.08r = , 0.2σ = , and 0.04b = − , or 0.0b =  or 0.04b = . For 
each set of Black Scholes parameters we consider three call options with strike price 100E =  and maturity 
time 3T = , or 5T = , or 10T = . The maturity time T is expressed in years. 

Table 1 shows several free boundary approximations of the American call option pricing problems specified 
above when 3Tτ = = , 5, 10. From left to right Table 1 shows the free boundary ( )S T∗  computed solving 
iteratively the discretized version of the integral Equation (58) (i.e. ( )S T∗  is the “true free boundary” used as 
benchmark) and the approximations ( ), 1nS T∗

= , when 0,1,2n = , discussed in Sections 2 and 3. Recall that 
0, 1 0S S∗ ∗

= =  is the Barone-Adesi Whaley approximation of the free boundary. Table 1 shows that for 0,1n =  
going from the n-th order approximation to ( )1n + -th order approximation of the free boundary roughly adds 
one correct significant digit to the approximation of the free boundary found. This effect is particularly evident 
when 0b > , in fact in this case the Barone-Adesi, Whaley approximation of the free boundary is poor and has 
no correct significant digits. Note that positive values of b correspond to values of the continuous dividend yield 
d r b= −  smaller than the risk free interest rate r. Recall that for American call options when 0b >  and 

0r b− >  the integral Equation (58) becomes singular as 0τ +→ , see [25]. 
When Tτ =  (i.e. when 0t = ) Table 2 shows the asset price S, the European call option price CE obtained 

evaluating the Black Scholes formula, the approximations of the American call option price obtained using the 
trinomial tree method CT (i.e. CT is the “true value” of the option price used as benchmark), the Barone-Adesi, 
Whaley option price CBW obtained from (12), (18) when 0f f= , 0S S∗ ∗=  and the n-th order approximation 

, , 1A nC = , derived from (12), (18) and the series expansions presented in Sections 2 and 3 truncated after 1n +  
terms, 1, 2n = . Furthermore Table 2 shows the relative errors: ( ) ( ) ( ) ( )BW BW, , , ,T Tre S T C S T C S T C S T= −  
and ( ) ( ) ( ) ( ), 1 , , 1, , , ,C

n A n T Tre S T C S T C S T C S T= == −  , 1, 2n = . 
Table 1 and Table 2 suggest that increasing the approximation order of the solution of the American call op-

tion pricing problem that has been deduced from the expansions in powers of   developed in Sections 2 and 3 
(that is increasing n) it is possible to improve substantially the results obtained with the Barone-Adesi, Whaley 
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formula (i.e. the result obtained when 0n = ). 
Figure 1 shows the “true” free boundaries of the American call option pricing problem as a function of τ  

that have been obtained solving numerically the discretized version of the integral Equation (58) when E = 100,  
 

Table 1. Approximations of the free boundary of an American call option 
with intermediate maturity T and strike price E = 100. 

0.08r = , 0.2σ = , 0.04b = −  

T ( )S T∗  ( )0, 1S T∗
=  ( )1, 1S T∗

=  ( )2, 1S T∗
=  

3 129.065 128.588 129.036 128.951 

5 131.064 130.701 131.154 130.973 

10 132.687 132.207 132.862 132.705 

0.08r = , 0.2σ = , 0.00b =  

T ( )S T∗  ( )0, 1S T∗
=  ( )1, 1S T∗

=  ( )2, 1S T∗
=  

3 149.676 150.206 149.017 149.617 

5 155.051 156.917 154.473 154.823 

10 160.505 164.206 160.463 160.129 

0.08r = , 0.2σ = , 0.04b =  

T ( )S T∗  ( )0, 1S T∗
=  ( )1, 1S T∗

=  ( )2, 1S T∗
=  

3 241.191 255.316 236.006 242.394 

5 251.915 273.499 246.402 252.762 

10 265.960 304.187 260.422 265.212 

 

 
Figure 1. American call option “true” free boundary S* as a function of the 
time to maturity τ when E = 100, T = 10, r = 0.08, σ = 0.2 and b = −0.04 (solid 
line ( )0S E∗ = , r ≤ r − b), b = 0.0 (dotted line ( )0S E∗ = , r ≤ r − b), b = 

0.04 (dash-dotted line ( ) ( )0S rE r b∗ = − , r > r − b). 
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Table 2. Approximations of the price of an American call option with intermediate maturity T, strike price E = 100 and 
negative cost of carrying. 

