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THE ZIEGLER SPECTRUM OF THE RING OF ENTIRE COMPLEX
VALUED FUNCTIONS

SONIA L’INNOCENTE, FRANÇOISE POINT, GENA PUNINSKI, AND CARLO TOFFALORI

Abstract. We will describe the Ziegler spectrum over the ring of entire complex valued functions.

§1. Introduction. In [20] the third and fourth authors developed themodel theory
of modules over Bézout domains. For instance, a substantial information on the
structure of the Ziegler spectrum over an arbitrary Bézout domain B, ZgB , was
obtained. However, as it was mentioned there, this information is expected to be
elaborated for particular classes of Bézout domains. One example of this refinement
was given in [19], and some information on the structure of the Ziegler spectrum of
the ring of algebraic integers is contained in [13].
In this note we will investigate this topological space for the prominent example
of a Bézout domain: the ring E = E(C) of complex valued entire functions. This
was the question that Luigi Salce once asked Ivo Herzog. We will show that the
points of ZgE are given by triples (U, I, J ), where U is an ultrafilter on an (at most
countable) nowhere dense subset D of C, and I, J are cuts on the linearly ordered
abelian semigroup ND/U . The isolated points of this space correspond to principal
ultrafilters, hence are of the form Et(k) = E/(z − t)kE, where t ∈ C and k ≥ 1,
and they form a dense subset in the Ziegler spectrum.
We will also describe the closed points of ZgE as the finite length points E/M

k

for maximal ideals M of E (for instance the modules Et(k) are such), plus the
generic points. Here generic means the quotient field of a prime factor E/P of
E, in particular the quotient field Q of E, which is the field of meromorphic
functions.
We will also show that the Cantor–Bendixson derivative T ′

E of the theory TE of
E-modules coincides with the theory ofES -modules, where S is the multiplicatively
closed set consisting of nonzero polynomials. There are no isolated points on the
next level, i.e., the first CB-derivative Zg′E is a perfect space. Furthermore, no
nontrivial interval in the lattice of positive primitive formulae of T ′

E is a chain,
hence this theory lacks both breadth and width. Furthermore we will show that the
pure injective hull of ES is a superdecomposable module E-module. Finally we will
see that the closed points in Zg′E are generics.
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THE ZIEGLER SPECTRUM 161

This article paves the way for some future applications, say to the proof of
decidability of the theory of E-modules. However we decided to postpone these
developments, but spell out now, in a meticulous way, the facts on the Ziegler
spectrum of Bézout domains which occur when investigating this space for E. We
hope that they will be useful when studying the model theory of modules over other
examples of Bézout domains which occur in analysis, say, the ring of real analytic
functions.
Due to the fact that none of the authors is an expert in complex analysis we will
be quite insisting in collecting and explaining some facts in this area, which are well
known to experts, but were difficult to find for us. To make up for this we will also
include precise references and explanations (mostly taken from [20]) from model
theory of modules over Bézout domains.

§2. The ring of entire functions. LetCdenote the field of complex numbers.Recall
that a function f : C → C is said to be entire, if it is given by an everywhere con-
vergent power series

∑∞
n=0 anz

n with complex coefficients an, i.e., lim
n→∞

n
√
|an| = 0.

For instance, the exponential function ez =
∑∞
n=0

zn

n! is entire, as is the sine function
sin z =

∑∞
n=0

z2n+1

(2n+1)! . More examples and explanations can be found in any complex
analysis textbook, say [1] or [22]. For instance, each entire function is differentiable,
and its derivative is of the same kind.
If we add or multiply entire functions pointwise, the result is likewise. Thus, entire
functions form a commutative ring E whose unity is the constant function of value
1. We will be interested in ring theoretic properties of E. Note that the cardinality
of E is the continuum c = 2ℵ0 .
LetZ(f) = {z ∈ C | f(z) = 0} denote the zero set of an entire functionf. Then
Z(f) is atmost a countable set whose only possible accumulation point is at infinity.
For instance, this is the case for the sine function: Z(sin z) consists of points !k,
k ∈ Z. On the other hand, the zero set of each polynomial is finite, and the zero set
of the exponential function is empty. If z ∈ C then "f(z) will denote themultiplicity
of z as a root of f, which is a natural number, in particular "f(z) = 0 iff z is not a
zero off. Thus to each entire f we assign themultiplicity function "f : Z(f)→ N.
Usually the zeroes of an entire function f are counted as z0, z1, z2, . . . such that
|zk | ≤ |zk+1|, and each zk occurs only finitely many times.
If f, g ∈ E then clearly Z(fg) = Z(f) ∪ Z(g) and, for any z, its multiplicity
"fg(z) is the sum of multiplicities "f(z) and "g(z). Since the zero set of an entire
function is nowhere dense, E is a domain: fg ̸= 0 for nonzero f, g ∈ E.
The next fact shows that the zero set and the multiplicity of an entire function
determine the principal ideal it generates.

Fact 2.1. Let f, g ∈ E. Then g ∈ fE if and only if Z(f) ⊆ Z(g) and "f(z) ≤
"g(z) for each z ∈ Z(f). In particular f ∈ E is invertible if and only if Z(f) = ∅.
The proof of this result requires Weierstrass’ theorem on functions with a pre-
scribed set of zeroes. Namely, for each k define the Weierstrass primary factor
Ek(z) = (1 − z) exp(z + z2/2! + · · · + zk/k!), which is an entire function with
z = 1 as its only (simple) zero. Let {zk} be a sequence of nonzero complex num-
bers such that |zk | → ∞ and each zk occurs mk times. Then the infinite product
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162 SONIA L’INNOCENTE ET AL.

∏∞
k=0Ek(z/zk) is an entire function whose zero set consists of the zk with multiplic-
ity mk . Furthermore, if f is any function with this property, then, byWeierstrass’
factorization theorem, f = eg ·

∏∞
k=0 Ek(z/zk) for an entire function g.

