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Abstract: Small Ruminant Lentiviruses (SRLVs) are widespread in many countries and cause
economically relevant, slow, and persistent diseases in sheep and goats. Monitoring the genetic
diversity of SRLVs is useful to improve the diagnostic tools used in the eradication programs.
In this study, SRLVs detected in Spanish Assaf sheep with different grades of lymphoproliferative
mastitis were sequenced. Genetic characterization showed that most samples belonged to type A
and were closer to Spanish SRLV isolates previously classified as A2/A3. Four samples belonged
to subtype B2 and showed higher homology with Italian B2 strains than with Spanish B2 isolates.
Amino acid sequences of immuno-dominant epitopes in the gag region were very conserved while
more alterations were found in the LTR sequences. No significant correlations were found between
grades of mastitis and alterations in the sequences although samples with similar histological features
were phylogenetically closer to each other. Broader genetic characterization surveys in samples with
different grades of SRLV-lesions are required for evaluating potential correlations between SRLV
sequences and the severity of diseases.
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1. Introduction

Small Ruminant Lentiviruses (SRLVs) include Visna-maedi virus (VMV) and Caprine arthritis
encephalitis virus (CAEV), which cause slow inflammatory diseases in sheep and goats named,
respectively, Visna-Maedi (VM) and Caprine Arthritis Encephalitis (CAE). Viruses are transmitted
mainly via the respiratory route and by colostrum intake [1,2] and cause persistent infections with a
long incubation period. According to the current nomenclature based on gag–pol and pol sequences,
SRLV can be subdivided into genotypes A–E with subtypes present in A, B, and E [3–5]. Typically,
VMV was believed to infect specifically sheep and was included in genotype A while CAEV was
considered goat-specific and was included in genotype B. However, several investigations showed
that cross-infection may occur ([6] and other studies reviewed in [5]). Infected animals can develop
neurological, pulmonary, arthritic, and/or mammary diseases that affect considerable animal welfare
and production. Different patterns of inflammatory mononuclear cell accumulation are observed
usually in the central nervous system, lung, joint, and/or udder and the predominant clinical
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manifestation depends on the severity and extension of the lesions reached in the affected organs [7].
Mammary lesions often consist of mononuclear cell infiltration with scattered hyperplastic lymphoid
follicles [7,8]. Moderate lesions are described when diffused infiltration of lymphocytes within lobules
with distortion of acini are observed and mild lesions are reported when occasional aggregates of
lymphocytes in inter-acinar stroma are present [9]. Recently, minimal lesions consisting of a few small
clusters to multifocal small groups of inflammatory cells with the presence of a few small lymphoid
aggregates and/or one small lymphoid follicle have been reported in SRLV infected sheep [10].

One of the most important productive impacts of SRLV disease is due to the premature removal
of diseased animals because of low milk production and quality with consequent economic losses in
the milk-related and lamb/kids-related industry [11–13]. Due to the significant economic impact of
diseases, VM and CAE are included in the OIE List and specific control and eradication programs are
carried out in many countries [14,15]. Availability of sensitive and specific diagnostic tests is of great
importance for a correct discrimination between infected and non-infected animals. Due to the high
rate of genetic diversity, new genotypes and subtypes might escape the diagnostic detection with the
possible consequence of invalidating any eradication program in place [1]. Therefore, genotype and
subtype surveys of the circulating SRLVs should be encouraged. Many studies describe phylogenetic
analysis of SRLVs found during epidemiological surveys or in outbreaks of diseases, but only a few
of them describe the histopathological lesions observed in target organs [16–18]. For example, mild
mammary lesions with a multifocal method to diffuse mononuclear inflammatory interstitial infiltrates
have been observed in sheep with arthritis and infected by B2 SRLV [17]. Different histopathological
scores have been reported in mammary glands but not in lungs, synovial membranes of joints,
or the chorioid plexus of five goats infected by A4 SRLV [16]. A 13–14 nucleotide deletion in the
R region of the LTR has been observed in sheep with a decreased pathology in the lung but not in
the udder even though SRLV subgenotypes were not known [18]. To our knowledge, correlations
among histopathological grading of mammary lesions and SRLV genotypes and subtypes are yet to
be investigated.

The aim of this work was to carry out genetic characterization and phylogenetic analysis of SRLV
detected in Spanish sheep showing different histopathological grades of mastitis.

