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Abstract 
 
The present work characterized the metabolomic profile of tracheal wash (TW) and exhaled breath 
condensate (EBC) in healthy horses and horses with respiratory disease. Six asthma-affected horses 
(Group A) and six healthy controls (Group H) underwent clinical, endoscopic and cytologic 
examinations of upper airways to confirm the active phase of asthma. TW and EBC samples were 
collected from each animal and investigated by Proton Nuclear magnetic resonance (1H-NMR) 
metabolomic analysis.  A total of 10 out of 38 metabolites found in TW were significantly different 
between groups (p< 0.05). Higher concentrations of histamine and oxidant agents like glutamate, 
valine, leucine and isoleucine, as well as lower levels of ascorbate, methylamine, dimethylamine and 
O-phosphocholine were found in Group A compared to Group H. Eight metabolites were found in 
equine EBC, namely methanol, ethanol, formate, trimethylamine, acetone, acetate, lactate and 
butanone, previously observed also in human EBC. Despite this was a pilot study, the results showed 
that metabolomic analysis of TW and EBC has the potentiality to serve as a basis for diagnostic tools 
in horses with asthma.   
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1. Introduction  
Equine asthma, or heaves, is an environmental asthma-like disease of adult horses characterized by a 
recurring bronchoconstriction and airway inflammation [1], with alternating periods of remission and 
crises [2]. Clinical signs are not evident in low-grade airway obstruction cases, and exercise 
intolerance may be the only symptom. In severe cases cough, nasal discharge, increased respiratory 
effort, and weight loss can be observed [2]. When exposed to organic dust particulates in hay, horses 
affected by equine asthma show disease exacerbation [1] with a rapid development of lower airway 
inflammation, bronchoconstriction and mucus secretion. These three features of the disease have been 
extensively studied, however this cascade of events is not well understood yet [2], so that the 
pathogenetic and immunological basis of the disease are still controversially discussed [3]. 
Suggestion for equine asthma etiology and pathogenesis include Type I and III hypersensitivity 
reaction, inhalation of endotoxin, mold components, spores of fungi and actinomycetes such as 
Aspergillus fumigatus, Faenia rectivirgula and Thermoactinomyces vulgaris, noxious gases, bacterial 
and viral infections [4,5]. Despite differences in the predominant cell population of bronchoalveolar 
lavage fluid (BALF), that is neutrophil in horses and eosinophil in men, equine and human asthma 
share some features, like the occurrence of airways obstruction, bronchial hyperresponsiveness and 
airways inflammation, making horse a recognized model for human disease [6-8].  
Several recent researches have been focused on the study of immune parameters such as cellular basis 
of inflammation or cytokine expression in respiratory cells [9-14]. Equine asthma, as well as human 
asthma, may be driven by an excessive innate immune response as well as by specific T-helper 
lymphocyte-mediated reactions [15]. 
Over the last few years, metabolomics gained an increasing interest in biomedical research. This new 
and rapidly expanding field of systems biology allows researchers to have an overall view of hundreds 
of small organic molecules that can be found in a given sample. By analyzing small metabolites (e.g. 
amino acids, organic acids and alcohols), metabolomics represents a viable alternative to 
transcriptomics, genomics, and proteomics, but it also completes the information provided by these 
omics studies [16]. Metabolomics consists of the analysis of all metabolites that are present within an 
organism or a specific compartment of the body. The detection and quantification of these metabolites 
provide unique insights into metabolic changes occurring in tangent to alterations in gene and protein 
activity associated with disease [16]. Metabolites represent the end products of complex interactions 
occurring inside the cell and all the events occurring outside of the cell or organism. Therefore, the 
comprehensive measurement of metabolites allows to determine the interactions between genes and 
the environment [17].  

Proton Nuclear magnetic resonance (1H-NMR) spectroscopy is a primary analytical technique used 
for metabolites detection, able to characterize and quantify different kinds of small molecules from 
biofluids [18-20]. 