A useful variant of this result is the following.
Fact 2.2 (see [24, Theorem 15.13, pp. 304–305] and [6, Proposition 1.1]). Let

{zk} be a sequence of complex numbers such that |zk | → ∞. To each zk associate a
nonnegative integer mk and complex numbers wnk , 0 ≤ n ≤ mk . Then there exists an
entire function f such that f(n)(zk) = n!wnk for all k and 0 ≤ n ≤ mk .
Recall that a commutative domain B is said to be Bézout, if each 2-generated
ideal of B is principal. This amounts to the so-called Bézout identities: for each
0 ̸= a, b ∈ B there are c, r, s, u, v such that c = ar+ bs and a = cu, b = cv, hence c
generates the ideal aB +bB. Then c is a greatest common divisor of a and b, written
gcd(a, b), which is defined up to a multiplicative unit. Similarly, the notion of a
least common multiple, lcm(a, b), makes perfect sense, and (with a suitable choice
of units) we obtain the formula ab = gcd(a, b) · lcm(a, b).
The following fact goes back to Weierstrass, but was brought into prominence
by Helmer [7]. We will sketch its proof, borrowed from elsewhere (basically, [21,
Theorem 15.13]).
Fact 2.3. The ring E of entire complex valued functions is a Bézout domain.
Proof. We look for a greatest common denominator off, g ∈ E, i.e., an element
h ∈ fE + gE such that f, g ∈ hE. We may assume that f, g are nonzero and not
invertible. It follows easily that Z(h) = Z(f) ∩ Z(g), and the multiplicity of each
z ∈ Z(h) equals the minimum of "f(z) and "g(z). Choose any such h. Since it
divides bothf and g, canceling by h, we may assume thatZ(f)∩Z(g) = ∅, hence
we have to solve the equation fu + gv = 1.
In fact, it suffices to find v ∈ E such thatZ(f) ⊆ Z(1−gv) and"f(z) ≤ "1−gv(z)
for each z ∈ Z(f),—then u exists by Fact 2.1. For each z ∈ Z(f) we will specify
few values of v and its derivatives, and then construct v using Fact 2.2.
Thus choose z ∈ Z(f) and assume (for simplicity) that "f(z) = 3. Using the
standard interpretation ofmultiple roots in terms of common roots with derivatives,
we need to satisfy the following equalities:

(1 − gv)(z) = 0, (1− gv)′(z) = 0 and (1− gv)′′(z) = 0 .
The first condition reads 1 = g(z)v(z). From f(z) = 0 it follows g(z) ̸= 0,
hence define v(z) = −1/g(z). To satisfy the second and the third equations we set
v′(z) = −g ′(z)v(z)/g(z) and v′′(z) = (−g ′′(z)v(z) − 2g ′(z)v′(z))/g(z). ⊣
Wewill need onemore property ofE. Recall that elements a, b of a Bézout domain
B are called coprime if gcd(a, b) = 1, that is, if aB + bB = B holds. Following [3,
p. 118] we say that B is adequate if, for all nonzero noninvertible a, b ∈ B, there is a
factorization a = cd such that gcd(c, b) = 1 and, for each noninvertible divisor d ′

of d , the elements d ′ and b are not coprime.
In the ring of entire functions the latter means that Z(d ) ⊆ Z(b).
Fact 2.4. E is an adequate Bézout domain.
Proof. Let f, g ∈ E be nonzero and not invertible. Choose h ∈ E such that
Z(h) = Z(f) \Z(g), and "h(z) = "f(z) for each z in this set, in particular h and
g are coprime. Then f = hu, where Z(u) = Z(f) ∩ Z(g) ⊆ Z(g), as desired. ⊣
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THE ZIEGLER SPECTRUM 163

A (commutative) domain V is said to be a valuation domain, if its ideals are
linearly ordered by inclusion. More generally, a domain R is said to be a Prüfer
domain if, for each prime ideal P, the localization RP is a valuation domain,—see
[3, Chapter 3] for equivalent definitions and properties. Since each Bézout domain
B is a Prüfer domain, it follows that any prime ideals P1, P2 of B included in a
maximal ideal M are comparable, i.e., there is no following inclusion diagram for
prime ideals.

◦

✷✷
✷✷
✷✷

☞☞
☞☞
☞☞

M

◦P1 ◦ P2

For adequate Bézout domains there is no opposite inclusion in the partial order
of prime ideals.
Fact 2.5 (see [8, Theorem 4]). Let B be an adequate Bézout domain. Then every
nonzero prime ideal P is contained in a unique maximal ideal, in particular B/P is a
valuation domain.
Note that the latter statement follows from the former, because each local Bézout
domain is a valuation domain. For more details on the proof, see a similar situation
in Lemma 3.3 below (just replace I and I ♯ by P).
The ring E possesses more remarkable properties, for instance, being adequate,
it has elementary divisors and (see [11]) stable rank 1, but we will not use these
properties in the article.

§3. Ideals of Bézout domains. First let us make a trivial remark concerning
arbitrary ideals of Bézout domains.

Remark 3.1. Let I be an ideal of a Bézout domainB and 0 ̸= a ∈ I . Then b ∈ I
if and only if gcd(a, b) ∈ I .

Thus to describe I it suffices to look at the divisors b of a. For instance, if B = E,
then the latter implies that Z(b) ⊆ Z(a).
We say that a proper ideal I of a Bézout domain B is weakly prime, if its com-
plement I ∗ = B \ I is closed with respect to least common multiples, i.e., a, b ∈ I ∗
yields lcm(a, b) ∈ I ∗. Clearly each prime ideal is weakly prime. On the other
hand, for instance, the ideal z2E of E is weakly prime but not prime. These ideals
appeared very naturally in [20] and have many nice properties to justify their name.
We mention just a few.
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164 SONIA L’INNOCENTE ET AL.

Here is a Matlis-like definition,—see [14]. Let I ♯ consist of elements r ∈ B such
that ar ∈ I for some a ∈ I ∗. For instance 0 ∈ I ♯, 1 /∈ I ♯ and I ⊆ I ♯.
Lemma 3.2. If I is a weakly prime ideal of a Bézout domain B, then I ♯ is a prime
ideal containing I . Furthermore if P is prime ideal, then P = P♯.

Proof. Clearly I ♯ is closed with respect to multiplication by elements of B. To
check that it is closed with respect to addition, suppose that r1, r2 ∈ I ♯, hence airi ∈
I for some ai ∈ I ∗. Since I is weakly prime we conclude that a = lcm(a1, a2) ∈ I ∗.
Then ari ∈ I for every i yields a(r1 + r2) ∈ I , therefore r1 + r2 ∈ I ♯.
If P is prime, then the inclusion P♯ ⊆ P follows from the definition of P♯. ⊣
The following result extends Fact 2.5, with almost the same proof.

Lemma 3.3. Each nonzero weakly prime ideal I of an adequate Bézout domain B
is contained in a unique maximal ideal, in particular B/I is a valuation ring, possibly
with zero divisors.

Proof. Suppose that I is contained in different maximal ideals M1,M2, hence
1 = q1 + q2 for some q1 ∈M1 \M2 and q2 ∈M2 \M1.