2. Material and Methods

2.1. Samples

A total of 35 udder samples were collected randomly at the slaughterhouse in the region of
Castilla y Leon, Northwestern Spain, from Assaf sheep (1–4 years of age) belonging to seropositive
flocks between March 2017 and May 2017. Nineteen samples were collected at the slaughterhouse
named M (samples M1–M19) and 16 were collected at the slaughterhouse named Q (samples Q1–Q16),
which was about 45 Km far from the slaughterhouse M. A first aliquot of each sample was stored at
−20 ◦C and DNA was obtained from 25 mg of each sample by using the Genomic DNA isolation Kit
(Norgen Biotek Corp., Thorold, ON, Canada) and following the manufacturer’s instructions when
eluting the DNA in 100 µL final volume. A second aliquot of samples was fixed in 10% neutral buffered
formalin for 48 h at room temperature and embedded in paraffin wax (FFPE) for histopathology and
immunohistochemistry (IHC). In addition, 2 FFPE mammary samples (N16-426 and N-17-44) of sheep
(Assaf breed, 3 years old) with histological mastitis referable to SRLV disease were available for this
study. DNA from these latter samples was obtained from 4 slides 10 µm thick of each sample by
Recover All Total Nucleic Acid Isolation (Ambion, Waltham, MA, USA) following the instructions and
eluting DNA with 60 µL of elution solution warmed up at 95 ◦C.

2.2. Histopathology and Immunohistochemistry

Slides 4 µm thick were obtained from FFPE samples and were stained with haematoxylin and
eosin (HE) for histopathology. Grading of histopathological lesions of mammary glands was carried
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out by three independent pathologists, which was previously described [10]. Briefly, “no lesions”
was defined when no inflammatory cells were observed and “minimal lesions” (+) consisted of a few
small clusters.

Multifocal small groups of inflammatory cells with the presence of a few small lymphoid
aggregates and/or one small lymphoid follicle known as ‘moderate lesions’ (++) were characterized by
the multifocal method to diffuse interstitial non-supportive inflammation and/or the presence of two
to 15 lymphoid aggregates/follicles and ‘severe lesions’ (+++) consisted of a marked diffuse interstitial
mastitis and/or the presence of >15 lymphoid aggregates/follicles. When differences between the
severity of interstitial inflammatory infiltrates and the presence of lymphoid follicles were observed in
the same organ of an animal, the most severe lesion was considered as the score for the lesion in that
target organ [10].

Serial sections (4 µm) were used for IHC, which was previously reported [19]. A monoclonal
antibody to the SRLV core protein p28 (VMRD Inc., Pullman, WA, USA) diluted 1:1000 was used.
A technique based on an avidin-biotin-peroxidase complex (VECTASTAIN® ELITE® ABC Kits, Vector
Laboratories, Burlingame, CA, USA) with diaminobenzidine as the chromogen (DAB Peroxidase
substrate kit—Vector Laboratories, Burlingame, CA, USA) was used to stain the antigen.

2.3. PCR

A nested PCR was used to amplify about 800 bp long sequences of SRLV gag-pol genes, which was
reported previously [4]. Primers GAG-F1 and POL-R1 were used in the first PCR. The product obtained
was used as a template in a second PCR with primers GAG-F2 and POL-R2. The PCR mixture included
50 µL 2× Taq PCR Master Mix, 500 nM each primer, 4 µL DNA, and PCR grade water up to 100 µL
final volume. PCR conditions were 94 ◦C for 5 min, 45 cycles of 94 ◦C for 1 min, 55 ◦C for 1 min,
72 ◦C for 2 min, and a final extension of 72 ◦C for 10 min. The second PCR was carried out with
the same conditions but 5 µL of the first PCR products were used as the template and the annealing
temperature was 60 ◦C instead of 55 ◦C [4]. LTR sequences (203 bp long) were amplified by nested PCR
with primers described elsewhere [20]. The PCR reaction mix was described above, but 2 µL of DNA
(first PCR) or 2 µL of the first PCR products (second PCR) were used as the template. PCR conditions
were 94 ◦C for 5 min, 35 cycles of 94 ◦C for 30 s, 55 ◦C (or 50 ◦C in the second PCR) for 30 s, 72 ◦C for
40 s, and a final extension of 72 ◦C for 7 min. PCR products were visualized in 1.5% agarose gel and
positive samples were submitted to an external laboratory for sequencing (BMR Genomics, Padova,
Italy). Both the sense and antisense strands were sequenced by performing two independent reactions
for each PCR product. Nucleotide gag-pol sequences were deposited in GenBank (Accession numbers
MH179145—MH179153 and MH179156—MH179159).

2.4. Sequence Analysis

Nucleotide sequences were manually checked and edited with the program BioEdit. A preliminary
analysis by BLASTn was carried out to detect regions of similarity with sequences included in databases.
Sequences of strains considered to be prototypes of different genotypes and SRLV sequences highly
similar to those found in the samples were included in the study (Figure 1 and Figure 3). Sequences
were aligned by MUSCLE [21] and phylogenetic trees were inferred with the program MEGA 7.0.21 [22].
The best-fitting nucleotide substitution models were estimated and the General Time Reversible
model [23] with a gamma distribution with invariant sites (gag sequences) or a Kimura 2-parameter
(LTR sequences) model [24] with gamma-distributed rates among sites were used with bootstrap values
based on 1000 repetitions. Phylogeny was estimated by both the neighbor-joining algorithm (NJ) and
the maximum likelihood (ML) method. Correlations among sequence alterations and histological
features were evaluated by using the Fisher’s exact test. Pairwise distances between sequences of
samples and sequences of reference strains belonging to different genotypes were calculated by MEGA
7.0.21 with the p-distance model [22].
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3. Results

Histological examination and grading of mammary lesions (see Figure 1) resulted in five samples
with severe lesions, 13 samples with moderate lesions, 11 samples with minimal lesions, and five
samples without lesions (see Table 1). Grading of M5 sample was not possible due to a concomitant
purulent mastitis.

