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Abstract
We study the optomechanical behaviour of a driven Fabry–Pérot cavity containing two vibrating
dielectricmembranes.We characterize the cavitymode frequency shift as a function of the two-
membrane positions, and report a∼2.47 gain in the optomechanical coupling strength of the
membrane relativemotionwith respect to the singlemembrane case. This is achievedwhen the two
membranes are properly positioned to form an inner cavity which is resonant with the driving field.
We also show that this two-membrane systemhas the capability to tune the single-photon
optomechanical coupling on demand, and represents a promising platform for implementing cavity
optomechanics with distinct oscillators. Such a configuration has the potential to enable cavity
optomechanics in the strong single-photon coupling regime, and to study synchronization in optically
linkedmechanical resonators.

1. Introduction

Multi-element systems ofmicro/nano-mechanical resonators offer promising prospects for enhanced
optomechanical performances [1–7], coherent control [8, 9], and for the exploration ofmulti-oscillators
synchronization [8, 10–16]. The standard path for reaching the strong single-photon optomechanical coupling
regime is to consider co-localized optical and vibrationalmodes [17–19], with a large spatial overlap confined in
very small volumes, corresponding tomechanicalmodes with extremely small effectivemass. An alternative
solution, capable of providing systemswith orders ofmagnitude increased ratio between the single-photon
optomechanical coupling rate, and the cavity decay rate, is to exploit quantum interference inmulti-element
optomechanical setups [3–5]. Although the simplest two-membrane sandwich in an optical cavity is a paradigm
for the realization of strong-coupling optomechanics, and the observation of collectivemechanical effects (such
as synchronization), no experimental studies of these phenomena have been reported till now. Previous related
results [20]were confined only to the optical andmechanical characterization of two-membrane sandwiches.

Here we report on thefirst experimental characterization of the optical,mechanical, and especially
optomechanical properties of a sandwich constituted of two parallelmembranes within an optical cavity.We
showhow the resonance frequencies of the optical cavity are shifted as a function of the position of the two
membranes. This effect is central to the description of the optomechanical properties of the system, since it
provides a direct estimation of the strength of the couplings [1, 21–23]. By investigating the shifts of the cavity
resonances wefind that the optomechanical coupling strength is enhanced by constructive interference when
the twomembranes are positioned to form an inner cavity which is resonant with the driving field. Specifically
we determine a gain of∼2.47 in the coupling strength of the relativemechanicalmotionwith respect to the
singlemembrane configuration.Wefinally prove both the capability to tune on demand the single-photon
optomechanical couplings, and the simultaneous optical cooling of the fundamentalmodes of the two distinct
membranes.
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2. Theory

Generalizing the results obtained in [5], we consider the case of two differentmovable dielectricmembranes
placed inside a Fabry–Pérot cavity of length L, which is driven by an external laser. The Fabry–Pérot cavity is
composed of two identicalmirrors with electric field reflection and transmission coefficients r and t,
respectively. Themembranes can bemodelled as dielectric slabs of thickness L jm, and index of refraction nj
(where the index j=1, 2 distinguish the parameters of the twomembranes), such that their reflection and
transmission coefficient can be expressed as
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where k=2π/λ is thewavenumber of the electric field, andλ is its wavelength.
The optical resonance frequencies correspond to themaxima of transmission of thewhole cavity. The

electric field amplitudesAj of incident ( j=in), reflected ( j=ref), and transmitted ( j=tran)waves, as well as
for thefields in the cavity ( j=1, 2,K, 6) (see figure 1), satisfy the following equations:
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where Lj=qj−qj−1 (with qj the positions of the various elements defined infigure 1, and j=1, 2, 3) is the
length of the subcavities formed by themirrors and themembranes, so that L=L1+L2+L3.We point the
reader to [22] for a similar approach in the case of a singlemembrane.Here we use the same convention of [22]
for the scatteringmatrix of a single scattering element, either the cavitymirror or themembrane. This is a bit
different from the choice of [5], which is reproduced by replacing rwith−r into the equations above.
Equations (1)–(10) are valid, for any value of the thickness, in the ideal one-dimensional case of planewaves, and
flat, alignedmirrors andmembranes. They can be applied also to the case of Gaussian cavitymodes and spherical
externalmirrors as long as themembranes are placedwithin the Rayleigh range of the cavity.