0.08r = , 0.2σ = , 0.04b = −  

maturity 3T =  

S ( ),EC S T  ( ),TC S T  ( )BW ,C S T  ( ),1, 1 ,AC S T=  ( ),2, 1 ,AC S T=  ( )BW ,Cre S T  ( )1, 1 ,Cre S T=  ( )2, 1 ,Cre S T=  

70 0.8211 0.9587 1.0861 0.9258 0.9617 11.33 10−×  23.38 10−×  33.58 10−×  

80 1.9285 2.3414 2.5258 2.3068 2.3334 27.87 10−×  21.47 10−×  33.41 10−×  

90 3.7480 4.7585 4.9706 4.7193 4.7336 24.45 10−×  38.24 10−×  35.23 10−×  

100 6.3571 8.4921 8.6777 8.4453 8.4504 22.18 10−×  35.49 10−×  34.91 10−×  

110 9.7526 13.792 13.896 13.746 13.748 37.52 10−×  33.34 10−×  33.18 10−×  

120 13.872 20.886 20.906 20.878 20.882 31.04 10−×  42.88 10−×  41.11 10−×  

maturity 5T =  

S ( ),EC S T  ( ),TC S T  ( )BW ,C S T  ( ),1, 1 ,AC S T=  ( ),2, 1 ,AC S T=  ( )BW ,Cre S T  ( )1, 1 ,Cre S T=  ( )2, 1 ,Cre S T=  

70 1.1410 1.5349 1.7261 1.5612 1.4912 11.24 10−×  21.71 10−×  22.84 10−×  

80 2.2026 3.1467 3.3887 3.1927 3.1021 27.68 10−×  21.46 10−×  21.14 10−×  

90 3.7323 5.6921 5.9446 5.7503 5.6506 24.43 10−×  21.02 10−×  37.28 10−×  

100 5.7491 9.4043 9.6129 9.4629 9.3695 22.21 10−×  36.22 10−×  33.70 10−×  

110 8.2416 14.523 14.640 14.570 14.498 38.05 10−×  33.27 10−×  31.71 10−×  

120 11.178 21.302 21.319 21.330 21.288 48.13 10−×  31.32 10−×  46.15 10−×  

maturity 10T =  

S ( ),EC S T  ( ),TC S T  ( )BW ,C S T  ( ),1, 1 ,AC S T=  ( ),2, 1 ,AC S T=  ( )BW ,Cre S T  ( )1, 1 ,Cre S T=  ( )2, 1 ,Cre S T=  

70 1.0638 2.1845 2.3679 2.2715 2.1878 28.39 10−×  23.98 10−×  31.47 10−×  

80 1.7276 3.9387 4.1329 4.0428 3.9483 24.93 10−×  22.64 10−×  32.43 10−×  

90 2.5807 6.5377 6.7081 6.6482 6.5526 22.60 10−×  21.68 10−×  32.26 10−×  

100 3.6212 10.201 10.312 10.302 10.216 21.08 10−×  39.94 10−×  31.51 10−×  

110 4.8422 15.166 15.198 15.246 15.179 22.11 10−×  35.29 10−×  48.71 10−×  

120 6.2334 21.690 21.666 21.746 21.705 31.11 10−×  32.59 10−×  47.02 10−×  

 
T = 10, r = 0.08, 0.2σ = , and b = −0.04, or b = 0.0, or b = 0.04, and 0 Tτ< < . Figure 2 shows the “true” free 
boundary, the Barone-Adesi, Whaley free boundary, the first and the second order approximations of the free 
boundary obtained from the expansions of Sections 2 and 3 as a function of the time to maturity τ , 0 Tτ< < , 
when E = 100, T = 10, r = 0.08, 0.2σ = , b = 0.04. In particular Figure 2 shows that the first order approxima-
tion of the free boundary improves significantly the zero-th order approximation of the free boundary (i.e. the 
Barone-Adesi, Whaley free boundary) and that the second order approximation of the free boundary refines the 
result obtained with the first order approximation. Figure 3(a) and Figure 3(b) show the “true” and the approx-
imated prices of the American call option corresponding to the free boundaries shown in Figure 2 as a function 
of the time to maturity τ , 0 Tτ< < , T = 10, when the asset price S takes the values S = 90 (Figure 3(a)) and S 
= 110 (Figure 3(b)). The approximated option prices are obtained using (12), (18) and the zero-th, first and 
second order approximations of the sum the series expansions developed in Sections 2 and 3. Figure 2 and Fig-
ure 3 suggest that the second order corrections of the option price and of the free boundary are necessary to ob-
tain satisfactory approximations of the solution of the American call option pricing problem when we consider  
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Figure 2. American call option free boundary S* as a function of the time to 
maturity τ when E = 100, T = 10, r = 0.08, σ = 0.2, b = 0.04: “true” free 
boundary (solid line), Barone-Adesi, Whaley free boundary (dotted line), first 
order approximation of the free boundary (dashed line), second order ap-
proximation of the free boundary (dash-dotted line). 