◦M1 ◦ M2

◦

☞☞☞☞☞☞

✷✷✷✷✷✷

P

Choose a nonzero p ∈ I . Applying the definition of being adequate to p and q1
we get a factorization p = r1s1, where gcd(r1, q1) = 1, and q1 is not coprime to any
nonunit dividing s1. From gcd(r1, q1) = 1 and q1 ∈ M1 it follows that r1 /∈ M1, in
particular r1 /∈ I ♯. Since I ♯ is prime, we derive s1 ∈ I ♯. Similarly p = r2s2, where
r2 /∈ I ♯, s2 ∈ I ♯, and q2 is not coprime to any nonunit dividing s2.
From s1, s2 ∈ I ♯ we conclude that s = gcd(s1, s2) ∈ I ♯. Applying the above
condition to s and q1, and then involving q2, we construct a nonunit dividing both
q1 and q2, a clear contradiction. ⊣
The description of maximal ideals of E is well known, and there is a reasonably
good (see some comments below) description of prime ideals ofE.We approach this
classification backwards, first describing weakly prime ideals. Because it involves
ultrafilters on countable sets, we will introduce this terminology.

3.1. Ultrafilters. LetD be a nonempty at most countable set (usually a subset of
C). Recall that a nonempty collection U of subsets of D is said to be a filter, if 1)
∅ /∈ U ; 2) U is upward closed, i.e., if K ⊆ L ⊆ D, then K ∈ U implies L ∈ U ; 3)
U is closed with respect to finite intersections.
The set of filters on D is partially ordered by inclusion, and maximal elements
of this ordering are called ultrafilters. In fact U is an ultrafilter iff for any partition
D = K1 ∪K2 either K1 ∈ U or K2 ∈ U holds.
For instance, for each d ∈ D, there exists a principal ultrafilter Ud , namely
K ∈ Ud iff d ∈ K . IfD is finite, then each ultrafilter onD is of this form. Otherwise
U is nonprincipal, in particular each cofinite set belongs to U , therefore U is not
closed with respect to countable intersections. Furthermore, by [10, pp. 255–256],
there are 2 c ultrafilters on a countable (infinite) D.
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THE ZIEGLER SPECTRUM 165

Let A be any algebraic system in a countable language and let U be an ultrafilter
on D. Then the elements of the ultraproduct AU = AD/U are equivalence classes
of functions " : D → A. Here the functions " and "′ are equivalent if they take the
same values on a large subset of D, i.e., if the equalizer {d ∈ D | "(d ) = "′(d )} is
in U .
All operations and relations are naturally transferred to AU , and A is embedded
into AU diagonally. From [2, Corollary 4.1.13] it follows that AU is an elementary
extension of A, in particular A and AU are elementarily equivalent. If U = Ud
is principal, then the evaluation map f ,→ f(d ) defines an isomorphism from
AU onto A. Otherwise these algebraic systems are not isomorphic, and (see [2,
Theorem 6.1.1])AU is $1-saturated of cardinality c. Furthermore, if we assume the
Continuum Hypothesis, CH, then (see [2, Theorem 6.1.1]) the isomorphism type
of AU does not depend on U , as soon as U is nonprincipal.
Our main interest will be when A = N considered as a linearly ordered abelian
semigroup (with respect to addition). If D and U are as above, then let N = NU
denote the ultraproduct ND/U . Thus, if U is principal, thenN ∼= N, and otherwise
N = ND/U is an $1-saturated linearly ordered abelian semigroup of cardinality c.
For instance (taking D = $ for simplicity), if U is not principal, then the function
"(n) = 10n + 1 is less than the function "′(n) = n2 in N , because 10n + 1 is less
than n2 for n ≥ 11.
As a linear ordering N contains a least (but no largest) element, and has a lot
of simple intervals. Namely, if " ∈ N , then the function "′(d ) = "(d ) + 1 covers
", i.e., " < "′ in N and there is no "′′ strictly between " and "′. Furthermore it is
easily seen that for" ≤ "′ ∈ N , the interval [","′] is of finite length iff the difference
"′ − " is bounded by some k, i.e., the set {d ∈ D | "′(d )− "(d ) ≤ k} is large.
We define the functions ","′ ∈ N to be finite equivalent, written " ∼fin "′, if the
interval between " and "′ (or vice versa) is of finite length. Each equivalence class
of ∼fin in N is countable. Because N is $1-saturated, it follows that the factor set
N ′ = N/ ∼f is a linear ordering of cardinality c which is dense, i.e., for each a < b
in this chain there exists c such that a < c < b.

3.2. Weakly prime ideals. In what follows we will use the approach from
Gillman–Jerison book [4].
Let I be a nonzero ideal of E. Choose 0 ̸= f ∈ I , hence the zero set D = Z(f)
is at most countable and nowhere dense. Let Uf consist of subsets ofD of the form
Z(g), where g ∈ I . Using the divisibility properties of entire functions it is easily
checked that Uf is a filter on D. Then we obtain the following dichotomy. If there
is a g ∈ I with the smallest Z(g) ∈ Uf , then I is called fixed, otherwise I is said to
be free.

Lemma 3.4. Let I be a nonzeroweakly prime ideal ofE, 0 ̸= f ∈ I andD = Z(f).
Then Uf is an ultrafilter on D.

Proof. We have already mentioned that U = Uf is a filter. To prove that U is
maximal, consider a nontrivial partition D = K1 ∪ K2. Let f1 ∈ E have K1 as its
zero set, and multiplicity of each z ∈ K1 the same as for f; and similarly define f2.
If f1, f2 /∈ I then, by the assumption, g = lcm(f1, f2) /∈ I . But g generates the
same ideal as f, a contradiction. ⊣
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166 SONIA L’INNOCENTE ET AL.