In recent years, this approach has been found useful to evidence consequences of several respiratory 
diseases in humans by analyzing biofluids collected from the respiratory tract, such as BALF [21] or 
exhaled breath condensate (EBC) [22-25]. In equine species, several aspects of BALF and tracheal 
wash (TW) have been extensively investigated [26], while only few researches dealt with EBC [27-
29]. However, to our knowledge no metabolomic study has been published on equine respiratory 
system.  
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The aim of the present work was to investigate whether it is possible to characterize the metabolomic 
profiles of TW and EBC fluids, to discriminate horses affected by equine asthma from healthy 
animals. For the purpose, we applied 1H-NMR spectroscopy to the untargeted detection and 
quantification of low weight metabolites. The present work may grant an overall picture of the 
reaction of horse body to a chronic airways inflammatory condition like equine asthma.  
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2. Animals, materials and methods 

2.1 Animals 

Six clinically healthy horses (1 male, 3 geldings, 2 females, median age 13 years, body condition 
score (BCS) 3.0), with no history of respiratory disease in the last 6 years, were included in Group H. 
Six horses (1 male, 2 geldings, 3 females, median age 18 years, BCS 2.5-3.0) affected by asthma 
were included in Group A, as referred to the Veterinary Teaching Hospital Large Animal Department 
of Camerino University with a history of showing symptoms of asthma when stabled and exposed to 
dusty hay. In these animals, the diagnosis of equine asthma was previously confirmed by endoscopic 
examination and BALF cytology. Typical respiratory symptoms [30] were present at physical 
examination (e.g. exercise intolerance, crackles and wheezes, increased respiratory effort) and all 
horses have been shown respiratory signs for at least 1 month before enrollment. No drugs had been 
administered for at least 2 months. 
All horses were stabled in boxes and fed the same polyphyte hay (7±1 kg/horse/day) for one week 
prior to samples collection. Samples of EBC and TW were collected in the morning (09.00 AM), 
before feeding. 
All experimental procedures were approved by the Animal Care Committee of Camerino University 
(Registration number: E81AC.8.B, March 1st, 2018) and were in accordance with the standards 
recommended by the EU Directive 2010/63/EU for experiments on animals.  

The study has been conducted in the month of April 2018. 

2.2 Endoscopy, tracheal wash sampling and cytology. 

A 140 cm long endoscope, with outer diameter of 0.9 cm (Mercury Endoscopia Italiana) was passed 
in the ventral meatus of the nasal cavity to reach the trachea. To confirm active inflammation, the 
amount of tracheal mucus in trachea was scored according to Gerber et al. by using the following 0 
to 5 scales: grade 0, clean (no mucus); grade 1, little (multiple small drops); grade 2, moderate (large 
drops); grade 3, marked (stream-forming); grade 4, large (pool-forming); grade 5, extreme (abundant 
amount) [31,32]. 

During endoscopy, TW samples were collected as described by Hodgson and Hodgson [33]. Briefly, 
10 mL of sterile saline solution was instilled through a polyethylene catheter passed through the 
working channel of the endoscope. Fluids accumulated in the “tracheal puddle” were aspirated and 
collected into sterile tubes. A minimum of 8 mL of instilled fluid was recovered from all horses. One 
1.5 mL aliquot was stored at -80 °C for metabolomic analysis, while one 5 mL aliquot was used for 
cytological evaluation immediately after collection.  

According to cytological appearance of TW smears and cytospin specimens, a grading of airways 
inflammation from 0 to 2 was made, based on the presence of neutrophils, with score= 0 indicating 
occasional neutrophils; score= 1 presence of moderate number of neutrophils (≤20%); score= 2 
predominant number of neutrophils (>20%) [26,30,33]. 

2.3 Exhaled breath condensate collection 

Before starting EBC sampling, all horses were accustomed to the EBC collection system that was 
well tolerated by animals. EBC samples were collected indoors (16±2°C), before feeding, between 
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9.00 – 09.30 am, without any sedation and prior to TW collection. A condensation system consisting 
of a face mask connected via tubing to a condensation chamber was used (Figure 1). 

Because of the lack of commercially available EBC collection equipment for horses, we created a 
custom condensation system adapted from Whittaker et al. [28]. The modified aerosol face mask (SM 
Trade&Technology SRL) had a tight fitting rubber shroud and three unidirectional valves, with the 
first valve, positioned ventrally, allowing the air to enter into the mask during inspiration. The other 
two valves, positioned over the nares, were connected via thermally-insulated tubing to a 
condensation device that allowed expired air to unidirectionally pass through the system. The flexible 
plastic tubes (length: 280 cm; radius: 2.1 cm) were coated with thermal insulating tubes to maintain 
the temperature of expired air, thus preventing air condensation inside the tubing system. The 
condensation chamber consisted of a 500 mL glass becker inserted into an ice block, having a one-
way valve on the top to prevent EBC contamination by retrograde flow of environmental air. During 
EBC collection the temperature inside the condensation chamber was monitored by means of a 
suitable thermometer (-20°C).  