IHC results were used to distinguish SRLV infected from uninfected sheep. Three out of the five
samples without lesions (M13, M18 and Q2) were negative by IHC and by both gag-pol and LTR PCR.
Therefore, they were considered negative (see Table 1). The remaining 32 samples of groups M and Q
were positive by IHC (see Figure 2). Sixteen out of the 32 M and Q samples and the 2 N samples were
positive by gag-pol PCR, but good-quality sequences were obtained only from 15 samples. LTR PCR
products were obtained in all but two IHC-positive samples.

Table 1. List of ovine mammary gland samples collected for this study. Samples are classified on the
basis of the grade of mastitis observed by histopathology. Lesions in sample M5 were not classified
due to concomitant purulent mastitis was present. “+”: positive result, “−”: negative result.

Sample Grade of Mastitis IHC LTR PCR Gag-pol PCR Genotype

M1 moderate + + + B2
M2 minimal + + − −
M3 severe + + + B2
M4 moderate + + − −
M5 not classified + + + A2/A3
M6 moderate + + − −
M7 moderate + + + −
M8 moderate + + + −
M9 severe + + + −

M10 minimal + + − −
M11 moderate + + + −
M12 minimal + + + A2/A3
M13 no − − − −
M14 moderate + + − −
M15 minimal + + + A2/A3
M16 minimal + + − −
M17 moderate + + + B2
M18 no − − − −
M19 moderate + + + A2/A3
Q1 no + + + B2
Q2 no − − − −
Q3 minimal + − − −
Q4 minimal + + − −
Q5 minimal + + − −
Q6 severe + + − −
Q7 no + + + A2/A3
Q8 severe + + + A2/A3
Q9 moderate + + − −

Q10 severe + + + A2/A3
Q11 moderate + + − −
Q12 moderate + + + −
Q13 minimal + − − −
Q14 moderate + + − −
Q15 minimal + + − −
Q16 minimal + + − −

N16-426 severe + + + A2/A3
N17-44 moderate + + + A2/A3
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Figure 1. SRLV lesions in mammary gland of sheep. (A) Minimal lesion (+) with small focal 154 
lymphocyte aggregates within the mammary interstitium. 40×. (B) Black arrow indicates moderate 155 
(++) focal inflammatory lesion surrounded by minimal lymphocytic infiltrates. 40×. (C) Large 156 
lymphoid follicle in a severe lesion (+++). Hematoxylin and eosin (HE) staining. 20×. 157 
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Figure 2. IHC against p28 of CAEV/VMV in mammary gland. (A) Scattered positive cells within 159 
minimal inflammatory lesions (+). 20×. (B) Positive macrophage-like cell in moderate lesion (++). 40×. 160 

3.1. Analysis of Gag Sequences 161 

Genotyping was carried out by phylogenetic analysis of partial gag gene sequences, according 162 
to the taxonomic classification proposed by Shah et al. [3]. All sequences were different from each 163 
other and nine samples were type A and four samples were type B. In particular, samples M5, M12, 164 
M15, M19, Q7, Q8, Q10, N16-426M, and N17-44M clustered within genotype A were more closely 165 
related with strains 292, 160, 166, and 697, which were previously detected in the same Spanish region 166 
(see Figure 3). Only strain 697 had been fully sequenced. Since similar values located with this isolate 167 
intermingled between A2 and A3, the isolate 697 had been assigned to the A2/A3 subtype [25]. 168 
Samples M1, M3, M17, and Q1 resulted of genotype B and subtype B2 (see Figure 3). Additionally, 169 
phylogenic and BLAST analysis showed that they were more related to B2 viruses detected in Italy 170 
than in Spain (Ov496). These results were confirmed by the pairwise distances comparison (see Table 171 
2). Samples M12, M15, M19, Q7, Q8, Q10, N16-426, and N17-44 were more closely related to the A2/A3 172 
Spanish strain HQ848062.1 (0.105–0.142). Moreover, samples M1, M3, M17, and Q1 were more closely 173 
related to the B2 strains FJ195346.1 and EU010126.1. In particular, they were more closely related to 174 
the Italian strain EU010126.1 (0.064–0.081) than to the Spanish strain FJ195346.1 (0.092–0.102). 175 

Figure 1. SRLV lesions in mammary gland of sheep. (A) Minimal lesion (+) with small focal lymphocyte
aggregates within the mammary interstitium. 40×. (B) Black arrow indicates moderate (++) focal
inflammatory lesion surrounded by minimal lymphocytic infiltrates. 40×. (C) Large lymphoid follicle
in a severe lesion (+++). Hematoxylin and eosin (HE) staining. 20×.
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Figure 2. IHC against p28 of CAEV/VMV in mammary gland. (A) Scattered positive cells within
minimal inflammatory lesions (+). 20×. (B) Positive macrophage-like cell in moderate lesion (++). 40×.