 

   
(a)                                                        (b) 

Figure 3. American call option price C as a function of the time to maturity τ for two values of the asset price S = 90 (a), S 
= 110 (b), when E = 100, T = 10, r = 0.08, σ = 0.2, b = 0.04. “True” price CT (solid line), Barone-Adesi, Whaley price CBW 
(dotted line), first order approximation ,1, 1AC =  of the price (dashed line), second order approximation ,2, 1AC =  of the price 
(dash-dotted line). 

 
options with intermediate maturity times (i.e. when 3 10T≤ ≤ ) at time t = 0 (i.e. Tτ = ) or at time t close to 
zero. 

Figure 4 shows the American call option price C when Tτ =  (i.e. when t = 0), T = 10, E = 100, r = 0.08, 
0.2σ = , b = 0.04 as a function of the asset price S. Note that the option price approximation obtained using the 

zero-th order term (i.e. the Barone-Adesi, Whaley price) is not accurate (see Figure 4 dotted line). This is a 
consequence of the fact that the zero-th order approximation of the free boundary is unsatisfactory (see Figure 2, 
Figure 4). Note that in Figure 4 the payoff function (solid line) is a lower bound for the “true” American call  
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Figure 4. American call option price C as a function of the asset price S when 
τ = T = 10, E = 100, r = 0.08, σ = 0.2, b = 0.04. “True” price CT (square-solid 
line), Barone-Adesi, Whaley price CBW (dotted line), first order approxima-
tion ,1, 1AC =  of the price (dashed line), second order approximation ,2, 1AC =  
of the price (dash-dotted line), and payoff function (solid line). The abscissae 
of the four marked points show the location of the free boundary: square 
mark—true free boundary, star mark Barone-Adesi, Whaley free boundary, 
circle mark—first order approximation of the free boundary, triangle mark— 
second order approximation of the free boundary. 

 
option price CT and that the first order (dashed line) and the second order (dash-dotted line) approximations ob-
tained using (12), (18) and the series expansions developed in Sections 2 and 3 and the “true” option price CT 
(square-solid line) overlap while the zero-th order approximation (i.e. the Barone-Adesi, Whaley solution) (dot-
ted line) is not accurate. The abscissae of the four points marked in Figure 4 are the location of the free bounda-
ries: square mark—“true” free boundary, star mark—zero-th order approximation of the free boundary (i.e. Ba-
rone-Adesi, Whaley free boundary), circle mark—first order approximation of the free boundary, triangle mark— 
second order approximation of the free boundary. Note that in Figure 4 the true free boundary and its second 
order approximation overlap. In Figure 5 we present the relative errors with respect to the “true” option price of 
the approximated option prices shown in Figure 4 as a function of the asset price. That is Figure 5 shows as a 
function of the asset price S the relative errors with respect to the “true” option price of the Barone-Adesi, Wha-
ley option price (dotted line), of the first order approximation of the option price (dashed line) and of the second 
order approximation of the option price (dashed-dotted line) obtained from (12), (18) and the series expansions 
introduced in Sections 2 and 3. Recall that in Figure 4 and Figure 5 the parameters of the American call option 
problem considered are: 10Tτ = = , E = 100, r = 0.08, 0.2σ = , b = 0.04. 

Let us consider the American put option pricing problem. We study a set of test problems similar to those 
discussed in [2] [3]. 

The first test problem involving American put options is taken from Table 5 of [2] and consists in evaluating 
at time t = 0 the prices of the American put options having E = 100, T = 3 when the underlying asset price 
ranges from S = 80 to S = 120, that is when ( )80 1 10jS S j= = + − ∗ , 1, 2, ,5j =  , and the Black Scholes pa-
rameters have the following values: 0.2σ = , r = 0.05, ( )0.04 1 0.04jb b j= = − + − ∗ , 1, 2,3, 4j = . 