Considering the materials and dimensions of the system (total volume estimated about 5 l) and the 
use of thermal insulation tubes, the maximal thermal dispersion of exhaled air throughout the tubing 
system was calculated <3 °C during sampling.  

From each subject EBC was collected over 15 min, allowing to obtain 1.5-3 ml samples that were 
immediately cooled on ice and stored at -80°C within 30 minutes from collection. Respiratory rate 
and respiratory pattern of each horse were monitored at rest, 15 min before, and 15 min after the 
collection, as well as continuously throughout the sampling period.  

2.4 Metabolomic analysis by 1H-NMR 

TW and EBC samples collected from each horse were centrifuged at 18640 g and 14 °C for 15 min 
[34]. After centrifugation, 0.7 mL of supernatant were added to 0.1 mL of a D2O solution of 3-
(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) 10 mM, used as NMR chemical-shift 
reference, and NaN3 2 mM, to avoid microorganisms proliferation, buffered at pH 7.00±0.02 by 
means of 1M phosphate buffer. Afterwards, each sample was centrifuged again at the above 
conditions. 

1H-NMR spectra were recorded at 298 K with an AVANCE III spectrometer (Bruker, Milan, Italy) 
operating at a frequency of 600.13 MHz. According to Laghi et al. [19], the signals from broad 
resonances originating from large molecules were suppressed by a CPMG-filter composed by 400 
echoes separated by 0.400 ms and created with a 180° pulse of 0.024 ms, for a total filter of 330 ms. 
The residual water signal was suppressed by presaturation. This was done by employing the 
cpmgpr1d sequence, part of the standard pulse sequence library. Each spectrum was acquired by 
summing up 256 transients using 32 K data points over a 7184 Hz spectral window, with acquisition 
time 2.28 sec. To apply NMR as quantitative technique, the recycle delay was set to 5s, keeping into 
consideration the relaxation time of the protons under investigation. 1H-NMR spectra baseline-
adjusted by means of the peak detection according to the “rolling ball” principle [35] implemented in 
the baseline R package [36]. A linear correction was then applied to each spectrum, so to make the 
points pertaining to the baseline randomly spread around zero. Differences in water content among 
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samples were taken into consideration by probabilistic quotient normalization [37] applied to the 
entire spectra array. 

The signals were assigned by comparing their chemical shift and multiplicity with Chenomx software 
library (Chenomx Inc., Canada, ver 8.3). 

2.5 Statistical analysis 

Parameters and molecules whose concentration varied between Groups H and A were looked for by 
means of Wilcoxon test. For the purpose, a significance limit p < 0.05 was accepted. 

To highlight the underlying trends characterizing the samples, principal component analysis models 
in their robust version (rPCA) were built on the molecules concentrations, centered and scaled to 
unity variance [38]. 

For each rPCA model, we calculated the scoreplot, the projection of the samples in the PC space, 
tailored to highlight the underlying structure of the data. Besides, we calculated the correlation plot, 
relating the concentration of each variable to the components of the rPCA model, therefore tailored 
to highlight the most important molecules in determining the trends highlighted by the scoreplot.  
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3. Results 

Tracheal mucus was found to differ significantly (p<0.01) between groups, with healthy horses 
having a mean score of 0.3, and asthma affected horses characterized by a mean score of 2.2. The 
proportion of neutrophils differed as well, with Group H and Group A characterized by mean scores 
of 0.2 and 1.2, respectively (p< 0.001). 

The metabolomics investigation of TW samples allowed the quantification of 38 molecules (Figure 
2). Ten metabolites showed significantly different concentrations between Groups H and A (Table 
1). 

