New jou I‘Ilal Of PhYSiCS Deutsche Physikalische Gesellschaft @ DPG 10P Institute of Physics

The open access journal at the forefront of physics

PAPER « OPEN ACCESS

Two-membrane cavity optomechanics

To cite this article: Paolo Piergentili et al 2018 New J. Phys. 20 083024

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 37.116.183.201 on 17/08/2018 at 20:16


https://doi.org/10.1088/1367-2630/aad85f
http://oas.iop.org/5c/iopscience.iop.org/571586340/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
24 May 2018

REVISED
27]July 2018

ACCEPTED FOR PUBLICATION
6 August 2018

PUBLISHED
17 August 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 20 (2018) 083024 https://doi.org/10.1088/1367-2630/aad85f

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER
Two-membrane cavity optomechanics

Paolo Piergentili'* @, Letizia Catalini', Mateusz Bawaj "> ®, Stefano Zippilli">®, Nicola Malossi"* @,
Riccardo Natali*®, David Vitali**>>*® and Giovanni Di Giuseppe"**

' School of Science and Technology, Physics Division, University of Camerino, I-62032 Camerino (MC), Italy
2 INFN, Sezione di Perugia, Italy

> CNR-INO, L.go Enrico Fermi 6,1-50125 Firenze, Italy

* Author to whom any correspondence should be addressed.

E-mail: david.vitali@unicam.it and gianni.digiuseppe@unicam.it

Keywords: optical cavity, optomechanical systems, radiation pressure

Abstract

We study the optomechanical behaviour of a driven Fabry—Pérot cavity containing two vibrating
dielectric membranes. We characterize the cavity mode frequency shift as a function of the two-
membrane positions, and report a ~2.47 gain in the optomechanical coupling strength of the
membrane relative motion with respect to the single membrane case. This is achieved when the two
membranes are properly positioned to form an inner cavity which is resonant with the driving field.
We also show that this two-membrane system has the capability to tune the single-photon
optomechanical coupling on demand, and represents a promising platform for implementing cavity
optomechanics with distinct oscillators. Such a configuration has the potential to enable cavity
optomechanics in the strong single-photon coupling regime, and to study synchronization in optically
linked mechanical resonators.

1. Introduction

Multi-element systems of micro/nano-mechanical resonators offer promising prospects for enhanced
optomechanical performances [1-7], coherent control [8, 9], and for the exploration of multi-oscillators
synchronization [8, 10-16]. The standard path for reaching the strong single-photon optomechanical coupling
regime is to consider co-localized optical and vibrational modes [17—19], with a large spatial overlap confined in
very small volumes, corresponding to mechanical modes with extremely small effective mass. An alternative
solution, capable of providing systems with orders of magnitude increased ratio between the single-photon
optomechanical coupling rate, and the cavity decay rate, is to exploit quantum interference in multi-element
optomechanical setups [3-5]. Although the simplest two-membrane sandwich in an optical cavity is a paradigm
for the realization of strong-coupling optomechanics, and the observation of collective mechanical effects (such
as synchronization), no experimental studies of these phenomena have been reported till now. Previous related
results [20] were confined only to the optical and mechanical characterization of two-membrane sandwiches.

Here we report on the first experimental characterization of the optical, mechanical, and especially
optomechanical properties of a sandwich constituted of two parallel membranes within an optical cavity. We
show how the resonance frequencies of the optical cavity are shifted as a function of the position of the two
membranes. This effect is central to the description of the optomechanical properties of the system, since it
provides a direct estimation of the strength of the couplings [1, 21-23]. By investigating the shifts of the cavity
resonances we find that the optomechanical coupling strength is enhanced by constructive interference when
the two membranes are positioned to form an inner cavity which is resonant with the driving field. Specifically
we determine a gain of ~2.47 in the coupling strength of the relative mechanical motion with respect to the
single membrane configuration. We finally prove both the capability to tune on demand the single-photon
optomechanical couplings, and the simultaneous optical cooling of the fundamental modes of the two distinct
membranes.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Schematic diagram of the system. Two movable dielectric membranes are placed inside a Fabry—Pérot cavity of length L
which is driven by an external laser. The position of two fixed mirrors (movable membranes) is denoted by g, and g5 (q; and q,); we
havel; = qi—q;—1 (i = 1,2,3),withg; = —qo = L/2.

