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Abstract. We study the transfer operators for a family Fr : [0, 1] → [0, 1] depending on the parameter

r ∈ [0, 1], which interpolates between the tent map and the Farey map. In particular, considering the action

of the transfer operator on a suitable Hilbert space, we can define a family of infinite matrices associated to
the operators and study their spectrum by numerical methods.

1. Introduction

Let F : [0, 1]→ [0, 1] be the Farey map defined by

(1.1) F (x) =

{ x
1−x if 0 ≤ x ≤ 1

2

1−x
x if 1

2 ≤ x ≤ 1

From the ergodic point of view it is of interest since it is expanding everywhere but at the fixed point x = 0
where it has slope one. This make this map a simple model of the physical phenomenon of intermittency
[10]. Moreover, the Farey map is related to the Farey fractions and encodes the continued fraction algorithm
(see [4]).

An effective tool in the study of the dynamics induced by a map on the interval is provided by the transfer
operator associated to the map (see [1] for an overview), a linear operator whose spectrum on a suitable
space of functions gives information about the existence of invariant measures, ergodicity and mixing. For
expanding maps it turns out that the transfer operator is quasi-compact when restricted to a space of
sufficiently regular functions, hence the spectrum is made of isolated eigenvalues with finite multiplicity and
the essential part, a disc of radius strictly smaller than the spectral radius. Instead for intermittent maps as
the Farey map, even when restricted to C∞ functions the essential spectrum of the transfer operator is equal
to the whole spectrum. In particular the ergodic properties of the map cannot be deduced by this approach.

The spectrum of a family of transfer operators of the Farey map has been studied in [2, 3, 8] acting on
a suitable Hilbert space H of holomorphic functions. The operators studied in these papers are self-adjoint
and positive, and it turns out that the spectrum consists of the interval [0, 1] plus an isolated real eigenvalue.

Another approach to the properties of the transfer operator of the Farey map has been introduced in
[6]. It has been first noticed that the Minkowski question mark function conjugates F with the tent map
T : [0, 1]→ [0, 1] defined by

(1.2) T (x) =

{
2x if 0 ≤ x ≤ 1

2

2(1− x) if 1
2 ≤ x ≤ 1

Then the authors have introduced a one-parameter family Fr : [0, 1] → [0, 1] of expanding maps with
r ∈ [0, 1], interpolating between T and F , namely F0 = T and F1 = F . The family Fr is defined by

(1.3) Fr(x) =


(2−r)x
1−rx if 0 ≤ x ≤ 1

2

(2−r)(1−x)
1−r+rx if 1

2 ≤ x ≤ 1

A thermodynamic approach to the properties maps Fr has been considered in [5], and we also refer to [9]
for a recent study of this family.
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In [6], the authors have studied the transfer operators Pr for the family Fr acting on the Hilbert space
H. It turns out that Pr is of the trace-class for all r ∈ [0, 1) and the trace can be analytically computed.
Moreover they have discussed the possibility that the spectral properties of P1, namely the transfer operator
for the Farey map, are approximated by those of Pr letting r → 1−.

In this paper we use the matrix approach that has been introduced in [2] to study the operators Pr, and
discuss possible insights about the spectral properties of P1.

2. Transfer operators

The transfer operator Pr associated to the map Fr acts on functions f : [0, 1]→ C as

(Prf)(x) :=
∑

y :Fr(y)=x

f(y)

|F ′r(y)|

which using (1.3) becomes

(2.1) (Prf)(x) = (Pr,0f + Pr,1f)(x)

with

(2.2) (Pr,0f)(x) =
ρ

(ρ+ rx)2
f
( x

ρ+ rx

)
and (Pr,1f)(x) =

ρ

(ρ+ rx)2
f
(

1− x

ρ+ rx

)
where ρ := 2− r, a notation that will be used in the rest of the paper.

The operator P1 for the Farey map F has been studied in [2, 3] on the Hilbert space H of holomorphic
functions defined as

(2.3) H :=
{
f : [0, 1]→ C : f = B[ϕ] for some ϕ ∈ L2(m)

}
where B[·] denotes the generalized Borel transform

(2.4) (B[ϕ])(x) :=
1

x2

∫ ∞
0

e−
t
x et ϕ(t) dm(t) ,

and L2(m) := L2(R+,m) where m is the measure on R+

dm(t) = te−tdt.

The space H is endowed with the inner product inherited by the inner product on L2(m) through the
B-transform, that is

(2.5) (f1, f2)H :=

∫ ∞
0

ϕ1(t)ϕ2(t) dm(t) if fi = B[ϕi] .

In [6], the authors have studied the operators Pr on H for all r ∈ [0, 1) and have proved many properties
that we collect in the following theorem.