 
 
Table 1. Metabolites concentrations (mmol/L), expressed as median (interquartile range), 
quantified by 1H-NMR in tracheal wash (TW) samples of healthy horses (Group H) and horses with 
asthma (Group A). 
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Metabolites Group H (n=6) Group A (n=6) Trend 

Formate 2.04x10-2 ( 1.74x10-2 ) 1.40x10-2 ( 5.69x10-3 ) = 

3-Methylxanthine 1.41x10-2 ( 2.97x10-3 ) 1.40x10-2 ( 1.57x10-2 ) = 

Phenylalanine 9.23x10-3 ( 5.97x10-3 ) 1.47x10-2 ( 1.96x10-2 ) = 
Histamine* 1.56x10-2 ( 1.93x10-3 ) 2.21x10-2 ( 1.07x10-2 ) ↑ 

Tyrosine 1.80x10-2 ( 7.67x10-3 ) 2.90x10-2 ( 2.23x10-2 ) = 

1,3-Dihydroxyacetone 1.29x10-2 ( 2.43x10-3 ) 7.40x10-3 ( 2.10x10-2 ) = 

Lactate 1.13x10-1 ( 8.47x10-2 ) 2.26x10-1 ( 4.77x10-2 ) = 

Ascorbate* 4.91x10-1 ( 5.77x10-1 ) 1.10x10-1 ( 2.34x10-1 ) ↓ 

Serine 2.97x10-2 ( 2.52x10-2 ) 1.68x10-2 ( 1.35x10-2 ) = 
Threonine 7.50x10-2 ( 4.04x10-2 ) 8.03x10-2 ( 4.65x10-2 ) = 

Glycine 4.85x10-2 ( 6.00x10-2 ) 1.04x10-1 ( 1.69x10-2 ) = 

Methanol 2.49x10-2 ( 1.01x10-2 ) 2.70x10-2 ( 4.72x10-2 ) = 

Proline 2.02x10-2 ( 1.73x10-2 ) 2.93x10-2 ( 1.04x10-2 ) = 
myo-Inositol 2.10x10-2 ( 6.92x10-3 ) 2.44x10-2 ( 1.16x10-2 ) = 

Taurine 7.92x10-2 ( 1.05x10-1 ) 1.47x10-1 ( 4.69x10-2 ) = 

Glucose 1.63x10-2 ( 1.85x10-2 ) 3.16x10-2 ( 2.81x10-2 ) = 
Carnitine 3.46x10-2 ( 2.21x10-2 ) 2.61x10-2 ( 2.65x10-2 ) = 

O-Phosphocholine* 3.42x10-2 ( 1.26x10-2 ) 1.18x10-2 ( 1.77x10-2 ) ↓ 

Choline 8.50x10-2 ( 6.86x10-2 ) 1.20x10-1 ( 9.97x10-2 ) = 

Dimethyl sulfone 9.48x10-2 ( 6.64x10-2 ) 1.65x10-1 ( 1.11x10-1 ) = 

Creatine 1.52x10-2 ( 6.87x10-3 ) 1.85x10-2 ( 2.42x10-3 ) = 
Dimethylamine* 6.41x10-3 ( 1.19x10-3 ) 3.29x10-3 ( 2.41x10-3 ) ↓ 

Aspartate 3.80x10-2 ( 1.61x10-2 ) 5.47x10-2 ( 2.81x10-2 ) = 
Methionine 5.89x10-3 ( 2.42x10-3 ) 5.67x10-3 ( 6.58x10-3 ) = 

Methylamine* 9.97x10-3 ( 2.96x10-3 ) 4.94x10-3 ( 2.07x10-3 ) ↓ 

Glutamine 1.80x10-2 ( 7.04x10-3 ) 2.03x10-2 ( 1.06x10-2 ) = 

Succinate 1.32x10-2 ( 6.16x10-3 ) 1.15x10-2 ( 3.09x10-3 ) = 

Pyruvate 7.87x10-3 ( 3.49x10-3 ) 1.32x10-2 ( 9.22x10-3 ) = 
Glutamate* 3.45x10-2 ( 2.36x10-2 ) 7.19x10-2 ( 3.80x10-2 ) ↑ 