3.1. Analysis of Gag Sequences

Genotyping was carried out by phylogenetic analysis of partial gag gene sequences, according
to the taxonomic classification proposed by Shah et al. [3]. All sequences were different from each
other and nine samples were type A and four samples were type B. In particular, samples M5, M12,
M15, M19, Q7, Q8, Q10, N16-426M, and N17-44M clustered within genotype A were more closely
related with strains 292, 160, 166, and 697, which were previously detected in the same Spanish
region (see Figure 3). Only strain 697 had been fully sequenced. Since similar values located with this
isolate intermingled between A2 and A3, the isolate 697 had been assigned to the A2/A3 subtype [25].
Samples M1, M3, M17, and Q1 resulted of genotype B and subtype B2 (see Figure 3). Additionally,
phylogenic and BLAST analysis showed that they were more related to B2 viruses detected in Italy than
in Spain (Ov496). These results were confirmed by the pairwise distances comparison (see Table 2).
Samples M12, M15, M19, Q7, Q8, Q10, N16-426, and N17-44 were more closely related to the A2/A3
Spanish strain HQ848062.1 (0.105–0.142). Moreover, samples M1, M3, M17, and Q1 were more closely
related to the B2 strains FJ195346.1 and EU010126.1. In particular, they were more closely related to the
Italian strain EU010126.1 (0.064–0.081) than to the Spanish strain FJ195346.1 (0.092–0.102).
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labeled on the basis of the score of the mammary lesions observed (▲ severe, ■ moderate, ▼ minimal, 182 
● no lesions, ♦ not available). The evolutionary history was inferred by using the Maximum 183 
Likelihood method based on the General Time Reversible model with a gamma distribution with 184 
invariant sites and with bootstrap values based on 1000 repetitions. The tree is unrooted.185 

Figure 3. Phylogenetic analysis of the SRLV partial gag-pol region. Sequences of different SRLV
genotypes and subtypes available in GenBank were used as reference isolates. Reference sequences
are indicated with their accession number and country of origin (CAN: Canada; CHI: China; ENG:
England; ICE: Iceland; ITA: Italy; MEX: Mexico; NOR: Norway; POR: Portugal; SOA: South Africa;
SPA: Spain; SWI: Switzerland; USA: the U.S.A.). Samples are indicated with their codes and are labeled
on the basis of the score of the mammary lesions observed (N severe, �moderate, Hminimal, no
lesions, � not available). The evolutionary history was inferred by using the Maximum Likelihood
method based on the General Time Reversible model with a gamma distribution with invariant sites
and with bootstrap values based on 1000 repetitions. The tree is unrooted.
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Table 2. Pairwise nucleotidic genetic distances (p-distance model) of the partial gag-pol region of some SRLV reference strains and SRLV strains sequenced in this study.

Sample Genotype M5 M12 M15 M19 Q7 Q8 Q10 N16-426 N17-44 M1 M3 M17 Q1

M12 0.112 -
M15 0.013 0.013 -
M19 0.013 0.122 0.104 -
Q7 0.130 0.133 0.129 0.109 -
Q8 0.100 0.115 0.097 0.122 0.122 -

Q10 0.109 0.119 0.105 0.129 0.127 0.105 -
N16-426 0.127 0.138 0.129 0.115 0.137 0.127 0.135 -
N17-44 0.152 0.155 0.152 0.138 0.163 0.157 0.152 0.094 -

M1 0.208 0.213 0.208 0.213 0.216 0.209 0.216 0.217 0.216 -
M3 0.216 0.222 0.211 0.221 0.231 0.211 0.221 0.224 0.217 0.040 -
M17 0.214 0.221 0.209 0.226 0.232 0.217 0.217 0.231 0.227 0.048 0.041 -
Q1 0.209 0.216 0.203 0.217 0.222 0.221 0.219 0.216 0.216 0.081 0.086 0.076 -

M10608.1 A1 0.171 0.160 0.168 0.137 0.157 0.166 0.145 0.175 0.175 0.214 0.208 0.229 0.224
S51392 A1 0.173 0.165 0.168 0.173 0.181 0.171 0.163 0.176 0.168 0.242 0.247 0.245 0.244