The systemof equations (3)–(10) can be solved to determine the transmission coefficient of thewhole cavity.
It is given by


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Figure 1. Schematic diagramof the system. Twomovable dielectricmembranes are placed inside a Fabry–Pérot cavity of length L
which is driven by an external laser. The position of twofixedmirrors (movablemembranes) is denoted by q0 and q3 (q1 and q2); we
have Li=qi−qi−1 (i=1, 2, 3), with q3=−q0=L/2.
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This last expression reproduces equation (4) of [5]when r1=r2, t1=t2, andwe restrict to the case of real nj,
implying in particular f= º( ) ( )r targ argj j j so that + = fr t ej j

2 2 2i j.Moreover it reproduces also the case of a
singlemembranewhich is obtained by taking = = - =r t L0, i, 02 2 3 . From equations (3)–(10) one can also
derive the expression for the reflectivity, given by
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An explicit equation for the cavitymode frequencies can be found in the case of negligible optical absorption of
themembranes, i.e. for real nj. In this casewe rewrite rjwith j=1, 2 in terms of the intensity reflectivityRj as
= fr R ej j

i j, andwe assume for simplicity r and t real so that we express them in terms of the corresponding

intensity reflectivitys as = - = - -r R t R, 1 . Accordingly, equation (12) becomes
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The cavitymode frequencies correspond in general to themaxima of the transmission, and therefore theminima
of ∣ ∣2. In the limiting case of perfect externalmirrors,R=1, thesemaxima become poles of the transmission
and themodes correspond to the zeros of . In order to get a simple expression for the poles we restrict to this
limiting situationwhich, as we have seen in [5], works also in the case of realistic high-finesse cavities for which
typically 1−R∼10−5. In particular using the definitions = +L q L 21 1 , = -L L q23 2 and introducing the
relative coordinate = = -q L q q2 2 1we find that equation (14) can be rewritten, forR=1, as
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By setting this equation equal to zeroweget the implicit equation for the cavitymode frequencies valid in the limit of
R∼1 and for the general case of twodifferentmembranes. It reproduces the implicit equation in the two special
cases of equalmembranes andof onemembrane only. Specifically, in the case of equalmembranesR1=R2=Rm,
f1=f2=f, andusing the definitions f¢ º +L L k2 and f¢ º + = - = +q q k q Q q q Q q, 2, 21 2 ,
whereQ=(q1+q2)/2 is the center-of-mass (CoM) coordinate,we get

¢ - ¢ - ¢ + ¢ =( ) ( ) ( ) ( ) ( )kL R kL kq R kQ kqsin sin 2 2 cos 2 sin 0, 16m m

which coincideswith equation (8) of [5]. Instead in the onemembrane case, putting f f= =R 0,2 1 and
f2=−π/2, we get

f- + - =( ) ( )kL R kqcos cos 2 0,1

which is just the corresponding equation used in [24] in the limitR=1.
In the general case the implicit equations for themode frequencies = 0, with given in equation (15), can
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definition of ¢L , can be expressed as
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shift [5]
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This treatment in the general case of two differentmembranes generalizes previous results and has the advantage
of providing a unique framework inwhich one can immediately compare the single and two-membrane case.
On the other hand, for a given value of themaximumavailablemembrane reflectivityRmax=max{R1,R2}, we
have numerically verified that the largest optomechanical couplings are achievedwhen the twomembranes have
identical reflectivities. For this reasonwe have focused our experiments to the case of nominally identical
membranes, andwe shall restrict fromnowon to this latter case. In particular, introducing the parameters
 = =R Rm 1 2, and f f f= = = =L L L,1 2 m m,1 m,2 and n=n1=n2, the explicit dependence upon the
variables kq1 and kq2 of the parameters ̃ ( )kq kq,1 2 and q ( )kq kq,1 2 that enter into the definition of in
equation (22), is easily obtained from equations (19) and (20), so that for identicalmembranes one has
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Figure 2 shows themode frequency shift δωnormalized to the free-spectral-range of the cavity, FSR=π c/L, as
a function of themembrane positions q1 and q2 normalized to thewavelength, assuming the parameters of the
experimental setup, i.e., l = = = =L L1064 nm, 0.999 94, 90 mm, 104 nmm , and n=2.17. It is worth
noting that a nonzero value of the phasef determines a displacement of the pattern along the bisector of the
second and fourth quadrants, and a constant shift of the cavity frequencies.