Acetone 1.79x10-2 ( 3.22x10-3 ) 1.12x10-2 ( 8.45x10-3 ) = 

Acetate 2.71x10-2 ( 1.48x10-2 ) 4.63x10-2 ( 2.47x10-2 ) = 

Alanine 2.28x10-2 ( 1.45x10-2 ) 5.20x10-2 ( 5.85x10-2 ) = 

Ethanol 1.38x10-2 ( 9.35x10-4 ) 9.08x10-3 ( 4.13x10-3 ) = 
Propylene glycol* 3.88x10-3 ( 8.71x10-3 ) 1.92x10-3 ( 4.88x10-4 ) ↓ 
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Methylsuccinate 9.83x10-3 ( 8.19x10-3 ) 8.18x10-3 ( 6.44x10-3 ) = 

Valine* 7.91x10-3 ( 2.17x10-3 ) 2.24x10-2 ( 2.82x10-2 ) ↑ 

Leucine* 1.58x10-2 ( 1.13x10-2 ) 5.74x10-2 ( 7.62x10-2 ) ↑ 

Isoleucine* 1.17x10-2 ( 2.35x10-3 ) 3.41x10-2 ( 3.50x10-2 ) ↑ 
*Significantly different metabolite concentrations (p<0.05) between Group H and Group A, assessed 
by Wilcoxon test for unpaired samples.  
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To gain an insight of the underlying trends induced by equine asthma in TW metabolome, metabolites 
concentrations were employed as a basis for a rPCA model, as showed in figure 3. 

Along PC 1 of its scoreplot (a), representing as much as 87.6% of the samples variability explained 
by the rPCA model, Group H and Group A are significantly separated (p<0.01). 

Although minute ventilation was not recorded, the EBC collection system used in the present study 
was well tolerated by the horses that showed no obvious changes in respiratory rate or respiratory 
pattern during sampling.  

The metabolomic analysis applied to TW samples was extended to EBC samples (Figure 4). The use 
of 1H-NMR technique allowed to quantify eight different molecules in EBC samples (Table 2), 
however no significant differences were found between groups. 

 

Table 2. Metabolites concentration (mmol/L), expressed as median (interquartile range), quantified 
by 1H-NMR in exhaled breath condensate (EBC) samples of healthy horses (Group H) and horses 
with asthma (Group A).  

Metabolites Group H (n=6) Group R (n=6) Trend 

Formate 2.56x10-2 ( 9.64x10-3 ) 2.47x10-2 ( 1.83x10-2 ) = 

Methanol 5.41x10-1 ( 1.81x10-1 ) 1.15 ( 9.98x10-1 ) = 

Trimethylamine 3.64x10-2 ( 3.77x10-2 ) 6.74x10-2 ( 1.44x10-2 ) = 

Acetone 2.34x10-1 ( 5.03x10-2 ) 2.78x10-1 ( 1.64x10-2 ) = 

Acetate 1.01x10-1 ( 5.81x10-2 ) 1.00x10-1 ( 1.03x10-1 ) = 

Lactate 9.96x10-2 ( 1.20x10-1 ) 9.16x10-2 ( 9.68x10-2 ) = 

Ethanol 1.19 ( 4.15 ) 8.65x10-1 ( 8.30 ) = 

Butanone 1.46x10-2 ( 1.13x10-1 ) 2.03x10-2 ( 1.94x10-2 ) = 
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4. Discussion 

To the best of the authors’ knowledge, this is the first metabolomics approach attempted by 1H-NMR 
on both TW and EBC samples in equine species.  

Despite considered less sensitive than BALF to diagnose equine asthma, TW allows to obtain a better 
representation of the whole lung condition [26]. Furthermore, TW collection can be easily performed 
without using sedatives that might interfere with horse metabolomic profile. The significant (p<0.01) 
different degree of tracheal mucus and percentage of neutrophils in TW samples confirmed the 
presence of active inflammation in horses from Group A. Twenty-four of the 38 metabolites we found 
by NMR analysis had been previously found in humans with respiratory inflammation by Ciaramelli 
et al. [21]. This metabolomic analysis also allowed the detection in EBC samples of metabolites like 
ethanol, formate, acetate and ethanol that were found previously in EBC of humans with lung 
disfunction [25].  Equine and human asthma are different diseases but they share some characteristics 
such as the so called remodeling of the pulmonary tissue, which includes reduction of bronchial 
luminal caliber, smooth muscle hypertrophy, peribronchiolar fibrosis formation and airway epithelial 
cell hyperplasia, all impeding gas exchange [39-40]. These findings could support the hypothesis that 
studies on naturally occurring equine asthma could provide information on human respiratory 
inflammatory diseases [6, 8]. 