Theorem 2.1 ([6]). For all r ∈ [0, 1) the space H is invariant for Pr and

Pr B[ϕ] = B[(Mr +Nr)ϕ]

for all ϕ ∈ L2(R+,m), where Mr, Nr : L2(m)→ L2(m) are defined as

(2.6) (Mrϕ)(t) =
1

ρ
e−

r
ρ t ϕ

( t
ρ

)
and (Nrϕ)(t) =

1

ρ
e

1−r
ρ t

∫ ∞
0

J1

(
2
√
st/ρ

) √ ρ

st
ϕ(s) dm(s)

where Jq denotes the Bessel function of order q. Moreover

(i) the function

gr(x) =
1

1− r + rx
= B

[
1− e−

r
1−r t

rt

]
(x) ∈ H

satisfies Prgr = gr, hence it is the density of an absolutely continuous invariant measure for Fr;
(ii) the operators Mr and Nr on H are of trace-class, hence the same holds for Pr;
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(iii) the spectra of Mr and Nr contain only simple eigenvalues, in particular

sp(Mr) = {0} ∪
{
ρ−k

}
k≥1 and sp(Nr) = {0} ∪

{
(−1)k−1

(
4ρ

(1 +
√

1 + 4ρ)2

)k}
k≥1

;

(iv) the trace of Pr can be explicitly computed and is given by

trace (Pr) =
1

1− r
+

√
1 + 4ρ− 1

2
√

1 + 4ρ
.

3. The matrix approach

As shown in [3], the Hilbert space L2(m) admits a complete orthogonal system {en}n≥0 given by the
Laguerre polynomials defined as

(3.1) en(t) :=

n∑
m=0

(
n+ 1
n−m

)
(−t)m

m!

which satisfy

(en, en) =
Γ(n+ 2)

n!
= n+ 1

for all n ≥ 0. Hence, using Theorem 2.1, we can study the action of Pr on H by the action on L2(m) of an
infinite matrix representing the operators Pr := Mr +Nr defined in (2.6) for the basis {en}n≥0. That is for
any φ ∈ L2(m), we can write

φ(t) =

∞∑
n=0

φnen(t) with φn =
1

n+ 1
(φ, en)

hence φ is an eigenfunction of Pr with eigenvalue λ if and only if

(Prφ, ek) = λ (φ, ek) = λ (k + 1)φk ∀ k ≥ 0

Using the notation crkn := (Pren, ek) we obtain that

(3.2) Prφ = λφ ⇔ Crφ = λDφ ⇔ Arφ = λφ

where Cr and D are given by

Cr = (crkn)k,n≥0 and D = diag(k + 1)k≥0

and Ar is the infinite matrix

(3.3) Ar = (arkn)k,n≥0 with arkn =
crkn
k + 1

.

We now use the definitions (2.6) of the operators Mr and Nr to compute

Proposition 3.1. For all r ∈ (0, 1) we have

arkn =

(
n+ k + 1

n

)
(2− r)rk

2n+k+2 2
F

1

(
−k,−n;−k − n− 1,

2(r − 1)

r

)
+

+

n∑
l=0

(−1)l
(
n+ 1
n− l

) (
l + k + 1

l

)
(2− r)rk

2l+k+2 2
F

1

(
−k,−l;−k − l − 1,

2(r − 1)

r

)
for all k, n ≥ 0, where

2
F

1
denotes the hypergeometric function.

Proof. From the definition of the arkn in (3.3), we first have to compute the terms crkn = (Pren, ek). We have

crkn = ((Mr +Nr)en, ek) =

∫ +∞

0

(Mren)(t)ek(t)dm(t) +

∫ +∞

0

(Nren)(t)ek(t)dm(t)
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and compute the two integrals separately. For the first we find∫ +∞

0

(Mren)(t)ek(t)dm(t) =

∫ +∞

0

1

ρ
e−

r
ρ t en

(
t

ρ

)
ek(t) te−tdt =

1

ρ

∫ +∞

0

e−t(
r
ρ+1) t en

(
t

ρ

)
ek(t)dt =

=
1

ρ

Γ(n+ k + 2) ( rρ + 1− 1
ρ )n ( rρ + 1− 1)k

k!n! ( rρ + 1)n+k+2 2
F

1

(
−k,−n;−k − n− 1,

( rρ + 1)( rρ + 1− 1
ρ − 1)

( rρ + 1− 1
ρ )( rρ + 1− 1)

)
=

=
Γ(n+ k + 2)

k!n!

(2− r)rk

2n+k+2 2
F

1

(
−k,−n;−k − n− 1,

2(r − 1)

r

)
where in the second line we have used [7, equation 7.414 (4), p. 809].

For the second integral we use (2.6) and the polynomial expression (3.1) for en to write∫ +∞

0

(Nren)(t) ek(t) dm(t) =

∫ +∞

0

1

ρ
e

1−r
ρ t

[∫ +∞

0

J1(2
√
st/ρ)√

st/ρ
en(s) dm(s)

]
ek(t) te−tdt =

=

∫ +∞

0

1

ρ
e

1−r
ρ t

[∫ +∞

0

J1(2
√
st/ρ)√

st/ρ

n∑
l=0

(
n+ 1
n− l

)
(−s)l

l!
dm(s)

]
ek(t) te−tdt =

=

∫ +∞

0

1

ρ
e

1−r
ρ t

[ n∑
l=0

(
n+ 1
n− l

)
(−1)l

l!