In analogy with the notation introduced previously in the study of the American call option pricing problem 
we denote with ( ),TP S T , ( )BW ,P S T , ( ), , 1 ,A nP S T= , n = 1, 2, respectively the values of the American put op-
tion prices obtained using the trinomial tree method (i.e. the “true value” of the option price used as benchmark), 
the Barone-Adesi, Whaley formula (for put options) and the n-th order approximation, n = 1, 2, obtained from  
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Figure 5. Relative errors of the approximations of an American call option 
price with respect to the “true value” of the price as a function of the asset 
price S when τ = T = 10, E = 100, r = 0.08, σ = 0.2, b = 0.04: relative error of 
the Barone-Adesi, Whaley price (dotted line), relative error of the first order 
approximation of the price (dashed line), relative error of the second order 
approximation of the price (dashed-dotted line). 

 
the analogous (for put options) of (12), (18) and of the series expansions introduced in Sections 2, 3. For later 
convenience to emphasize the dependence from the parameter b = bj, 1, 2, , 4j =  , of the put option prices and 
we write b as an argument of the put option price, that is we write ( ), ,TP S T b , ( )BW , ,P S T b , ( ), , 1 , ,A nP S T b= , 
instead of writing respectively ( ),TP S T , ( )BW ,P S T , ( ), , 1 ,A nP S T= , n = 1, 2. Moreover let BW

Pre  and , , 1
P
A nre = , 

n = 1, 2, be the following relative errors:  

( ) ( ) ( ) ( )BW BW, , , , , , , , ,P
T Tre S T b P S T b P S T b P S T b= −                      (64) 

( ) ( ) ( ) ( ), 1 , , 1, , , , , , , , , 1, 2.P
n T A n Tre S T b P S T b P S T b P S T b n= == − =                  (65) 

Table 3 shows the results obtained in this experiment. In the attempt of making Table 3 comparable with 
Table 5 of [2] we show in Table 3 the values of the following Root Mean Square Errors (RMSE):  

( ) ( )( )
5 4 2

BW
1 1

1RMSE BW , , , , ,
20 T i j i j

i j
P S T b P S T b

= =

− = −∑∑                     (66) 

( ) ( )( )
5 4 2

, 1 , , 1
1 1

1RMSE , , , , , 1, 2,
20n T i j A n i j

i j
E P S T b P S T b n= =

= =

− = − =∑∑                 (67) 

and the values of the following Maximum Absolute Errors (MAE):  

( ) ( )BW,
MAE BW max , , , , ,T i j i ji j

P S T b P S T b− = −                        (68) 

( ) ( ), 1 , , 1,
MAE max , , , , , 1, 2,n T i j A n i ji j

E P S T b P S T b n= =− = − =                    (69) 

where in (68), (69) i takes the values 1,2, ,5  and j takes values 1,2, , 4 . 
Table 5 of [2] compares on the test problems considered the accuracy of the put option prices computed with 

some well known methods used to solve the American put option pricing problem including the methods of 
Geske and Johnson [4], Bunch and Johnson [6], Brodie and Detemple [19] (see [2] for further details). Table 3  
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Table 3. Approximations of the price of an American put option with T = 3, E = 100, r = 0.08, σ = 0.2 and relative and ab-
solute errors committed. 