AY101611.1 A2 0.155 0.135 0.153 0.150 0.147 0.153 0.152 0.165 0.165 0.186 0.188 0.191 0.201
HQ848062.1 A2/A3 0.117 0.135 0.120 0.105 0.122 0.127 0.135 0.142 0.124 0.206 0.209 0.219 0.213
AY454176.1 A3 0.130 0.138 0.130 0.130 0.137 0.133 0.145 0.145 0.152 0.178 0.191 0.193 0.198
AY454161.1 A4 0.138 0.166 0.135 0.153 0.185 0.143 0.150 0.173 0.171 0.211 0.216 0.214 0.214
AY454175.1 A5 0.153 0.145 0.155 0.148 0.171 0.160 0.147 0.176 0.165 0.209 0.203 0.208 0.206
AY454208.1 A7 0.176 0.157 0.170 0.145 0.158 0.158 0.166 0.161 0.140 0.198 0.209 0.201 0.209
FR694908 A9 0.166 0.168 0.170 0.166 0.178 0.180 0.171 0.181 0.161 0.213 0.224 0.224 0.231
FR693825 A11 0.183 0.171 0.180 0.152 0.157 0.176 0.183 0.189 0.178 0.213 0.217 0.231 0.232
M33677 B1 0.204 0.214 0.201 0.211 0.224 0.211 0.211 0.222 0.211 0.120 0.119 0.120 0.129

FJ195346.1 B2 0.226 0.231 0.221 0.214 0.232 0.226 0.237 0.221 0.217 0.092 0.092 0.102 0.100
EU010126.1 B2 0.208 0.222 0.206 0.226 0.232 0.219 0.227 0.224 0.216 0.064 0.068 0.068 0.081
JF502417.1 B3 0.213 0.221 0.214 0.209 0.217 0.219 0.232 0.213 0.224 0.185 0.186 0.196 0.178
AF322109.1 C 0.262 0.252 0.257 0.250 0.252 0.245 0.255 0.244 0.236 0.213 0.214 0.214 0.216
EU293537.2 E1 0.292 0.295 0.292 0.297 0.301 0.293 0.300 0.293 0.290 0.293 0.285 0.290 0.303
GQ381130.1 E2 0.290 0.301 0.293 0.290 0.313 0.293 0.298 0.288 0.290 0.290 0.290 0.297 0.293
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Nucleotide sequences were translated into amino acid sequences and the results of the alignment
and comparison with the most representative sequences are reported in Figure 4a,b. The set of primers
used in this study amplifies a partial sequence of the gag gene codifying for the majority of the capsid
protein (CA). Comparing amino acid sequence alterations of the partial gag protein obtained, the ”GG”
motifs of the four type B sequences were glycine-glycine (GG) like type B reference SRLVs while those
of the 11 type A samples were asparagine-valine (NV) like other type A reference SRLVs (see Figure 4a).
In type A samples, sequences of epitopes 2 and 3 of reference isolates and of most samples were
conserved (see Figure 4a). Only arginine (R) replaced lysine (K) in samples N16-426 and N17-44 and
serine (S) replaced asparagine (N) in sample Q7. Type B samples had highly conserved epitope 3
sequences since there are only two alterations in M1 (isoleucine (I) instead of serine (S) and lysine (K)
instead of glutamic acid (E). More alterations were found in epitope 2 where three out of four type B
samples showed one alteration in comparison with type B reference isolates (see Figure 4a,b).

In the Major Homology Region (MHR), which is usually a highly conserved sequence in the gag
gene of all retroviruses, some alterations were present in type A samples. In particular, all but one type
A samples showed one or two alterations comparing to the A2/A3 reference strain 697 (see Figure 4b).
Samples M5, M12, M15, Q10, and N16-426 had isoleucine (I) instead of valine (V) at the fourth position
as type A1 reference strain SA-OMVV. This latter had also a serine (S) instead of asparagine (N) at the
ninth position. Sample Q7 had not only this alteration, but also glutamic acid (E) instead of aspartic
acid (D) at the 14th position, which shows the same alterations found in the A2/A3 Spanish strain 160.
Sample N17-44 had isoleucine (I) instead of serine (S) at the 11th position unlike the other samples and
reference strains. Unusual alterations were found in sample M19 where asparagine (N) replaced serine
(S) at the 11th position and lysine (K) substituted glutamic acid (E) at the 21st position. Type B samples
had highly conserved MHR sequences and showed the same amino-acidic sequences of B2 reference
isolates even though some single alterations were present in the nucleotide sequences (see Figure S1).
A significant correlation among sequence alterations and severity of mastitis was not found (p > 0.05).
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JN184354.1 SPA (A2/A3)        ........................--............................................  

JN184360.1 SPA (A2/A3)        ........................--............................................  

M10608.1 ICE   (A1)           ........................--...................................T........  

AF479638.1 POR (A1)           .....................-..--.A.................................T.......L  

M31646.1 SOA   (A1)           ........................--............................L......T........  

AY101611.1 USA (A2)           ........................--...................................T........  

AY454176.1 SWI (A3)           ........................--..................A.........................  

AY454161.1 SWI (A4)           .....................A..--...................................T........  