The optomechanical couplings strengthGj are the derivative of the opticalmode frequencies with respect to
the position of the jthmembrane qj. Defining the scaled dimensionless positions l=q̃ qj j , we canwrite in

general
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l
p p

=
¶

¶

( ˜ ˜ )
˜

( )G
q q

q

FSR 2 , 2
. 26j

j

1 2

In the case of a singlemembrane the single-photon optomechanical coupling has the same structure of
equation (26)
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butwith a different dimensionless frequency shift function
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Taking the derivative one can see that themaximumvalue of  p¶ ¶( ˜) ˜q q2sing is 4 m (halfway between a
node and an antinode of thefield), so that
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
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In order to study the enhancement of the coupling (and the associated optical interference effect) due to the
presence of the secondmembrane, we have to compare themaximumderivative of the function p p( ˜ ˜ )q q2 , 21 2

with respect to 4 m . Infigure 2we show the cavitymode frequency shifts, and superimposed the vector plot
of the corresponding gradient field, which gives the values of the two couplingsG1 andG2. It shows that the
largest optomechanical coupling is achieved simultaneously by the twomembranes, and in this caseG1=−G2.
At this point the cavitymode frequency is sensitive atfirst order only to the variation of the distance between the
twomembranes, q=q2−q1, and is not sensitive to shifts of the CoMof the twomembranes,Q. This implies
that the coupling of theCoM is zero,GQ=0, while that of the relative coordinate is =∣ ∣ ∣ ∣G Gq j [5]. In this case,
in order to determine the gain factorwe apply the same argument of section III of [5] from equations (19)–(23).
Specifically, we find that, forℓ integer
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Thismeans that themaximum coupling for bothmembranes is achievedwhen +( ˜ ˜ )q q1 2 is an integer number
for evenℓ, and an half-integer for oddℓ (and this is visible also from the vector plots infigure 2). Using this
condition equation (30) reduces to


=

-
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1

1
. 31j
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m
sing
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In the case of = 0.4m , as in our experiment, the optomechanical couplingmay increase up to a factor∼2.72.
As discussed in detail in [5] (see also [3, 4]), the present treatment based on the assumption dℓ ℓ

( )k k0 ,
allowing to express the frequency shift explicitly as a function of the empty cavity solution (see equation (23)), is
valid provided that the reflectivitym is not too close to one. This fact could be guessed from the fact that
equations (30)–(31) suggest an unlimited value of the optomechanical couplingwhen  1m , which is
unphysical. In fact, as numerically shown in [5] and could be expected also on physical grounds, when
  ~R 1m (that is, themembrane reflectivity becomes equal or larger than the cavitymirror reflectivity),
equation (30) is nomore valid, and the optomechanical coupling saturates to a value corresponding to that of the
inner Fabry–Perotmembrane cavitywith length p l= =∣ ∣ ( )ℓ

( )q G ck q c q, 2j
sat 0 . As underlined in [5], when

∣ ∣q L 1and ~ ~R 1m , this saturation valuewould still correspond to the strong-coupling regimewhere
the single-photon optomechanical coupling is equal or larger than the cavity decay rate, because for aligned
membranes with negligible absorption, the cavity decay rate remains identical to the value of themain cavity

Figure 2.Contour plot of the frequency shift function dw d= ( )c km
0 for evenmnormalized to the free-spectral-range of the cavity,

p= c LFSR , as a function of themembrane positions q1 and q2 normalized to thewavelength, due to the presence of the two-
membrane cavity. The parameters used for the numerical analysis are: l = = = =L L1064 nm, 0.999 94, 90 mm, 104 nmm ,
and n = 2.17. Superimposed the vector plot of the gradient field of the frequency shift, whose components give the two
optomechanical couplings, with the unit indicated on the top-right of the panel. The oblique blue lines (A–F) indicate the
experimental spectra obtained by varying the CoMof themembrane-cavity system for different positions q2, and reported infigure 8.
The horizontal red lines (I–VI) indicate the experimental spectra obtained by varying q1 for different positions q2, and reported in
figure 9. The red and blue dots represent the points where the optomechanical couplingwas estimated.
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with length L. In our experiment with commercially availablemembranes we are far from the condition
  ~R 1m , and therefore equations (30)–(31) can be safely used to describe the results.

3.Membrane-sandwich characterization

In our experiment we used two differentmembrane sandwiches. Thefirst is constituted of two low-stress SiN
squaremembranes, with a side of 1 mm, and a thickness of 100 nm.And the second ismade of two high-stress
Si N3 4 squaremembranes, with a side of1.5 mm, and a nominal thickness of 100 nm. In both cases, one of the
membranes is glued on a piezo, which allows for a scan of themembrane-cavity length, while thewhole
membrane-cavitymount is attached to another piezo in order to displace in a controlledway theCoMof the two
membranes.