It is known that saliva reflects blood composition, but it varies in its molecular profile as a 
consequence of several stimuli like specific diets [41]. It is safe to postulate that a similar mechanism 
involves respiratory glands as well, when they produce higher quantities of mucus in connection to 
asthma. This mechanism, together with changes in microbiota, is likely to lead to major modifications 
of mucus molecular profile.  

One of greatest modifications in TW metabolites involved histamine, which showed higher levels in 
horses with asthma compared to healthy animals (Figure 4B). Histamine is a prominent contributor 
to allergic diseases [42] but its involvement in etiology of equine asthma, as well as the role of IgE, 
is still controversial [4]. McGorum et al. found a higher level of histamine in pulmonary epithelial 
lining fluid (PELF) of asthma affected horses after natural challenge compared to normal horses [43]. 
This difference was observed in the late phase of disease, as the horses included in the present study, 
but not in early stage. These findings could therefore support the hypothesis that equine asthma is 
connected to a late phase IgE mediated hypersensitivity reaction. 

In the complex pathophysiology of equine asthma, also oxidative stress might play a role as the active 
phase of asthma results in an infiltration of neutrophils into the tracheobronchial lumen and thereby 
leads to a greater oxidative load [44-45]. 

In our study, Group A showed significantly higher levels of glutamate and of the branched-chain 
amino acids (BCAAs) valine, leucine and isoleucine. Each of them can be found in several 
mammalian tissues [46] and is considered to have an oxidant activity, by inducing lipid peroxidation 
in vitro [47-48]. Moreover, BCAAs have been found involved in stress and systemic inflammation 
[17,49]. 

Metabolomic results on horses with asthma also showed a decrease in some amines that appear in 
biosynthetic pathways of amino acids, such as methylamine and dimethylamine (DMA) [50]. These 
amines are normally present in blood, and, from blood, in saliva [51], in different concentrations 
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according to glands stimulation [41]. Their different concentration could be therefore connected to 
abnormal mucus production by respiratory gland occurring in equine asthma disease. Recently, 
nevertheless, it was established that DMA is also a metabolic product of asymmetric dimethylarginine 
(ADMA), which is an endogenous competitive inhibitor of nitric oxide synthase (NOS) [52-54].   

Another antioxidant metabolite like ascorbate was found at lower concentration in horses with asthma 
compared to healthy animals. The principal non-enzymatic antioxidant identified in BALF of horses 
is ascorbic acid [45]. This agent is 50 times more concentrated in healthy horses than people, probably 
because horses are able to synthetize it, unlike humans [45,55]. Ascorbic acid is the first antioxidant 
to be oxidised in the airway during the active phase of equine asthma [45,56] by transition metal ions 
occurring at the site of airways inflammation [57-58] and its repletion follows the same course of the 
inflammation resolution [45,56]. The role of oxidative stress in the pathogenesis of equine asthma is 
also linked to airway smooth muscle contraction, as observed in other species [45,59]. Level of lung 
dysfunction in asthma affected horses correlated positively with depletion of ascorbic acid in airways 
implicating oxidative stress and antioxidant consumption in the modulation of airway smooth muscle 
tone [56,60]. Further studies could confirm if ascorbate evaluation by metabolomics analysis could 
be an evaluable tool to monitor the disease progression and evaluate smooth muscle condition. 

The decrease of DMA and ascorbate in Group A, together with the significant increase in the oxidant 
agents, glutamate, valine, leucine and isoleucine noticed above, could support the hypothesis that 
oxidative stress is associated to lower airway disorders occurring in horses affected by asthma 
[8,44,61].  

Lower levels of O-phosphocholine were found in horses with respiratory disease compared to healthy 
controls. A marked decreased in O-phosphocholine levels was also observed by Jung and colleagues 
in the serum of patients with asthma [62]. This decrease might reflect a reduced protection of the 
alveolar region and of the conducting airways [63], as phosphocholine is a component of the 
endothelial cell barrier and a pulmonary surfactant. 