AY454175.1 SWI (A5)           ........................--...................................T...A....  

AY454208.1 SWI (A7)           ........................--..................A.........................  

FR694908 ITA   (A9)           ........................--............................................  

FR693825 ITA   (A11)          ........................--............................................  

M33677.1 USA   (B1)           ................R.N...P.AGGG..............A.A....................A....  

FJ195346.1 SPA (B2)           ................R.N...PQAGGG..............A.A................S...A....  

M1                            ...............GR.N...PQAGGG..............A.A................S...A....  ++ 

M3                            ................R.N...PQAGGG..............A.A................S...A....  +++ 

M17                           ................R.NI..PQAGGG..............A.A................S...A....  ++ 

Q1                            .....E..........R.N...PQAGGG..............A.A................S...A....  no 

FR828814.1 ITA (B2)           ................R.N...PQAGGG..............A.A................S...A....  

AY265456.1 ITA (B2)           ................R.N...P.AGGG..............A.A................S...A....  

EU010126.1 ITA (B2)           ................R.N...P.AGGG..............A.A................S...A....  

FR687200.1 ITA (B2)           ..............K.R.N...PQAGGG..............A.A................A.I.A....  

FR695719.1 ITA (B2)           ..............K.R.N...P.AGGG..............A.A................S...A....  

AY454218.1 SWI (B2)           ................R.N...P.AGGG..............A.A................S...A....  

JF502417.1 ITA (B3)           ................R.N...PAAGGG..............A.A................S...A.... 

          Epitope 2              GG 

Figure 4. Cont.
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M5                            A........I........................T......................................................  n.c. 

M12                           .........I........................T......................................................  + 

M15                           A........I........................T......................................................  + 

M19                           ................N.........K.......T......................................................  ++ 

Q7                            ..............S....E..............T......................................................  no 

Q8                            ..................................TH.......A.................A...........................  +++ 

Q10                           .........I........................T..........................A...........................  +++ 

N16-426                       .........I........................T.............................Q........................  +++ 

N17-44                        ................I.................T.............................Q........................  ++ 

JN184352.1 SPA (A2/A3)        ..............S....E..............T...................................................... 

JN184353.1 SPA (A2/A3)        ...................E..............T........................N............................. 

JN184354.1 SPA (A2/A3)        ..................................T...................................................... 

JN184360.1 SPA (A2/A3)        .................F................T...................................................... 

M10608.1 ICE   (A1)           ..............T...................T..........................T........................... 

AF479638.1 POR (A1)           ..............T......V............T.............................A........................ 

M31646.1 SOA   (A1)           .........I....S...............T...T............F......................S.................. 

AY101611.1 USA (A2)           ..............T...................T.................A.................................... 

AY454176.1 SWI (A3)           ..............S...................T.............................P........................ 

AY454161.1 SWI (A4)           A..................E..............T..........................T........................... 

AY454175.1 SWI (A5)           ..............S.N.................T........I............................................. 

AY454208.1 SWI (A7)           ..........R........E..............T....I........................PK....S.................. 

FR694908 ITA   (A9)           ..................................T.........P...................Q...................D.... 

FR693825 ITA   (A11)          ..............S...................T.............................Q........................ 

M33677.1 USA   (B1)           A............T..P....A............TQ...D...L........A........T..Q.....S.................. 

FJ195346.1 SPA (B2)           A............S..P....A............TQ...E...L........S...........Q.....S.................. 

M1                            A............S..P....A............TQ...E...L........S...........Q.....I..K...............  ++ 

M3                            A............S..P....A............TQ...E...L........S...........Q.....S..................  +++ 

M17                           A............S..P....A............TQ...E...L........S...........Q.....S..................  ++ 

Q1                            A............S..P....A............TQ...E...L........S...........Q.....S..................  no 

FR828814.1 ITA (B2)           A............S..P....A............TQ...E...L........S...........Q.....S.................. 

AY265456.1 ITA (B2)           A............S..P....A............TQ...E...L........S...........Q.....S.................. 

EU010126.1 ITA (B2)           A............S..P....A............TQ...E...L........S...........Q.....S.................. 

FR687200.1 ITA (B2)           A............S..P..N.AT.......G...TQ...E...L........S...........Q.....S.................. 

FR695719.1 ITA (B2)           A............ST.P....A............TQ...E...L........S...........Q.....S.................. 

AY454218.1 SWI (B2)           A............S..A....A............TQ...E...L........S...........Q.....S.................. 

JF502417.1 ITA (B3)           A............V..N....V............TQ...E........................Q.....S.................. 