3.1.Optical properties
Herewe report on the characterization of the two-membrane sandwiches in terms of reflectivitym and cavity
length Lc, whichwe have performed before inserting them into the optical cavity. In particular, themembrane-
cavity length Lcwas determined by illuminating themembrane-sandwichwith a tungsten lamp. The transmitted
light was collected by amulti-mode fiber, andfinally revealed by a spectrometer. The interference pattern of the
normalised transmitted light is shown infigures 3(b) and (c), for thefirst and second sandwich, respectively, and
comparedwith a best-fit curve obtained from the expression of the transmitted light




 p
=

+ D[ ( ) ]
( )

1 2 sin 2
, 32tr

in
2

where in is the input light intensity,Δ=4π Lc/λ, and  is thefinesse of themembrane-cavity. From the
spectrometer data of the first sandwich, figure 3(b), we obtain a best-fit value for themembrane-cavity length

m= L 24.008 0.004 mc .Moreover, assuming afinesse given by the equation

Figure 3.Cavity-frequency scan. (a)Experimental setup for cavity frequency-scan. The light of a tungsten lamp transmitted by the
membrane sandwich of length Lc at rest, is coupled to amulti-mode opticalfiber and collected into a spectrometer forwavelength
analysis. (b)Red line represents themeasured light transmitted by the firstmembrane-cavity, and normalised to the light in the
absence ofmembranes, tr . Blue line is the best-fit obtainedwith m= L 24.008 0.004 mc , and = L 100.0 0.2 nmm . (c)Red
and blue line represent data from the second sandwich and best-fit, respectively. The best-fit provides m= L 53.571 0.009 mc ,
and = L 106 1 nmm .
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which holds in the case of equalmembrane reflectivity, and using the values of the index of refraction provided
by themanufacturer, wefind that the correspondingmembrane thickness is = L 100.0 0.2 nmm . From the
data of the second sandwich,figure 3(c), we obtain amembrane-cavity length m= L 53.571 0.009 mc , and a
membrane thickness = L 106 1 nmm , which is found for the index of refraction of Si3N4 given in [25].

Although themembrane-cavity length iswell estimatedby thepeakdistances in the interferencepatterns reported
infigures 3(b) and (c), themembrane thickness, and consequently the reflectivityof themembrane, is badlyderivedby
thepoor visibility of the curves,measuredwith anapparatusnotoptimized for this purpose.Themembrane reflectivity

m at specificwavelengths is optimally estimatedwith adifferent experiment (seefigure4(a)) exploiting again
equation (32) and (33), butnowcollectingonaphotodiode the light of a laser transmitted through themembrane-
cavitywhile scanning the cavity lengthq=Lc+δq, such that, in this case,weuseΔ=4π q/λ in equation (32). For
thefirst sandwichweuse a1064 nm laser, and thebest-fit provides a valueof thefinesse = 3.26 0.02, yielding a
corresponding value for the reflectivity = 0.408 0.002m . Sucha result is consistentwith amembrane thickness
of = L 104 1 nmm , assumingan indexof refractionn=2.17.Those values are in accordancewith theones
providedby themanufacturer. For the second sandwichweused threedifferentwavelengths, 532 nm, 632.8 nm and

1064 nm, and the corresponding results, obtainedwhile scanning the cavity length, are shown infigures 4(b)–(d). The
best-fit of equation (33)provides a valueof thefinesse andof the corresponding reflectivity for eachwavelength.They
are givenby  =  = 1.466 0.002, 2.3817 0.0007532 632.8 , and = 3.20 0.031064 with corresponding
reflectivity =  = 0.2050 0.0002, 0.3137 0.0001m

532
m
632.8 , and = 0.3345 0.0003m

1064 ,
respectively. Inorder to estimate the thicknessof themembranes these valueswerefitted according to the relation in
equation (1) (seefigure 4(e)). As shown infigure4(f),weobtain amembrane thickness of = L 102.3 0.1 nmm .