(ρ
t

)l+2
∫ +∞

0

J1(2
√
u)ul+

1
2 e−

ρ
t u du

]
ek(t) te−tdt

where in the last line we have made the change of variable u = t
ρ s. Using now [7, equation 6.643 (4), p.

709] to write ∫ +∞

0

J1(2
√
u)ul+1/2e−

ρ
t u du = l! e−

t
ρ

(ρ
t

)−l−2
el

(
t

ρ

)
,

we obtain∫ +∞

0

(Nren)(t) ek(t) dm(t) =

∫ +∞

0

1

ρ
e

1−r
ρ t

[ n∑
l=0

(
n+ 1
n− l

)
(−1)l e−

t
ρ el

(
t

ρ

)]
ek(t) te−tdt =

=

n∑
l=0

(−1)l
(
n+ 1
n− l

)
1

ρ

∫ +∞

0

t e−
2
ρ t el

(
t

ρ

)
ek(t) dt =

=

n∑
l=0

(−1)l
(
n+ 1
n− l

)
1

ρ

Γ(l + k + 2)

l! k!

( 1
ρ )l ( 2

ρ − 1)k

( 2
ρ )l+k+2 2

F
1

(
−k,−l;−k − l − 1,

2
ρ ( 1
ρ − 1)

1
ρ ( 2

ρ − 1)

)
=

=

n∑
l=0

(−1)l
(
n+ 1
n− l

)
Γ(l + k + 2)

l! k!

(2− r)rk

2l+k+2 2
F

1

(
−k,−l;−k − l − 1,

2(r − 1)

r

)
where in the third line we have used again [7, equation 7.414 (4), p. 809].

The proof is finished by adding the two integrals and dividing by k + 1. �

We can now numerically approximate solutions to (3.2) using the standard north-west corner approxima-
tion of the matrices Ar. For N ≥ 1 we let Ar,N denote the N ×N matrix defined as

Ar,N = (ar,Nkn )k,n=0,...,N−1 with ar,Nkn = arkn .

For each r ∈ (0, 1) we find N eigenvalues for Ar,N which approximate the eigenvalues of Pr = Mr + Nr,
whose spectrum consists only of the point spectrum as stated in Theorem 2.1. In Figure 1 we have plotted
the eigenvalues of Ar,N for N = 50 as functions of r ∈ (0, 1).

First of all we notice that for all r we find λ = 1 as leading eigenvalue. This is expected since by
Theorem 2.1(i) for all r the operator Pr admits an eigenfunction gr with eigenvalue 1, which corresponds to
the invariant measure for the map Fr. Second we conclude from the results that the approximation of the

4



Figure 1. The eigenvalues of Ar,N for N = 50 as functions of r ∈ (0, 1).

eigenvalues of Pr gets worse and worse as r approaches 1. This is evident in the leading eigenvalue, which
is a curve very close to 1, but slightly decreasing as r → 1−, and is probably the reason for the other curves
to be non-increasing as r approaches 1.

Then we can ask how good is the approximation given by the eigenvalues in Figure 1. To quantify the
goodness of the approximation we can use the only analytical result about the spectrum of Pr, namely the
computation of its trace given in Theorem 2.1(iv). We have plotted in Figure 2(a) the function given in
Theorem 2.1(iv), which is the upper most curve diverging as r → 1−, and the traces of the matrices Ar,N as
functions of r ∈ (0, 1) for different values of N . In particular we have chosen N = 10, 20, 30, 40, 50, 60. We see
that as N increases we get a better and better approximation of the trace of Pr, and the two almost coincide
for r < 0.6. However as r approaches 1, we see that the approximation of the trace becomes poor, and in
particular for N = 60, the small oscillations in the curve show numerical instabilities in the computations.

Hence we believe that the computation of the eigenvalues of Ar,N in Figure 1 is a very good approximation
of the eigenvalues of Pr for r < 0.6. For example for r = 0, the eigenvalues of P0 are the set

{
2−2k

}
k≥0∪{0}

(see e.g. [6, Proposition 4.7]), and these values coincide for what we find in Figure 1. It is instead unclear
what happens as r approaches 1.

To try to understand this point we have plotted in Figure 2(b) the eigenvalues of Figure 1 together with
the sums of the eigenvalues of Mr and Nr for k = 1, 3, 5, 7, 9 find in Theorem 2.1(iii), that is the curves

ρ−k + (−1)k−1
(

4ρ

(1 +
√

1 + 4ρ)2

)k
, k = 1, 3, 5, 7, 9 ,

which coincide with the first five eigenvalues of Pr for r = 0. The behavior of the trace of Ar,N with respect
to that of Pr, and Figure 2(b) suggest that all the eigenvalues of Pr converge to 1 as r → 1−, so that for
r = 1 the spectrum of Pr would consist of the eigenvalues 0 and 1 and of the purely continuous spectrum
(0, 1). Hence our numerical results support the conjecture given in [8].
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6

http://arxiv.org/abs/1410.3805

	1. Introduction
	2. Transfer operators
	3. The matrix approach
	References