2. Theory

Generalizing the results obtained in [5], we consider the case of two different movable dielectric membranes
placed inside a Fabry—Pérot cavity of length L, which is driven by an external laser. The Fabry—Pérot cavity is
composed of two identical mirrors with electric field reflection and transmission coefficients rand ¢,
respectively. The membranes can be modelled as dielectric slabs of thickness L, ; and index of refraction n;
(where theindexj = 1, 2 distinguish the parameters of the two membranes), such that their reflection and
transmission coefficient can be expressed as

(njz — l)sin(knij,j)
B (le2 + Dsinkn;Lm,j) + 2i nj cos(knjLi,j) ’

)

3

2ﬂj

t] - 2 N N ) (2)
(nj + Dsin(kn;Ly, ;) + 2inj cos(kn;Ly, ;)

where k = 27/ \is the wavenumber of the electric field, and A is its wavelength.

The optical resonance frequencies correspond to the maxima of transmission of the whole cavity. The
electric field amplitudes A; of incident (j = in), reflected (j = ref), and transmitted (j = tran) waves, as well as
for the fields in the cavity (j = 1,2, ..., 6) (see figure 1), satisfy the following equations:

A =it Ay, — r Aelkl (3
A =inAseil — pAelth, 4)
Ay = itlAlei KLy _ 71A4eikL2, ©)
A4 = itzAﬁeikL3 — 72A3€ikl‘2, (6)
A5 = it2A3eikL2 — 7’2A6ei kLS, (7)

A6 = —r A5€ikL3, (8)

Arer = itAZeikLl — 1 Ap, )]

Agan = 1t ASeikL3) (10)

where L; = g; — gj_, (with g;the positions of the various elements defined in figure 1,and j = 1,2, 3) is the
length of the subcavities formed by the mirrors and the membranes, so that L = L; + L, + L;. We point the
reader to [22] for a similar approach in the case of a single membrane. Here we use the same convention of [22]
for the scattering matrix of a single scattering element, either the cavity mirror or the membrane. This is a bit
different from the choice of [5], which is reproduced by replacing r with —rinto the equations above.
Equations (1)—(10) are valid, for any value of the thickness, in the ideal one-dimensional case of plane waves, and
flat, aligned mirrors and membranes. They can be applied also to the case of Gaussian cavity modes and spherical
external mirrors as long as the membranes are placed within the Rayleigh range of the cavity.

The system of equations (3)—(10) can be solved to determine the transmission coefficient of the whole cavity.
Itis given by

e an
in
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with

D=1— (6 + i) + )X + m( + ri)erk b
T 212Kt L) g (12 4 ) elikatLy)
— el _ gy o2kl _ g o2ikLs (12)
This last expression reproduces equation (4) of [5] whenr; = 15, t; = t,, and we restrict to the case of real ),
implying in particular arg(r;) = arg(tj) = @;s0 that rjz + l‘j2 = e%%, Moreover it reproduces also the case of a

single membrane which is obtained by taking » = 0, , = —i, L3 = 0. From equations (3)—(10) one can also
derive the expression for the reflectivity, given by

At P £27, 2L - 1222k L) [y — (12 4 £2)e2ikl]
== . . .
A 1 — rrje2ikh (1 — rre2kyD

13)

An explicit equation for the cavity mode frequencies can be found in the case of negligible optical absorption of
the membranes, i.e. for real ;. In this case we rewrite r;with j = 1,2 in terms of the intensity reflectivity R;as
r; = JRje'%, and we assume for simplicity r and t real so that we express them in terms of the corresponding

intensity reflectivitysas r = —+/R, t = —+/1 — R.Accordingly, equation (12) becomes
D =1 — Re2kL+2i6+2i6, _ [RR) 2ik(LitLo)+2id +io,

+ RYR Ry Xkl +ioyrio, _ [RR) 2kt L) +ioy+2i6,

+ JRR e2klition _ [RR, e2ikla+iortio,

+ JRR, e#kLsti0n, (14)
The cavity mode frequencies correspond in general to the maxima of the transmission, and therefore the minima
of | D?. In the limiting case of perfect external mirrors, R = 1, these maxima become poles of the transmission
and the modes correspond to the zeros of D. In order to get a simple expression for the poles we restrict to this
limiting situation which, as we have seen in [5], works also in the case of realistic high-finesse cavities for which
typically 1 — R ~ 10, In particular using the definitions L, = q, + L/2, L3 = L/2 — g, and introducing the
relative coordinate ¢ = L, = q, — g, we find that equation (14) can be rewritten, for R = 1, as

—D/2i =sin(kL + ¢, + ¢,) — JRR, sin(kL — 2kq)
— JRy sin(2kq, — ¢,) + /R, sin(2kq, + ¢)). (15)