Figure 4.Cavity-time scan. (a)Experimental setup for cavity time-scan. A PINphotodiode detects the light transmitted by the
membrane-cavity while themembrane distance is scanned bymeans of a high voltage (HV) applied to a piezo. Light transmitted by the
membrane-cavity for three different wavelengths, 532 nm (b), 632.8 nm (c), and 1064 nm (d), as a function of themembrane
distance d+L qc . The best-fit values of themembrane-cavity finesse are  =  = 1.466 0.002, 2.381 7 0.0007532 632.8 , and
 =  )3.20 0.031064 , which correspond tomembrane reflectivities  =  = 0.2050 0.0002, 0.3137 0.0001m

532
m
632.8 , and

 = 0.3345 0.0003m
1064 , respectively. Blue line represents the voltage applied to the piezo. (e)Variation of the reflectivity of the

membranes as a function of the wavelength. Green triangle, red circle and purple square are themeasured reflectivity values at
532 nm, 632.8 nm, and 1064 nm, respectively. The best-fit, blue curve, associated to equation (1), provides a value of themembrane
thickness of = L 102.3 0.1 nmm . (f)Dependence of the reflectivity of a Si N3 4 membrane on the thickness (equation (1)), for three
different wavelengths: 532 nm, 632.8 nm, and 1064 nm. Dashed blue line represents the estimated thickness of themeasured
substrates = [L 102.3 0.1 nmm ].
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This result is estimatedbyusing the values of the refractive indexat the threewavelengths reported in [25],which are in
accordancewith theonesprovidedby themanufacturer.

3.2.Mechanical properties
Herewepresent a studyof themechanical properties of the secondmembrane-sandwichbyusing a 532 nm laser in a
Michelson interferometer, as shown infigure 5 [26] (this kindof study is notpossiblewith thefirst sandwichdue to the
poorquality of themechanicalmodes). Infigure 6we show the thermal voltagenoise (VSN)of the two-membranes
cavity revealedbyhomodynedetectionof the reflected light, thequality factorm of themechanicalmodes, and the
relative differencebetween experimental andfittedmechanical frequencies. Themembranes are very similar and show
a set of very close resonancepeaks.As shown infigure 6(b),we reproduced themechanical resonance frequencies of
bothmembraneswith an error smaller than1%assuming rectangularmembranes and thenominal valuesprovided
by themanufacturer for the stress, s = 0.825 GPa, and for thedensity r = -3100 kg m 3, and taking the side lengths
asfittingparameters. Best-fit values are =  = ( ) ( )L L1.519 0.006 mm, 1.536 0.006 mmx y

1 1 , and

=  = ( ) ( )L L1.522 0.006 mm, 1.525 0.006 mmx y
2 2 . Figure 6(c) shows that themechanical quality factor

changes significantly between themodes and that onemembrane tends tohave lowerm values.Weattribute these
scatteredvalues to the effect of clampingwhich strongly dependsupon the shapeof the vibrationalmode andmaybe
different on the twomembraneswith the currentmounting.

4. Estimation of the optomechanical coupling strength

In order to estimate the strength of the optomechanical coupling achievable with our systemwe have inserted
thefirst sandwich (the onemadewith the SiNmembranes) in a 90 mm-length optical cavity [27, 28], and the
optomechanical systemwas located in a vacuum chamber evacuated to ´ -5 10 mbar7 (see figure 7).

Our aim is to compare the frequency shift of the resulting cavitymodes in the presence of the two-membrane
system,with the one corresponding to the case with a singlemembrane inside.We note that the results for a
singlemembrane are obtained using amembrane different form the ones of the sandwich, namely a highly
stressed SiN circularmembrane, with a diameter of 1.2 mm, and a thickness of 97 nm [24, 27, 28]. However, the
fact that themembranes have similar size and aremade of the samematerial,makes the comparison thatwe
report hereaftermeaningful.

The spectra of the cavitymodes reported infigures 8 and 9 are obtained by detecting the light of a laser at
1064 nm transmitted by the cavity while scanning the laser frequency for different positions of themembrane(s).
The last panel on the right offigure 8 is equal to the last offigure 9 and they report the results of the single
membrane case. The slope of the corresponding black lines represents themaximumachievable single
membrane optomechanical coupling strength p ´ -G 2 3.47 MHz nmsing

max 1. The other panels show the
results with twomembranes. In this case there are two degrees of freedom that can be varied,that is,the positions
of the twomembranes, q1 and q2. Due to the design of ourmembrane-cavity, we can scan either theCoM,Q, for
different values of themembrane distance = -q q q2 1,or q1 for different positions of q2. Infigure 8 are reported