Note that, if f, g ∈ I , then h = gcd(f, g) ∈ I , and Uh is a common restriction
of Uf and Ug on the zero set Z(h).
For the fixed weakly prime ideals (z − t)kE, k ≥ 1 the smallest zero set is the
singleton {t}. Thus to distinguish weakly prime ideals we need more invariants.
Recall that a cut on a linearly ordered set L is a proper partition L = L1 ∪ L2
such that L2 is upward closed, hence L1 is downward closed. Clearly each cut is
uniquely determined by L2 and vice versa, hence we will often identify the cut with
its upper part.
The following proposition describes weakly prime ideals using cuts on some
chains.
Proposition 3.5. Let I be a nonzero weakly prime ideal of E.
1) If I is fixed then I = (z − t)kE for some t ∈ C and k ≥ 1.
2) Suppose that I is free. Choose 0 ̸= f ∈ I and let D = Z(f). Let c(I )
consist of multiplicity functions "g , g ∈ I restricted to D, considered as elements of
NUf = ND/Uf . Then c(I ) is a cut on this chain, furthermoreUf and c(I ) determine
I uniquely.
Proof. 1) If I is fixed, then choose 0 ̸= f ∈ I with the least zero set. Since Uf is
an ultrafilter, we conclude thatZ(f) is a singleton {t}. It follows that I = (z− t)kE
for some k ≥ 1.
2) Suppose that I is free. First we will show that c(I ) is upward closed. Suppose
that "g ≤ " modulo U for some function " ∈ ND , hence "g(d ) ≤ "(d ) for each d
in a large subset K of D. We need to construct an entire u such that the restriction
of its multiplicity function to D equals " modulo U .
By the definition of Uf we find h ∈ I such that Z(h) = K . Replacing h by
gcd(g, h) we may assume that "h(d ) ≤ "(d ) for each d ∈ K . Now construct an
entire u such that "u restricted to K coincides with ", and equals zero otherwise.
Then h divides u, hence u ∈ I .
It remains to check thatUf and c(I ) determine I uniquely. Suppose that I ′ ̸= I
is another weakly prime ideal which contains f and define the same ultrafilter Uf
on D = Z(f), and the same cut c(I ). By symmetry we may assume that there
exists g ∈ I \ I ′. By the assumption, there exists g′ ∈ I ′ such that the restrictions
of "g and "g′ to D equal modulo U . Choose a large K ⊆ D on which these
multiplicity functions coincide. Construct h ∈ I , h′ ∈ I ′ whose zero sets equal K ,
and "h(z) = "h′(z) for each z ∈ K . It clearly follows that h ∈ I \ I ′, but hE = h′E,
a contradiction. ⊣
Thus nonzero weakly prime ideals I, I ′ of E coincide iff for some (or any) 0 ̸=
f ∈ I ∩ I ′ they define the same ultrafilter U = Uf on the zero set D = Z(f), and
the same cut on the corresponding chain NU .
The following remark is obvious.

Remark 3.6. Let I ⊆ I ′ be nonzero weakly prime ideals of E. If 0 ̸= f ∈ I
then they define the same ultrafilter U = Uf on D = Z(f), and c(I ) ≤ c(I ′) for
corresponding cuts onNU , i.e., the upper part of c(I ) is contained in the upper part
of c(I ′).

Proof. Clearly U (I ) ⊆ U (I ′), hence the equality follows from the maximality
of ultrafilters. The remaining part is straightforward. ⊣
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Because each prime ideal is completely prime,we recover awell knowndescription
of prime ideals of E. Namely, prime ideals P are distinguished by the property that
the cut c(P) on the chain NU is prime, i.e., if the equivalence class of a multiplicity
function "k is in c(P) for some k, then the same holds true for ". For instance
(taking againD = $ for simplicity), if "(n) = 2n is in c(I ), then "′(n) = n belongs
to there, but also "′′(n) = ⌊n/2⌋.
In particular fixed prime ideals are exactly the maximal idealsMt = (z− t)E, t ∈

C. If P is not fixed, then, because all calculations are made modulo a nonprincipal
ultrafilter U , the property of being prime is quite tricky. For instance (see [5]) for
each pair of prime ideals P ⊂ P′ there exist at least 2ℵ1 ideals strictly between P
and P′. The main idea is that this interval contains a Dedekind complete %1-set of
prime ideals, hence [4, Corollary 13.24] gives the desired cardinality.
If we assume the continuum hypothesis, then ℵ1 = c, hence the length of a
maximal chain of prime ideals in E equals 2 c. However, if we accept the Martin
axiom with the negation of CH, then we see only (following [12]) that this length
is at least 2ℵ1 = c. We do not know what is the face value of the Krull dimension
of E.
Finally we obtain a classical description of maximal ideals M of E. Here the
corresponding cut c(I ) contains all positivemultiplicity functions, hence is uniquely
determined by the ultrafilterU . Thus eitherM is fixed, hence equalsMt = (z− t)E
for some t ∈ C; orM is free, therefore is uniquely determined by the ultrafilter Uf
on D = Z(f) for any 0 ̸= f ∈ M . From this it is obvious that each weakly prime
ideal of E is contained in a unique maximal ideal.

§4. Model theory of modules. In this section we will recall main notions of the
model theory of modules,—for which we refer to [15]; the particular case of Bézout
domains is treated in detail in [20].
LetR be a commutative ring.A positive-primitive formulaϕ(x) in one free variable
x is an existential formula∃ y (yA = xb̄), wherey = (y1, . . . , yk) is a tuple of bound
variables, A is a k × l matrix over R, and b̄ is a row of length l . For instance, for
each a ∈ R, we have the divisibility formula a | x of the form ∃ y (ya = x), and the
annihilator formula xa = 0.
Let N be a right R-module and choose m ∈ N . We say that m satisfies ϕ in
N , written N |= ϕ(m), if there exists a tuple m = (m1, . . . , mk) in N such that
mA = mb holds. For instance N |= (a | x)(m) iff m = m′a for some m′ ∈ N , i.e.,
if m is divisible by a in N . Furthermore N |= (xa = 0)(m) iff ma = 0.
The corresponding definable subgroup, ϕ(N), consists of m ∈ N which satisfy ϕ.
SinceR is commutative, ϕ(N) is a submodule ofN . For instance (a | x)(N) = Na,
and (xa = 0)(N) consists of elements of N which are annihilated by a.
We need the following ‘elimination of quantifiers’ result for pp-formulae over
Bézout domains.

Fact 4.1 (see [23, Lemma 2.3]). LetB be a Bézout domain. Then each pp-formula
ϕ(x) is equivalent in the theory ofB-modules to a finite sumof formulaea | x∧xb = 0,
a, b ∈ B; and to a finite conjunction of formulae c | x + xd = 0, c, d ∈ B.
If B = E then a further reduction is possible. For instance, if 0 ̸= c is not a unit

and d is nonzero, then one may assume that Z(d ) ⊆ Z(c) in the latter formula.
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Namely decompose d = ed ′ such that gcd(e, c) = 1 according to the definition of
being adequate, in particular Z(d ′) ⊆ Z(c). Since c and e are coprime, it follows
from [20, Section 3] that the formulae c | x + xd = 0 and c | x + xd ′ = 0 are
equivalent. Furthermore, using elementary duality, we may also assume that, if
0 ̸= b is not a unit and a ̸= 0, then Z(a) ⊆ Z(b) in the former formula.
An inclusion of modules N ⊆ N ′ is said to be pure if, for each m ∈ N and
each pp-formula ϕ, from N ′ |= ϕ(m) it follows that N |= ϕ(m). For instance each
injective module is pure in any its overmodule. We say that a module is pure injective
if it is injective with respect to pure embeddings. For example, each injective module
is pure injective, and the same holds true for each R-module of finite length.
The isomorphism types of indecomposable pure injective modules form points of
a topological space, theZiegler spectrum ofR, ZgR. In fact there at most 2