b  S  TP  BWP  ,1, 1AP =  ,2, 1AP =  BW
Pre  1, 1

Pre =  2, 1
Pre =  

−0.04 80 25.658 26.245 25.462 25.648 22.289 10−×  37.628 10−×  43.973 10−×  

−0.04 90 20.083 20.641 19.833 20.079 22.778 10−×  21.244 10−×  41.809 10−×  

−0.04 100 15.497 15.990 15.208 15.509 23.183 10−×  21.866 10−×  47.861 10−×  

−0.04 110 11.803 12.221 11.486 11.834 23.545 10−×  22.679 10−×  32.683 10−×  

−0.04 120 8.8854 9.2345 8.5561 8.9411 23.928 10−×  23.707 10−×  36.265 10−×  

0.0 80 22.205 22.395 22.127 22.196 38.575 10−×  33.502 10−×  43.767 10−×  

0.0 90 16.207 16.498 16.099 16.194 21.795 10−×  36.601 10−×  47.556 10−×  

0.0 100 11.702 12.030 11.578 11.692 22.801 10−×  21.065 10−×  48.832 10−×  

0.0 110 8.3667 8.6871 8.2272 8.3597 23.829 10−×  21.667 10−×  48.393 10−×  

0.0 120 5.9299 6.2222 5.7804 5.9293 24.928 10−×  22.522 10−×  41.166 10−×  

0.04 80 20.347 20.325 20.337 20.342 31.062 10−×  44.765 10−×  42.613 10−×  

0.04 90 13.495 13.563 13.469 13.473 35.021 10−×  31.972 10−×  31.659 10−×  

0.04 100 8.9423 9.1076 8.9138 8.9116 21.847 10−×  33.187 10−×  33.436 10−×  

0.04 110 5.9111 6.1225 5.8799 5.8757 23.576 10−×  35.262 10−×  35.982 10−×  

0.04 120 3.8972 4.1153 3.8612 3.8604 25.595 10−×  39.251 10−×  39.448 10−×  

0.08 80 20.000 20.000 20.000 20.000 0.000 0.000 0.000 

0.08 90 11.696 11.634 11.709 11.687 35.300 10−×  31.066 10−×  48.073 10−×  

0.08 100 6.9298 6.9621 6.9581 6.9137 34.672 10−×  34.083 10−×  42.324 10−×  

0.08 110 4.1536 4.2574 4.1881 4.1319 22.499 10−×  38.311 10−×  35.230 10−×  

0.08 120 2.5096 2.6402 2.5414 2.4840 25.205 10−×  21.266 10−×  21.018 10−×  

RMSE BW 0.2971− = , 1, 1RMSE 0.1541E =− = , 2, 1RMSE 0.0227E =− =  

MAE BW 0.5875− = , 1, 1MAE 0.3294E =− = , 2, 1MAE 0.0557E =− =  

 
shows that the root mean square errors and the maximum absolute errors of the put option prices obtained using 
the second order approximation of the solution of the American put option pricing problem deduced from the 
analogous for put options of (12), (18) and of the expansions introduced in Sections 2 and 3 outperform those 
shown in Table 5 of [2]. In particular note that the second order approximation of the put option price obtained 
with the method developed in Sections 2 and 3 outperforms in accuracy the best approximation of the American 
put option price obtained with the Brodie and Detemple method shown in Table 5 of [2]. 

Moreover Table 3 shows that the behaviour of the series expansions developed in Sections 2 and 3 applied to 
the put option pricing problem is similar to their behaviour in the case of the call option pricing problem shown 
in Table 2. In fact in Table 3 when n = 0, 1 going from the n-th order approximation to the ( )1n + -th order ap-
proximation of the American put option price we gain roughly one correct significant digit in the approximate 
solution found. A similar behaviour has already been observed in the call option case in Table 2. 

The last test problem studied is taken from Little, Pant, Hou [3]. We consider the American put option pricing 
problem when T = 1, E = 100, r = 0.07, 0.25σ = , 0.0d r b= − =  (i.e. b = 0.07) or 0.03d r b= − =  (i.e. b = 
0.04). We compare the free boundaries obtained using the approximations shown in Table 5 and Table 6 of [3] 
and the first three order approximations, 0, 1 0S S∗ ∗

= = , 1, 1S∗
= , 2, 1S∗

=  of the free boundary obtained with the me-
thod developed in Sections 2 and 3 (adapted for put options) shown in Table 4. In Table 4 ( )S τ∗ , 0 Tτ< < , 
denotes the “true” free boundary of the American put option pricing problem obtained solving numerically the 
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integral equation for the put free boundary presented in [3]. Note that the second order approximation of the free 
boundary obtained with the method developed in Sections 2 and 3 (adapted for put options) (shown in Table 4) 
is roughly of the same quality of the numerically computed free boundary obtained in [3] solving the integral 
equation analogous to (58) satisfied by the free boundary of the American put option pricing problem (see Table 
4, Table 5 of [3]). 