Figure 5.Experimental setup for characterizing themechanical properties of the twomembranes constituting themembrane-cavity.
A 532 nm laser is sent into a polarization-multiplexedMichelson interferometer. Thermal voltage noise of the two-membrane cavity
is revealed by homodyne detection of the reflected light. HWPdenotes a half-waveplate, QWP aquarter-waveplate, and PBS a
polarizing beam-splitter.
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the spectra obtained by scanning theCoM,Q, for different values of themembrane distance q, as indicated by the
lines A–F infigure 2. The blue line on panel D corresponds to the blue circle infigure 2, and it indicates the
highest coupling p ´ -G 2 5.67 MHz nmQ

max 1 achieved in this case. It corresponds to an increase in the
optomechanical coupling strength of a factor~1.63with respect to the singlemembrane case. Infigure 9we
report the spectra obtained by scanning the position q1 for different position q2, as indicated by the lines I–VI in

Figure 6.Thermal noisemeasurement of themechanicalmodes of the twomembranes in aMichelson interferometer. (a)Thermal
voltage noise (VSN) (green curve)with the experimentalmechanical resonance peaks highlighted by vertical light-grey lines; red and
blue top lines indicate themechanical frequencies of rectangularmembranes with nominal values for the stress s = 0.825 GPa and
density r = -3100 kg m 3, and best best-fit parameters for the side lengths =  = ( ) ( )L L1.519 0.006 mm, 1.536 0.006 mmx y

1 1 ,

and =  = ( ) ( )L L1.522 0.006 mm, 1.525 0.006 mmx y
2 2 , respectively. The grey curve is the shot noise, while the black curve the

electronic noise. (b)Relative difference between experimental andfittedmechanical frequencies for the twomembranes. (c)Quality
factorm of eachmechanicalmode.

Figure 7.Experimental setup for themeasurements reported infigures 8, and 9. The light of a laser at 1064 nm wavelength transmitted
by an optical cavity of length =L 90 mm containing themembrane sandwich of thickness =L 104 nmm , and distance m=L 24 mc

at rest, is revealed by a PINphotodiode (tr ), while the frequency is scanned by applying a ramp signal (RAMP) to the piezo control of
the laser. The positions of the twomembranes are controlled by applying high voltage (HV) to the piezos, whichmove theCoM,Q,
and the cavity length, q1.
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figure 2. The red line on panel V corresponds to the red circle infigure 2, and indicates the highest achieved
coupling p ´ -G 2 8.59 MHz nm1

max 1. In this case the optomechanical coupling strength increases by a
factor~2.47, which is 9% lower than the expected one, given by equation (31). Such a discrepancymight be
attributed to an imperfect alignment of the twomembranes.

Figure 8.Mode frequency shift normalized to the FSR, as a function of theCoM,Q, normalized to thewavelength, for different values
of the distance = -q q q2 1 as indicated by the lines A–F in figure 2. Panel D shows the position of the highest achievable coupling

p ´ -G 2 5.67 MHz nmQ
max 1 indicated by the solid blue line. For comparison the singlemembrane result is added as a dotted black

line, which represents themaximumachievable coupling p ´ -G 2 3.47 MHz nmsing
max 1, shown in the panel on the right.

Figure 9.Mode frequency shift normalized to the FSR, as a function of themembrane position q1, normalized to thewavelength, for
different values of the position q2, as indicated by the lines I–VI infigure 2. Panel V shows the positions for the highest coupling

p ´ -G 2 8.59 MHz nm1
max 1. For comparison the singlemembrane result is added as a dotted black line, as infigure 8.

10

New J. Phys. 20 (2018) 083024 PPiergentili et al



5. Cavityfinesse in the presence of themembrane-sandwich

In the last set of experimentsweplaced the secondmembrane sandwich (the onemadeof Si N3 4 membranes) in the
sameoptical cavity offigure 7 (see alsofigure 10(a)).Herewe report on the analysis of the effects of themembranes on
the cavityfinesse. Thefinesseof the optical cavity,with andwithout themembrane sandwich, is determinedbymeans

of the ring-down technique,fitting thedecay of thenormalized transmitted intensity, tr , after the laser at1064 nm
is rapidly turnedoff. Infigure 10(b)we show the ring-down results obtained for the empty cavity, andwith the
membrane-sandwichplacedwithin the optical cavity. For the former case, the best-fit decay time is t = 4.7900

m0.002 s,which corresponds to an empty cavityfinesse  pt= = c L 50 125 250 0 [27],while for the latter,
t m= 1.365 0.001 s, corresponding to a cavityfinesse  = 14 287 13. Suchfinesse corresponds to a cavity
intensity decay rate k t p= = ~ ´- FSR 2 117 kHz1 , with p~ ´FSR 2 1.67 GHz. Theobserved reduction
offinesse in thepresenceof themembrane-sandwich ismuchmore significant than theoneoccurring in the case of a
singlemembrane [24, 29] and it canbe ascribed to the imperfect alignment of the twomembranes [20]. This
misalignment is responsible for an effective cavity loss   d q q p= -  ( )F1 1 1 2 50 ppmm0 wdg dif

2 .