max(|R|,ℵ0)

such points. The topology on this space is given by (quasi-compact) basic open sets
(ϕ/'), where ϕ,' range over pp-formulae in one variable. Here (ϕ/') consists of
points N in ZgR such that ϕ(N) is not a subset of '(N). We will often refer as
‘ϕ over '’ to this set. For instance, the open set xa = 0 over x = 0 consists of
indecomposable pure injective modules containing a nonzero element annihilated
by a.
For Bézout domains Fact 4.1 provides a better basis for Ziegler topology.

Fact 4.2. Let B be a Bézout domain. Then the basic open sets a | x ∧xb = 0 over
c | x + xd = 0, a, b, c, d ∈ B form an open basis of Ziegler topology.

Of course some such pairs of pp-formulae define empty sets, hence redundant. A
precise criterion when this happens can be extracted from [20, Section 4].
Since E is a Prüfer domain, each indecomposable pure injective module N is
pp-uniserial, i.e., the lattice of definable subgroups of N is a chain. It follows that
each basic open set as above equals to the intersection of the following open sets:
1) a | x over xb = 0; 2) a | x over c | x; 3) xb = 0 over c | x, and 4) xb = 0 over
xd = 0, hence these sets give a subbasis for the Ziegler topology.
The support of some such pairs is easily understood. For instance, look at the
pair a | x over c | x. If it is nontrivial then, taking the conjunction and using [20,
Lemma 3.1], we may assume that a ̸= 0 and c = ga for some nonunit g. This pair
opens a pointN iffNga is a proper subset ofNa. SinceN is pp-uniserial, this is the
same as Ng ⊂ N and Na ̸= 0. Thus we can further decompose this basic open set
into the intersection of open sets x = x over g | x, and x = x over xa = 0.
However, we see no real advantage in working with this subbasis, because (we
thank Lorna Gregory for this remark) the intersection of arbitrary such pairs, say
xb = 0 over x = 0, and x = x over a | x may be noncompact, hence equals to an
infinite union of basic open sets.
LetN be anR-module and letm be a nonzero element ofN . The positive primitive
type ofm inN , written ppM (m), consists of pp-formulaeϕ such thatm satisfiesϕ in
N , in particular this set is closed with respect to finite conjunctions and implications.
The converse is also true: if p is a collection of pp-formulae closed with respect to
finite conjunctions and implications, then there exists a module N and an element
m of N such that p = ppN (m).
A pp-typep is said to be indecomposable if it is realized by a nonzero element in an
indecomposable pure injective module. Thismodule is unique up to an isomorphism
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over the realization, and is called the pure injective envelope of p, written PE(p).
Note that different pp-types may lead to isomorphic pure injective envelopes, for
example, this is the case when N is an indecomposable pure injective module and
p = ppM (m), q = ppM (mr), where mr is nonzero, thus q is a direct shift of p.
Now we specialize to Bézout domains. First we refine the classification of
indecomposable pp-types from [20, Theorem 4.5].
Lemma 4.3. Let B be a Bézout domain. Then there exists a one-to-one correspon-
dence between indecomposable pp-types p in one variable in the theory of B-modules
and the pairs (I, J ) such that I , J are weakly prime ideals of B and I ♯, J ♯ are
comparable prime ideals. This correspondence is given by sending every p to
1) the annihilator ideal I = I (p), consisting of b ∈ B such that xb = 0 ∈ p;
2) the nondivisibility ideal J = J (p), consisting of a ∈ B such that a | x is not
in p.
Such pairs are called admissible in [20].
Proof. The only difference with [20] is that in there the condition on I ♯ and J ♯ is
formulated as follows. If d ∈ I ∗ divides b ∈ I , and c ∈ J ∗ divides a ∈ J , then the
quotients b/d and a/c are not coprime. This means that b/d ∈ I ♯ and a/c ∈ J ♯,
hence that I ♯ + J ♯ is a proper ideal. The remaining part is straightforward. ⊣
Note that, if I = 0 and J = 0, then the condition that I ♯ and J ♯ are comparable
prime ideals gets trivial. On the other hand, if B = E and I, J are nonzero, then this
condition means that there is 0 ̸= f ∈ I ∩ J , and the ultrafilters Uf on D = Z(f)
defined by I and J coincide, and there are no further restrictions. Thus we are led
to the following definition.
A triple (U, I, J ) is said to be admissible, if I, J are weakly prime ideals of E such
that one of the following holds.
1) I = J = 0 and U is an empty.
2) I is nonzero, J = 0 and, for some 0 ̸= f ∈ I , U = Uf is an ultrafilter on
D = Z(f) corresponding to I .
3) I = 0, J is nonzero and, for some 0 ̸= g ∈ J , U = Ug is an ultrafilter on
D = Z(g) corresponding to J .
4) I, J ̸= 0 and there is 0 ̸= h ∈ I ∩ J such that U = Uh is an ultrafilter on
D = Z(h) defined by both I and J .
When I or J are nonzero, they define the cuts c(I ) and c(J ) on the ultraproduct

NU = ND/U , and are uniquely determined by these cuts. We will often identify
ideals with the corresponding cuts.
Note that the triples (U, I, J ) and (U ′, I ′, J ′) in 4) produce the same pp-type iff
I = I ′, J = J ′, hence U and U ′ have a common restriction to Z(f) ∩ Z(g), and
similarly for 2) and 3). For instance, if U is defined on some D and generated by
t ∈ D, then I = (z−t)kE and J = (z−t)lE, and these k, l ≥ 1 uniquely determine
the pp-type.
In particular there is a unique pp-type corresponding to the pair I = J = 0 as
in 1). This pp-type is realized by any nonzero element in the quotient field Q of E,
which is the field of meromorphic functions.
We will denote by p(U, I, J ) the indecomposable pp-type associated with an
admissible triple (U, I, J ), and by PE(U, I, J ) the corresponding indecomposable
pure injective module.
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It follows from [23, Theorem 5.4] that over a commutative ring R each inde-
composable pure injective module N localizes. Namely define the localizing ideal
P = P(N) to consist of elements of R which do not act by multiplication as auto-
morphisms ofN . ThenP is a prime ideal andN is a (pure injective indecomposable)
module over the localization RP . This ideal is easily recognized in our setting.