Finally let us compare the computational times needed to obtain the approximations of the solution of the 
American option pricing problem that have been considered in this Section. Let us consider the American call 
option pricing problem defined by S = 70, 10Tτ = = , E = 100, b = −0.04, 0.02σ = , r = 0.08, Table 5 shows 
the time (in seconds) required to compute for n = 0, 1, 2 the coefficients ,n jA , 0,1, , 2j n=  , the option price 
approximation , , 1A nC =  and the corresponding free boundary approximation , 1nS∗

= , and the time (in seconds) 
required to compute the same option price and the corresponding free boundary with the trinomial tree method 
when nT = 1000 steps and solving numerically the integral equation satisfied by the free boundary. These com-
putational times have been obtained using an Intel CORE 3i processor. Table 5 shows that the time required to 
compute the first three order approximations of the solution of the American call option pricing problem (n = 0, 
1, 2) deduced from (12), (18) and the series expansions of Sections 2, 3 is negligible when compared to the time 
required to compute the same quantities (price and free boundary) with the trinomial tree method and the nu-
merical solution of the integral equation. Furthermore, as already said, it is easy to see that for 0,1,n =   the 
computation on a grid of values of the S and τ  variables of the n-th order approximation of the option price 
and of the corresponding free boundary derived from (12), (18) and the series expansions introduced in Sections 
2, 3 can be easily parallelized. In fact the computation of the free boundary at a given order on a grid of maturity 
times can be done in parallel since at each order in   the condition that defines the free boundary in the method 
developed Sections 2 and 3 is a local condition. Furthermore for any fixed maturity time the evaluation of the  
 

Table 4. Approximations of the free boundary of an American put option 
with maturity T = 1 and strike price E = 100. 

0.07r = , 0.25σ = , 0.04b =  

τ  ( )S τ∗  ( )0, 1S τ∗
=  ( )1, 1S τ∗

=  ( )2, 1S τ∗
=  

0.04 90.3991 90.9985 90.0245 90.3994 

0.4 79.5573 80.5337 79.7225 79.5589 

0.6 77.2021 78.1801 77.2351 77.2055 

1 74.1860 74.1027 74.2529 74.1801 

0.07r = , 0.25σ = , 0.07b =  

τ  ( )S τ∗  ( )0, 1S τ∗
=  ( )1, 1S τ∗

=  ( )2, 1S τ∗
=  

0.04 91.3962 91.9431 91.1940 91.3925 

0.4 82.2619 83.1359 82.2465 82.2614 

0.6 80.3417 81.2235 80.3608 80.3414 

1 77.9201 78.7683 77.9707 77.9202 

 
Table 5. Computational times (Intel Core i3 processor). 

American call option 100E = , 10T = , 0.08r = , 0.2σ =  

b zero-th order  
appr. (sec) 

first order  
appr. (sec) 

second order  
appr: (sec) 

trinomial  
appr. (sec) 

−0.04 42.12 10−×  47.85 10−×  31.79 10−×  6.302 

0.00 42.08 10−×  48.40 10−×  31.82 10−×  6.318 

0.04 42.08 10−×  48.03 10−×  31.89 10−×  6.303 
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option price at a given order on a grid of asset prices can be done in parallel, in fact this is simply the evaluation 
of a closed form formula on a set of points. 

A rough comparison of the computing times of the iterative method of [11] to solve the American option 
pricing problem (see Tables 3-5 of [11]) and of our approximated solutions (see Table 5), that takes into account 
the difference between the two CPU employed in the computations (i.e. the Intel Core i3 in our numerical expe-
riments and the 3.0-GHz Pentium in the numerical experiments of [11]), shows that these computing times are 
similar and are (on both CPUs) of the order of 2 - 3 milliseconds for the evaluation of the option price and of the 
corresponding free boundary given the values of the independent variables S, τ . However it must be noted that 
when the American option pricing problem must be solved on a grid in the S and τ  variables the method de-
veloped in Sections 2 and 3 can be fully parallelized while the method developed in [11] due to the nonlocal 
character of the integral equation used to determine the free boundary cannot be fully parallelized. 

The experiments presented in this Section show that the approximate solutions of the American option pricing 
problem obtained using the method introduced in Sections 2 and 3 are a natural and useful extension of the Ba-
rone-Adesi, Whaley formula and that these approximate solutions can be used fruitfully to obtain at a very 
competitive computational cost accurate solutions of the American option pricing problem. 

The website: http://www.econ.univpm.it/recchioni/finance/w20 contains material including animations, an 
interactive application and an app that helps the understanding of the paper. A general reference to the work of 
the authors and of their coauthors in mathematical finance is the website:  
http://www.econ.univpm.it/recchioni/finance.  
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