MHR Epitope 3 

Figure 4. Alignment (MUSCLE) of deduced amino acid sequences of partial gag-p25 of the SRLV
sequences obtained and of some SRLV reference strains; (a) positions from 209 to 278, (b) posiions
from 279 to 368. Two immuno-dominant epitopes of this capsid protein, the GG motif, and the Major
Homology Region (MHR) are within squares. The score of mammary lesion of each sample is reported.
Legend: (·) homology, (−) deletion, (+++) severe lesions, (++) moderate lesions, (+) minimal lesions,
(no) no lesions, (n. c.) not classified, CAN: Canada; CHI: China; ENG: England; ICE: Iceland; ITA: Italy;
MEX: Mexico; NOR: Norway; POR: Portugal; SOA: South Africa; SPA: Spain; SWI: Switzerland; USA.

3.2. Analysis of LTR Sequences

The alignment and phylogenetic analysis of LTR nucleotide sequences showed that most samples
were closer to the reference Spanish A2/A3 strain 697 (Figures 5 and 6a,b). Comparing samples
with the 697 reference strain, Q10 and Q11 showed a 23 nt deletion (9133–9160 nt) in the R region,
which appeared longer than the 13 nt deletion present in the reference strains 697, EV1, and in
other Spanish strains (C3, 160, 292). Sample Q12 had similar deletions than 697 while other samples
showed 2–8 nt deletions in the same tract. No significant differences were found among sequences of
samples with a different grade of mastitis (p > 0.05). Similarly, as previously described, the TATAbox,
the polyadenylation signal, and the AML (vis), which is a site possessing the consensus sequence for
the AML/PEBP2/CBF transcriptional factor family [26], were conserved and only a substitution G
with A was present in three samples at position 9065 of AML (vis).
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Figure 5. Phylogenetic analysis of the SRLV partial LTR. Sequences of different SRLV genotypes and
subtypes available in GenBank were used as reference isolates. Reference sequences are indicated
with their accession number and country of origin (CAN: Canada; CHI: China; ENG: England; ICE:
Iceland; ITA: Italy; MEX: Mexico; NOR: Norway; POR: Portugal; SOA: South Africa; SPA: Spain; SWI:
Switzerland; USA). Samples are indicated with their codes and are labeled on the basis of the score
of the mammary lesions observed (N severe, �moderate, Hminimal, no lesions, � not available).
The phylogenetic analysis was performed with a maximum likelihood (ML) method using the Kimura
2-parameter model with a gamma distribution and with bootstrap values based on 1000 repetitions.
Sequences are not deposited in GenBank because they do not reach the minimum length required.
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Figure 6. Alignment (MUSCLE) of nucleotide sequences of the LTR region of the SRLV sequences
obtained and of some SRLV reference strains. LTR sequence of the isolate Icelandic 1514 (M10609.1) was
used as a reference; (a) positions from 9057 to 9126, (b) posiions from 9127 to 9206. Sequence of reference
strains EV1 (S51392.1) was also used. Sequences previously found in Spain in goats (C3—DQ084355.1)
and in sheep (697—HQ864615.1, 160—HQ864610.1, 292—HQ864611.1 and 368—HQ864614.1) and
showing high homology with our samples were also included. Sequences of the AML (vis), the TATA
box element, and the polyadenylation signal are within black squares. Sequences of samples with
similar scores of mammary lesions are within colored squares. Legend: (·) homology, (−) deletion,
(blue squares) severe lesions, (red squares) moderate lesions, (light blue squares) minimal lesions, and
(green squares) no lesions.

4. Discussion

This study describes for the first time gag and LTR sequences of SRLVs detected in Spanish Assaf
sheep with different grades of histopathological mastitis and their phylogenetic relationships in the
context of known SRLV sequences.

Although initially genotypes B viruses were thought to infect only goats, it is not unusual to find
reports about infections by type B viruses in sheep and by type A viruses in goats [27–30]. Even in
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this study, both genotypes A and B SRLVs have been found in ovine samples. It was not known if the
examined sheep had contact with goats, but infection with A genotypes in goats was not reared in
contact with sheep, which was reported [31].

The gag-pol phylogenetic tree and the pairwise genetic distances comparison revealed that most
sequences of the samples were closer to the Spanish A2/A3 isolate 697 while four sequences belonged
to subtype B2. Isolate 697 has been previously detected in sheep with neurological diseases from
the Spanish region of Castilla y León in Spain and has been classified as A2/A3 because differences
between A2 and A3 are often not large enough to separate the two groups [3,25]. Partial sequences
of viruses classified as A2/A3 have been detected further seven sheep with neurological signs in
Spain [25]. These findings suggest that, in Northern Spain, subtype A2/A3 SRLVs is genetically related
to SRLVs, which caused nervous diseases. However, in our cases, neurological signs were not reported.
Samples M1, M3, M17, and Q1 were closer to Italian than to Spanish B2 isolates and mammary lesions
were found from moderate to severe in three out of four samples while, in sample Q1, lesions were not
found. B2 SRLV has been detected in Spain for the first time in SRLV-seropositive adult sheep of the
Rasa Aragonesa breed, which shows clinical signs of arthritis [17,32]. Mammary histological lesions
were present in 10 out of 13 animals with arthritis, which suggests that udders can be involved even if
clinical signs might remain unrecognized until the losses of milk production are significant. B2 viruses
have been detected in Italian small ruminants during epidemiological surveys, but data about clinical
signs or histological lesions are not reported [4,33].