Lemma 4.4. Let (U, I, J ) be an admissible triple over E, and let N = PE(U, I, J )
be the corresponding indecomposable pure injective module. Then the localizing ideal
of N is the prime ideal I ♯ ∪ J ♯.
Proof. Choose m ∈ N which realizes p = p(U, I, J ). If f ∈ E then it is easily
checked that the multiplication byf does not increase p iff f /∈ I ♯∪J ♯, from which
the result follows.
Namely, for every f ∈ I ♯ there is g ∈ I ∗ such that gf ∈ I . It follows that
mg ̸= 0 and mgf = 0, hence f cannot determine an automorphism of N ; and
similarly if f ∈ J ♯. Conversely, let f /∈ I ♯ ∪ J ♯. Then I ♯ and J ♯ are preserved under
multiplication by f. Thus this multiplication does not increase p and determines
an automorphism of N . ⊣
Another possibility to grasp the meaning of this ideal is the following. We have
f /∈ I ♯ ∪ J ♯ iff Z(f) is separated from U , i.e., if there exists K ∈ U such that
Z(f) ∩K = ∅.
Having described indecomposable pp-types, we wish to classify their envelopes,
i.e., indecomposable pure injective modules. To determine points of ZgE , it remains
to describe the equivalence relation on such pp-types which corresponds to the
isomorphism relation on their envelopes. We have already mentioned the typical
occurrence of such identification: the shift by an element of the ring.
It follows from [20, Lemma 4.7] that for Bézout domains this is the only possibil-
ity: if m,m′ are nonzero elements in an indecomposable pure injective module N ,
then there exists r ∈ B such that ppN (mr) = ppN (m′) or ppN (m) = ppN (m′r),
hence these types are identified by either direct or inverse shift. This leads to a simple
description of this equivalence relation on the level of admissible pairs. We say that
admissible pairs (I, J ) and (I ′, J ′) are equivalent, if their pure injective envelopes are
isomorphic. By [20, Lemmas 4.6, 4.7] this happens iff one of the following holds.
1) There exists a /∈ I such that I ′ = (I : a) = {b ∈ B | ab ∈ I } and
(J ′)∗ = J ∗a = {b ∈ B | b/ gcd(a, b) ∈ J ∗}, the direct shift by a,
2) The symmetric condition with (I, J ) and (I ′, J ′) interchanged, the inverse shift
by a.
Note that the direct or inverse shift of the zero ideal is zero again, furthermore
such shifts do not change prime ideals.
For E the above shifts correspond to a simultaneous shifting of the pair of
cuts. Namely, we choose a function " in the lower part of c(I ), subtract it from the
multiplicity function of eachf ∈ I to get I ′, and add this function to themultiplicity
function of each g ∈ J to get J ′; or make a similar construction starting with " in
the lower part of c(J ).
For instance, suppose that I is a principal cut generated by the function "(n) =
n + 1 in the ultraproduct ND/U for some zero set D identified with $; and let J
correspond to the principal cut on D generated by %(n) = n2. Then the function
((n) = n is in the lower part of c(I ). Taking the direct shift by (, we obtain
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an equivalent pair (I ′, J ′), where I ′ is the maximal ideal MU , such that c(I ′) is
generated by "′(n) = 1; and c(J ′) is generated by %′(n) = n2 + n.
Thus we have obtained the following description of points of ZgE .
Theorem 4.5. Let E be the ring of entire functions. There is a natural one-to-
one correspondence between points of the Ziegler spectrum of E (hence isomorphism
classes of indecomposable pure injective modules) and admissible triples (U, I, J ) with
respect to the following equivalence relation.
1) For nonzero I, J, I ′, J ′, the triples (U, I, J ) and (U ′, I ′, J ′) are equivalent iff U
and U ′ can be restricted on a common zero set D ∈ U,U ′ such that the restriction of
cuts corresponding to (I, J ) and (I ′, J ′) can be identified by a shift.
2) If I = 0 but J is nonzero, then (U, I, J ) and (U ′, I ′, J ′) are equivalent iff I ′ = 0
and J, J ′ can be restricted to a common zero setD ∈ U,U ′ such that the restriction of
cuts corresponding to J and J ′ on D can be identified by a shift.
3) If I is nonzero but J = 0, then (U, I, J ) and (U ′, I ′, J ′) are equivalent iff J ′ = 0
and I, I ′ can be restricted to a common zero setD ∈ U,U ′ such that the restriction of
cuts corresponding to I and I ′ on D can be identified by a shift.
4) If I = J = 0, then we have only one admissible triple (∅, 0, 0) in this equivalence
class (the corresponding indecomposable pure injective representation is given by the
algebra of meromorphic functions).

§5. The Ziegler spectrum. In the previous section we have described the points
of the topological space ZgE . In this section we will touch upon the topology. First
we estimate the number of points in this space.
Proposition 5.1. The cardinality of the Ziegler spectrum of E equals 2 c.
Proof. SinceE has the cardinality of the continuum,we conclude that |ZgE | ≤ 2

c.
On the other hand, chosen a nonzero countable subset D of C, one can construct 2 c
ultrafilters U on D, hence the same amount of free maximal ideals of E. When
M ranges over these maximal ideals, then the admissible triples (U,M, 0) provide
nonisomorphic indecomposable pure injective modules. Namely, if a /∈M then (M :
a) =M , hence the direct or inverse shift does not change the corresponding cut. ⊣
In fact the above constructed points can be separated from each other using
Ziegler topology. Namely, assume that U,U ′ are different ultrafilters on D, hence
there is a zero setZ(g) ⊆ D which is inU but not inU ′. Then g acts with torsion on
PE(U,M, 0), but as an automorphism on PE(U ′,M, 0), hence the former point is
separated from the latter by the pair xg = 0 over x = 0. Thus ZgE has a collection
of 2 c points which can be pairwise separated, hence not elementary equivalent.
We will employ the following point of view on the Ziegler spectrum of any Bézout
domain B. Because each point of ZgB localizes, the whole space is covered by the
closed subsets, the Ziegler spectra of localizations BP for prime (or just maximal)
ideals of B. If we consider these spaces as ‘stalks’, then the topology on ZgB is
patched from these topologies using basic open sets from Fact 4.2.
EachBP is a valuation domain, and the Ziegler spectrum of this class of rings was
thoroughly investigated (see [17, Chapters 12, 13], or [6] for recent development). In
more detail, let Γ denote the value group of a valuation domainV . The nonnegative
part Γ+ of Γ can be identified as a poset with principal ideals of V . We use the
first copy of Γ+ to represent annihilator formulae, and its second copy to encode
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divisibility formulae. In this way the sum a | x + xb = 0 is represented by the
point (b, a) on the quadrant Γ+ × Γ+, and each pp-formula corresponds to a
finite collection (conjunction) of such points. Furthermore the whole lattice of pp-
formulae over V is a free product of these two chains in the variety of modular
lattices, in particular it is distributive.
Also indecomposable pp-types over V correspond to pairs of cuts (I, J ) on Γ+,
hence are represented as points on the completed quarter plane Γ̂× Γ̂, or rather by
lines on this plane of slope−1 (moving along the line corresponds to taking shifts).
If a, b, c, d ̸= 0, then the basic open set a | x ∧ xb = 0 over c | x + xd = 0 in the
Ziegler spectrum is interpreted in [18, Section 4] as the rectangle (d, b] × (c, a] on
the plane ‘catching’ an indecomposable pure injective module, if its line intersects
this rectangle.
To recover topology consider the ‘generic’ case of a basic open set (ϕ/'), where
ϕ
.= a | x ∧ xb = 0 and ' .= c | x + xd = 0 for some nonzero noninvertible