Finally, NMR analysis revealed the presence of propylene glycol both in healthy horses and in asthma 
affected animals. The presence of this molecule in mucus was not unexpected. In fact, the 
polysaccharides constituting horse mucus are largely composed by fucose, which can be transformed 
into propylene glycol by microorganisms due to an upregulation of lactaldehyde reductase [64]. In 
the present work, we found that propylene glycol was significantly decreased by equine asthma. 
Interestingly, several reports underline the antibacterial properties of propylene glycol [65-66], so 
that it can be speculated that this molecule might be at the base of a natural defense mechanism of 
respiratory tract in healthy horses. 

EBC is a biofluid of respiratory origin that can be collected in horses in a totally noninvasive way by 
cooling and condensing the exhaled breath. Anyway, a larger number of animals should be sampled 
to obtain information about reproducibility of our results. The obtained liquid contains soluble 
exhaled gases and metabolites of the extracellular lining fluid. Little is known about the genesis of 
these exhaled breath volatile organic compounds (VOCs), some are thought to be endogenous end-
products of metabolic pathways [67]. According to recent studies, one of the origins of exhaled VOCs 
is airway inflammation after reactive oxygen species react with cell membranes [68-70]. 
Notwithstanding the differences between human and equine physiology, we found some of the most 
common molecules observed in human EBC [23-25]. Recently, NMR-based metabolomics of EBC 
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has been effective in recognizing biomarkers and predict asthma exacerbation in children [22,70], 
chronic obstructive pulmonary disease (COPD) in adults [71], or stable or unstable cystic fibrosis 
[72]. Even if no significant differences were found in EBC metabolites between groups, the increase 
of methanol in Group A was found in agreement with the observations by Maniscalco et al. [25] in 
humans with chronic obstructive pulmonary disease (COPD). In this respect, it is interesting to notice 
that methanol is metabolized to formaldehyde, which shows a pro-inflammatory action and 
exacerbates airways inflammation in alveolar and bronchial cells and in animal models [25].   
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5. Conclusions  

Despite equine asthma have been extensively studied in veterinary medicine, this is the first work 
describing the metabolomic profile of TW and EBC in healthy and asthma affected horses. Among 
biofluids of respiratory origin, EBC and TW are the most accessible samples as no or minimally 
invasive, and they can be obtained without sedation and adverse effects.  The increase in histamine 
and oxidant agents, together with the decrease in antioxidant metabolites confirm that oxidative stress 
is strongly involved in asthma pathogenesis and showed that metabolomic analysis of TW by 1H-
NMR could represent a potential diagnostic tool to differentiate horses with asthma from healthy 
animals. Furthermore, equine TW metabolomic profile might provide suitable information for some 
human diseases sharing some features with equine asthma, like human asthma and COPD.  
Although a pilot study, the metabolomic profile of EBC showed interesting results as well. We could 
identify molecules already found in humans with chronic respiratory disease, despite a better 
standardization of sampling collection is needed in order to identify a recognized EBC metabolomic 
profile of horses affected by equine asthma.  Further study involving a larger number of horses could 
confirm the results obtained in this report, considering that, as usually happen in similar studies, the 
high number of measured variables could lead to coincidental correlations [73]. 

The results herein reported not only emphasize the value of 1H-NMR as a diagnostic tool, but also 
demonstrate the potential of this approach to identify established and novel biomarkers to be used for 
further pathogenetic investigations, differential diagnosis or therapeutic targets in veterinary 
medicine.  
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Figure 1. Condensation system used to obtain EBC in horses. The face mask is connected via 

thermally-insulated tubing to a condensation chamber. In the upper right corner, a detail of the face 

mask. 
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Figure 2 Portions of 1H-NMR spectra from typical TW samples. Assignments appear on the signals 

used for molecules quantification. The vertical scale of each portion is conveniently set to ease the 

signals observation. 
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Figure 3. rPCA model built on the space constituted by the concentration of the molecules listed in 

table 1. In the scoreplot a, samples from healthy (H) and asthma affected (A) animals are represented 

with squares and circles respectively. The wide, empty circles represent the median of the samples. 

The position of the animals along PC 1 is summarized in boxplot b. The loadingplot (c) reports the 

correlation between the concentration of each substance and its importance over PC 1. Significant 

correlations (p<0.05) are highlighted with gray bars. 
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Figure 4. Portions of 1H-NMR spectra from typical EBC samples. Assignments appear on the signals 

used for molecules quantification. The vertical scale of each portion is conveniently set to ease the 

signals observation. 
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