Assuming a coefficient offinesse  = - ( )F 4 1 3m m m
2 , and adiffraction angle of the gaussianbeam

q l p= w 3 mraddif 0 , with mw 112 m0 the beamwaist of the cavity of our experiment, themisalignment
angle qwdg between the twonon-parallelmembranes can thenbe estimated tobe q m~ 30 radwdg . Themembrane
alignment couldbe improved either byusing pairs ofmembranes assembledparallel to eachotherbymeansof
spacers depositedononeof the chip, as implemented for example in the experiment of [20], or by replacing the single

Figure 10. (a)Experimental setup for studying cavity optomechanics with a two-membrane setupwithin a cavity. A laser probe beam,
frequencymodulated by an electro-opticalmodulator (EOM), impinges on the optical cavity. The reflected beam is split: one
component is detected, demodulated and low-pass amplified for generating the Pound–Drever–Hall (PDH) error signal able to lock
the laser to the cavity; the second component is analysed by homodyne detection in order to detect themechanicalmotion. A further
beam, the cooling beam, detuned byΔ from the cavity resonance, is turned on for engineering the optomechanical interaction, and in
particular realize laser cooling of themechanicalmodes.HWPdenotes a half-waveplate, QWP aquarter-waveplate, BS a beam-
splitter, and PBS a polarizing beam-splitter. (b)Cavity ring-downmeasurement for the evaluation of the cavityfinesse. Light-violet
data is the normalized transmitted intensity, tr , through the empty optical cavity; the solid violet line represents the best-fit with
decay time t m= 4.790 0.002 s0 , which corresponds to an empty cavity finesse  pt= = c L 50 125 250 0 . Light green data
refer to the casewith themembrane-sandwich placedwithin the optical cavity; the solid green line is the best-fit with decay time
t m= 1.365 0.001 s, corresponding to a finesse  = 14 287 13.
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piezo, used for the scanof themembrane-cavity,with tilt stageswithpiezo control,whichwould allow for scanning as
well as alignment of themembrane-cavity.

6. Tunable optomechanical coupling and laser cooling of the twomembranes

Using the same setup of section 5, wefinally studied the optomechanical properties of the system. First we show
that the optomechanical interaction of the driven cavitymodewith eachmembrane of the sandwich can be
controlled and tuned by shifting their position along the cavity axis with the piezo controllers. The probe beam
was locked to the optical cavity bymeans of a Pound–Drever–Hall technique and the thermal voltage spectral
noise (VSN) of the two-membranes cavity ismeasured by homodyne detection of the light reflected by the
optical cavity (seefigure 10(a)). The detected thermal (VSN) is shown infigure 11, which clearlymanifests the
possibility to turn on and off the optomechanical interaction in a controlledmanner by changing the position of
eachmembrane (see figures 11(a) and (b))where only one of the twomembranes is positioned in a place in
which it interacts with the cavity light. Infigure 11(c) bothmembranes are instead coupled to the optical cavity.
For the lower frequencymode on the left (red)wemeasured w p g p= ´ = ´2 235.810 kHz, 2 1.64 Hzm m1 1 ,
while for themode on the right (orange)wemeasured w p g p= ´ = ´2 236.580 kHz, 2 9.37 Hzm m2 2 . Such
results are consistent with themeasurements obtainedwith the interferometer (see figure 6). In fact, we used a
probe beamwith very low power, and as resonant as possible with a cavitymode in order to avoid any
optomechanical effect, such as cooling or optical spring effect, taking into account that k w~ ¯ 2m with
w w w= +¯ ( ) 2m m m1 2 . The correspondingmeasured single-photon optomechanical coupling rates

= Qg G xj j j j0
zpf , where  w= [ ]( )x m2j j

jzpf
m

1 2 is the zero point position fluctuations of the jthmechanical

mode, andΘj is the dimensionless transverse overlap between the jthmechanicalmode and the optical cavity
mode, [30] are p= ´g 2 0.30 Hz01 and p= ´g 2 0.28 Hz02 . These values are comparable to those achieved in
a similar setupwith a singlemembrane [27, 31] because the twomembranes were placed out of the region in the
q1, q2 planewhere the optomechanical coupling is enhanced due to interference (see figure 2).Within this region
the systemwas not stable enough andwe did not carry out cavity optomechanics experiments.