a, b, c, d ∈ B. Using a standard trick (see [20]) one may assume that c = ga and
b = dh for nonunits g, h ∈ B.
Now suppose that P is a prime ideal of B and V = BP . If g /∈ P, then the above
open set (ϕ/') is trivial when restricted to ZgV ; and the same holds true when
h /∈ P. Otherwise g, h ∈ P, and we will interpret this open set as the above rectangle
(d, b]P × [c, a]P (over V ). Thus the basic open set (ϕ/') can be thought of as a
sheaf of rectangles when P runs over prime ideals.
We will demonstrate few instances of this approach applied to the Ziegler spec-
trum of E. Recall that the ring of quotients of E is the field Q of meromorphic
functions. Since this module is indecomposable and injective, it is a point of ZgE .
Furthermore, for each t ∈ C and each k ≥ 1, the module Et(k) = E/(z − t)kE is
indecomposable of finite length, hence is also a point in ZgE .
First we will describe isolated points in ZgE .

Theorem 5.2. The finite length points Et(k), t ∈ C, k ≥ 1 are isolated and dense
in ZgE . Those are the only isolated points in this space.

Proof. First we will check that each point Et(k) is isolated. Namely set a = 1,
c = z − t, b = (z − t)k , d = (z − t)k−1 and consider the basic open set (ϕ/'),
where ϕ .= a | x ∧ xb = 0 and ' .= c | x + xd = 0. Clearly this pair opens the
module Et(k) on the element 1̄ corresponding to 1. Suppose that this pair opens an
indecomposable pure injective module N on an element m. If I is the annihilator
of m, then (z − t)k ∈ I and (z − t)k−1 /∈ I yields I = (z − t)k . Similarly for the
nondivisibility ideal J of N we obtain z − t ∈ J , hence J = (z − t)E. Thus we
conclude thatN is isomorphic to Et(k).
Now we would like to show that these points are dense in ZgE . It suffices to
check that each nontrivial basic open set (ϕ/'), where ϕ .= a | x ∧ xb = 0 and
'
.= c | x + xd = 0, contains such a point. We may assume that this open set

contains a point not from the list, say a point PE(U, I, J ), where I, J are nonzero,
0 ̸= f ∈ I, J andU = Uf is a nonprincipal ultrafilter onD = Z(f). By refiningD
we may assume that "c(z) < "a(z) and "d (z) < "b(z) for each z ∈ D, and choose
any t ∈ D. Since all multiplicities are natural numbers, it is easy, for some k, to shift
the pp-type of 1 in Et(k) in this interval, as desired.
Similar arguments apply when I = 0 or J = 0. ⊣
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Having described isolated points, we will look at the closed ones. We need the
following auxiliary result.

Lemma 5.3. Let V be a valuation domain and let N be an indecomposable finite
endolength point in the Ziegler spectrum of V . Then one of the following holds.
1) N is the quotient field Q(V/P) for some factor V/P by a prime ideal P, the
generic point.
2) N is isomorphic to EP(k) = VP/PkP , k ≥ 2, where P is a prime ideal of V such

that the ideal PP is not idempotent.
Here we excluded the case k = 1 in 2), because the factor VP/PP is isomorphic
to Q(V/P).

Proof. Each module Q(V/P) has endolength 1, and each module EP(k) has
finite length over VP , hence is of finite endolength over V .
Suppose that N is an indecomposable finite endolength V -module. It follows
that N is Σ-pure injective, i.e., has a d.c.c. on definable subgroups. The structure
of such modules over valuation domains is well known (see [17, Chapter 16] for a
more general setting). Namely, let I denote the annihilator of N and let P be the
localizing ideal of N , hence I ⊆ P.
Then N is a VP-module, furthermore V ′ = VP/IP is a noetherian valuation ring
and N is isomorphic to the injective envelope (over this ring) of the unique simple
V ′-module VP/PP.
If V ′ is not artinian, then N has the ascending chain of definable (annihilator)
subgroups, hence is not of finite endolength, a contradiction. Thus V ′ is artinian,
hence self-injective, and N is isomorphic to V ′, i.e., to VP/I ∼= VP/PkP for some
k ≥ 1.
If k = 1, then V ′ = VP/PP ∼= Q(V/P), hence N is generic. Otherwise we may
assume that PP is not idempotent. ⊣
Note that this description works equally well for any Bézout domain B. Because
it is difficult to decide in this general framework when the maximal ideal PP of
the localization BP is idempotent, we will prefer to stay down to living examples.
For instance, if B = A is the ring of algebraic integers, then one could take square
roots, hence each prime ideal is idempotent. This is almost the case for E with few
exceptions,—see below.
Note that the lattice of pp-formulae of a Bézout domain B is always distributive,
hence the same holds true for any theory T of E-modules. It follows from [15,
Theorem 5.3.28] that the isolated condition holds true: each isolated point in T is
isolated by a minimal pair. Now from [15, Corollary 5.3.23] we conclude that a
point in the Ziegler spectrum of this theory is closed iff it is of finite endolength.
However one should be cautious when using Lemma 5.3 in this general setting—
this lemma applies just to the theory of all modules. This is exactly the case we
investigate now.