In addition, good-quality sequences about 800 bp long were obtained from FFPE samples.
Fixation in formalin and embedding in paraffin at high temperatures is thought to degrade DNA.
Fragmentation of DNA molecules can interfere with their amplification by PCR and with consequent
sequencing. In our case, good-quality DNA has been extracted and amplified by PCR from archival
FFPE samples, which suggests that this method could be attempted for studying FFPE samples as well
as for retrospective investigations.

Analysis of the genetic sequences is important not only for evaluating the spread of SRLV types
and subtypes but also for monitoring antigenic variability. Actually, remarkable antigenic variation
might be responsible for the misdiagnosis of highly divergent genotypes [34]. The gag gene encodes
nucleocapsid, capsid, and matrix proteins. Indirect diagnostic assays usually use the capsid protein
as the antigen, which helps monitor immuno-dominant epitopes of gag-encoded structural proteins.
This is useful for detecting antigenic variability in the field and forevaluating and improving the
sensitivity of indirect diagnostic tools. Alterations in the amino acid sequences of immuno-dominant
epitope regions suggest altered antigenicity, which may affect the sensitivity of serological tests such
as ELISA and AGID. The gag-pol set of primers used in this study allowed sequencing only of epitopes
2 and 3. Amino acid sequences of epitopes 2 and 3 of type A2/A3 viruses were quite conserved and
limited alterations only in three and one samples, respectively. Epitope 2 of B2 isolates had more
alterations, which shows single amino acid alterations in three out of four sequences. In addition,
more variability was found in the MHR of A2/A3 viruses, which show all but two samples and at
least one alteration in comparison with the reference A2/A3 strain 697. The MHR is usually conserved
in many retroviruses and is essential for viral assembly [35]. Mutations in the MHR sequence of HIV-1
cause capsid assembly that reduces infectivity [36]. While some studies have been carried out on
MHR of human retroviruses, the consequences of MHR mutations on infectivity of SRLVs should be
better investigated. MHR of B2 viruses and GG motif of both A2/A3 and B2 viruses in the gag amino
acid sequences, AML (vis) motif, TATA-box, and poly-A of both A2/A3 and B2 viruses in the LTR
nucleotide sequences were highly conserved, which was previously reported in strains from different
geographic areas [31,37,38].

Most LTR sequences showed higher homology with A2/A3 Spanish SRLV isolates. Samples Q10
and Q11 showed a 23 nt deletion in the R region, which appeared longer than the 13 nt deletion
observed in type A2/3 reference isolate 697. A 13 nt deletion in this region has been found in
sequences of clinically affected sheep and a correlation among this deletion and the appearance
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of clinical signs has been suggested [32]. On the contrary, a similar deletion has been found in SRLVs
infecting asymptomatic sheep and the lungs of animals infected with viruses carrying the deletion
were significantly less affected than sheep infected with viruses without deletion [18]. In the present
study, significant correlations among deletions in the R region of the LTR and severity of mammary
lesions were not found (p > 0.05). Samples with deletions were from sheep with more severe mammary
lesions and sheep with moderate to severe mastitis did not show this deletion (see Figure 6b).

Although the severity of mammary lesions was not significantly related to the viral genotype,
SRLV sequences from samples with similar grades of lesions (no/minimal and moderate/severe) were
most closely related to each other (see Figures 3 and 5 and Table 2). Considering the high economic
impact of SRLV diseases, some countries aim to eradicate the diseases by identifying and prematurely
culling infected animals. Selecting animals on the basis of serological results could determine the
selection of SRLV variants with significant alterations in the antigen sequences. Permanent and
extensive surveys should be encouraged in different countries to evaluate the antigenic variability
of SRLV and to monitor the sensitivity and specificity of diagnostic tests in detecting these variants.
In particular, seronegative animals should be investigated for infections by new viral genotypes
not detected by traditional serological tests. Histological screening of different target organs at the
slaughterhouse could be a useful tool for selecting samples with lesions, which suggests an SRLV
disease in seronegative animals.

5. Conclusions

In conclusion, this is the first study investigating the association between the SRLV sequence
analysis and histopathological grading of mammary lesions in sheep. Circulation of SRLVs of types
A2/A3 and B2 in Spanish Assaf sheep was confirmed and new viral variants have not been found,
but moderate alterations were present in some immuno-dominant epitopes and in the MHR tract.

No significant correlation was found among histological features and alterations in the sequences.
Although some sequences obtained from samples with similar grades of mammary lesions appeared
closer to each other, more extensive and interdisciplinary studies are required for establishing the
existence of viral clusters with a higher or lower pathogenicity for specific target organs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/6/315/s1,
Figure S1: Nucleotide alignment of MHR sequences in the gag gene of the samples and of some reference strains.
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