Finally we show thatwe can engineer the optomechanical interaction of bothmembranes with the optical
mode by turning on an additional ‘cooling’ beamwith a variable detuningΔwith respect the cavity resonance.
Herewe focus on the case of red-detuned drivingwhich resonantly enhances the beam-splitter interaction
between the cavitymode and themechanicalmodes and allows to cool the latter.We observe the simultaneous
cooling [32] of the fundamentalmodes of the two distinctmembranes. Infigures 12 and 13we report the
measured displacement spectral noise (DSN) (left panels) as a function of the detuningΔnormalized to the

Figure 11.Thermal voltage (VSN) and displacement (DSN) spectral noise of themembrane sandwich obtained by homodyne
detection of the light reflected by the optical cavity. (a)Only themembrane with lower frequency fundamentalmode is coupled to the
optical cavity. (b)Only themembranewith higher frequency fundamentalmode is coupled to the optical cavity. (c)The fundamental
modes of bothmembranes are coupled to the optical cavity. The green feature on the right indicates the beat note added for
calibration. For the left redmodewe determine: w p g p= ´ = ´2 235.810 kHz, 2 1.64 Hzm m1 1 , and p= ´g 2 0.30 Hz;01 and for
the right bluemode: w p g p= ´ = ´2 236.580 kHz, 2 9.37 Hzm m2 2 , and p= ´g 2 0.28 Hz02 .
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Figure 12. Laser cooling of the twomembranes at low power. (a)Measured displacement spectral noise (DSN) as a function of the
detuningΔnormalized to themeanmechanical frequency w w w= +¯ ( ) 2m m m1 2 , for a cooling input power m=P 130 WC ,
k p= ´2 83 kHz, and g0 as infigure 11. The red and orange dashed lines indicate themechanical frequencies with no cooling.
(b)Theoretical predictionwith parameters given infigure 11.

Figure 13. Laser cooling of the twomembranes at high power. (a)Measured displacement spectral noise (DSN) as a function of the
detuningΔnormalized to themeanmechanical frequency w w w= +¯ ( ) 2m m m1 2 , for a cooling input power m=P 380 WC , and
k p= ´2 83 kHz. The red and orange dashed lines indicate themechanical frequencies with no cooling. (b)Theoretical prediction
with the following parameters: w p g p= ´ = ´2 235.950 kHz, 2 1.64 Hzm m1 1 , and p= ´g 2 0.12 Hz;01 and for the right blue
mode: w p g p= ´ = ´2 236.750 kHz, 2 9.37 Hzm m2 2 , and p= ´g 2 0.22 Hz02 . Note the less effective optomechanical cooling
on the leftmode due to lower optomechanical coupling, and also the frequency shift in themoderate resolved-side-band limit.

Figure 14. Laser cooling of the twomembranes at constant detuning. (a)Measured displacement spectral noise (DSN) as a function of
the cooling beampowerPC. The red and orange dashed lines indicate themechanical frequencies with no cooling. (b)Theoretical
prediction for a detuning wD ~ ¯ m with the same experimental parameters as in figure 11.
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meanmechanical frequency w̄m, and compare it with the corresponding theoretical prediction (right panels). In
figure 12we use a lower power of the cooling beamwith respect to that used infigure 13, but in both cases the
agreement is very good. Infigure 14 insteadwe report theDSN as a function of the cooling beampower PC, at a
fixed detuning wD ~ ¯ m.

7. Conclusion

We studied the optomechanical behaviour of a driven Fabry–Pérot cavity containing a two-membrane
sandwich. From the cavitymode frequency shift as a function of themembrane positions, we derived a∼2.47
gain in the optomechanical coupling strengthwith respect to the singlemembrane case. This is obtainedwhen
the twomembranes are positioned to form an inner cavity resonant to the drivingfield.We also showed the
capability of the system to be tuned on demand, and the simultaneous optical cooling of the fundamentalmodes
of the two distinctmembranes. Such a configuration has the potential to enable cavity optomechanics in the
strong single-photon coupling regime [3–5], as well as to study the nonlinear dynamics and synchronization of
two distinct nano-mechanical resonators bymeans of an optical link [12–16].
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