Proposition 5.4. The following is a complete list of closed points of ZgE .
1) The generic modulesQ(E/P), whereP runs over prime ideals ofE. In particular,
when P = 0, we obtain the field Q of meromorphic functions.
2) The modules Et(k) = E/(z − t)kE, t ∈ C, k ≥ 2.
3) The modules EM (k) = E/Mk for each free maximal idealM and k ≥ 2.
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Proof. Clearly all such points are of finite endolength, hence closed.
Let N be a closed point, and let P be its localization ideal, in particular N is a
closed point in the Ziegler spectrum of the valuation domain EP . Using Lemma
5.3 we may assume that that N ∼= EP(k), k ≥ 2, where the ideal PP of EP is not
idempotent.
It is easily seen that, if P is a nonmaximal prime ideal of E, then there are square
roots in P. We conclude that P is idempotent, therefore occurs just in case 1). Thus
we may assume that P =M is maximal.
IfM is fixed, thenM = (z− t)E, hence not idempotent. Furthermore clearly the
localizationEM is isomorphic to the power series ringC[[X ]], henceN is isomorphic
to Et(k).
Suppose thatM is free and maximal, with corresponding nonprincipal ultrafilter
U . The intersectionM∞ of powers ofM is a prime ideal ofE consisting of functions
which are not constant modulo U , and this ideal is not idempotent. Furthermore
being the intersection of powersMk , this ideal clearly annihilatesN . Also it follows
from [9, Theorem 8] that the factor E/M∞ is isomorphic to C[[X ]]. It is easily
derived thatN ∼= EM (k). ⊣

Dropping fromZgE the isolated points we obtainZg
′
E , the firstCantor–Bendixson

derivative of this space, with the induced topology. This class of modules generates
the theory T ′

E , the CB-derivative of the theory TE of all E-modules.

Theorem 5.5. The theory T ′
E coincides with the theory of ES -modules, where S is

the multiplicative closed set consisting of nonzero polynomials.

Proof. Note that for each point t ∈ C and each nonprincipal ultrafilter U on
a zero set D, we have D \ {t} ∈ U , therefore z − t acts by multiplication as an
automorphism on each indecomposable pure injective module corresponding toU .
It follows that each point of Zg′E is defined over ES (we put for simplicity from
now on E ′ = ES). On the other hand, it is not difficult to check that E ′ is a model
of T ′

E , hence (see [15, Corollary 6.1.5]) the ring of definable scalars of T
′
E coincides

with E ′. ⊣

Thus, after taking the first derivative, we obtain a more regular Bézout domain
E ′. Furthermore, because of the isolated condition, the lattice of pp-formulae of
T ′
E is obtained from the lattice of pp-formulae of E by collapsing intervals of finite
length.
We will not need higher CB-derivatives, because of the following result.

Theorem 5.6. Zg′E has no isolated points. Furthermore no nontrivial interval in the
lattice of pp-formulae of T ′

E is a chain.

Proof. Since the theory of allE-modules enjoys the isolation condition, the latter
statement implies the former.
Clearly it suffices to prove the claim for each localization V = EM , where M
is a free maximal ideal with corresponding ultrafilter U . Let L be the lattice of
pp-formulae of ZgV . Then L is freely generated by two copies of the chainNU . We
put to use results of [16]. Namely, the effect of the first step of the CB-analysis on
the lattice L is that it collapses the intervals of finite length on each of two copies
of N .
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Thus the lattice L′ is freely generated by two copies of the derivative chain N ′.
We have already seen in Section 3.1 that this chain is dense. It easily follows that no
nontrivial interval in L′ is a chain, as desired. ⊣
For a definition of width and breadth of a lattice see [15, Section 7.1]. It fol-
lows from Theorem 5.6 that both dimensions are undefined for the theory of
E ′-modules, and hence for E-modules. Furthermore in [20] we constructed a
superdecomposable pp-type, hence a superdecomposable pure injective module
over E (the notion of superdecomposable module is recalled below). It follows
that nonzero polynomials act as automorphisms on this module, hence it is
defined over E ′. Below we will show that the pure injective envelope of E ′

itself is superdecomposable if viewed as a module over E ′ and consequently
over E.
But before that let us consider the closed points in T ′

E . From the above discussion
it follows that they are of finite endolength. Note that the prime ideals of ES
one-to-one correspond to free prime ideals of E.
Lemma 5.7. The closed points in Zg′E are exactly the generic pointsQ(E/P), where
P runs over free prime ideals of E.
Proof. Following the proof of Proposition 5.4, it suffices to notice that each
prime ideal P of E ′ is idempotent. Namely, the only case we have not considered
is when P corresponds to the free maximal idealM . However, after localizing, we
obtainMS = (M∞)S , hence this ideal is idempotent. ⊣
Recall that a module M is said to be superdecomposable, if no nonzero direct
summand ofM is indecomposable. We need the following general fact.
Lemma 5.8. Let B be a commutative Bézout domain. Then the following are
equivalent.
1) The pure injective envelope of B as a module over itself is superdecomposable.
2) If 0 ̸= a ∈ B is not invertible, then there are coprime nonunits a1, a2 ∈ B
dividing a.
Proof. Since B is coherent, each pp-definable subgroup in B (as a module) is
a principal ideal (see [15, Theorem 2.3.19]). Let p = ppB(1) denote the pp-type
taken in the theory of B (i.e., in the theory of flat = torsion free B-modules), hence
p is a filter in the lattice of principal ideals of B.
Then 1) says that p is superdecomposable, i.e., contains no large formulae. Since
B is distributive, this is the same as to say that for eachϕ ∈ p− there areϕ1,ϕ2 ∈ p−
such that ϕ → ϕi and ϕ1 + ϕ2 ∈ p, i.e., ϕ1 + ϕ2 is a trivial formula. Replacing
formulae by ideals they define, we obtain the desired. ⊣
We apply this criterion to our setting.
Proposition 5.9. The pure injective envelope of E ′ (over E ′ and hence over E) is
a superdecomposable module.
Proof. Suppose thatfE ′ is a proper ideal of E ′, hence we may assume that f ∈
E, f is not a polynomial and Z(f) is an infinite countable set. Let Z(f) = I1 ∪ I2
be a partition of Z(f) into infinite sets. Choose f1 ∈ E such that Z(f1) = I1
and f ∈ f1E. Then f = f1f2, where both functions are noninvertible in E ′ and
Z(f2) = I2, hence f1 and f2 are coprime. ⊣
The following question naturally arises from the previous results.
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Question 5.10. Describe all representations of PE(E ′) as a pure injective envelope
of direct sums of pure injective modules.
For instance, describe all direct summands of this module, and all direct sum
decompositions PE(E ′) = N1 ⊕N2.
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