By setting this equation equal to zero we get the implicit equation for the cavity mode frequencies valid in the limit of
R ~ 1and for the general case of two different membranes. It reproduces the implicit equation in the two special
cases of equal membranes and of one membrane only. Specifically, in the case of equal membranes R, = R, = R,
¢ = ¢, = ¢,and usingthedefinitions L' = L + 2¢/kandq’ = q + ¢/k, g, = Q — /2, 9, = Q + q/2,
where Q = (q; + ¢»)/2is the center-of-mass (CoM) coordinate, we get

sin(kL’) — Ry, sin(kL’ — 2kq") + 24/ Ry, cos(2kQ)sin(kq’) = 0, (16)
which coincides with equation (8) of [5]. Instead in the one membrane case, putting R, = 0, ¢, = ¢ and
¢, = —m/2,we get

—cos(kL + ¢) — \/E cos(2kg) = 0,

which is just the corresponding equation used in [24] in the limitR = 1.

In the general case the implicit equations for the mode frequencies D = 0, with D given in equation (15), can
be expressed using the definitions L' = L + ¢,/k + &,/k, ¢ = q + ¢,/2k + ¢,/2k,and Q' = Q + A¢/4k,
(A = ¢y — ¢»),as

A(kq")sin(kL") + B(kq')cos(kL') = F(kQ', kq"), 17)
with A(kq’) = 1 — \/RR, cos(2kq’), B(kq') = R R, sin(2kq’), and F(kQ', kq') = /R, sin(2kQ’ — kq') —
JR, sin(2kQ’ + kq'). This can be further simplified with the definitions O = O/ NA+B,0=A, B, F
such that equation (17) can be rewritten in the equivalent form

sin [kL' + 0(kq)] = F(kQ', kq), (18)
where
JRisin(2kQ'— kq') — \/Rysin(2kQ'+ kq')
\/1 + RR, — 2\/@ cos(2kq”) ’

(19)

FkQ', kq') =
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and

JRIR, sin(2kq")

0(kq') = arcsin[B(kq')] = arcsin (20)
\/1 + RiR — 2R R, cos(2kq’)
and which, in turn, is equivalent to its formal solution obtained by inverting the sin function, that, using the
definition of L/, can be expressed as
kL=¢m+4 7 HKkQ, kq') (21)
with
T H(*kQ', kq') = (—1) arcsin[ F(kQ', kq')] — 0(kq") — ¢, — ¢, (22)

and £ integer. For each value of ¢ one finds a solution for a cavity mode wavenumber k, that can be decomposed as
thesum, k, = k' + 6k, of the empty cavity solution k) = # /L (which corresponds to the condition

R, = R, = 0, thatimplies F(kQ’, kq') = 0(kq’) = 0)and the shift due to the membranes that is given by the
implicit expression 6k, = L~'7 H(k,Q’, ksq'). In typical experiments, A\ = 27 /k” < L,sothat# isavery

large integer and this implies k) >> k. In this limit one can safely take L’ ~ L + ¢, /k” + ¢, /k” and

9 ~q+ ¢,/2k + 6,/2k. Correspondingly, for R, and R, not too close to one, and for not too large values of
qiand gy, 1.e.,whengq,/L,q,/L < 1, (see [5]), one can safely express the shift explicitly as a function of the empty
cavity solutionas 6k, = L~ 'rH (k" Q’, k{”'q’), that can be also written as an equation for the cavity mode frequency
shift [5]

w = c kO = 7T—C”H(zwﬂ, 27r@). (23)
i PP

This treatment in the general case of two different membranes generalizes previous results and has the advantage
of providing a unique framework in which one can immediately compare the single and two-membrane case.
On the other hand, for a given value of the maximum available membrane reflectivity R, = max{R, R,}, we
have numerically verified that the largest optomechanical couplings are achieved when the two membranes have
identical reflectivities. For this reason we have focused our experiments to the case of nominally identical
membranes, and we shall restrict from now on to this latter case. In particular, introducing the parameters

Rm =R =R,and¢p = ¢ = ¢, Ly = Ly} = L andn = n; = n,, the explicit dependence upon the
variables kq; and kq, of the parameters F (kq,> kq,) and 0 (kq,, kq,) that enter into the definition of 7 in
equation (22), is easily obtained from equations (19) and (20), so that for identical membranes one has

2\ Rm coslk(q, + g,)Isin[k(g, — q) + ¢]
\/1 + RE — 2R, cos[2k(q, — q)) + 2¢] )

F(kqy kqy) = — (24)

Rm Sin[Zk(qz —q) + 29¢]
1 + RE — 2Rmcos[2k(g, — q,) + 2¢]

0(kq,, kq,) = arcsin (25)

Figure 2 shows the mode frequency shift fw normalized to the free-spectral-range of the cavity, FSR = m¢/L, as
afunction of the membrane positions q; and g, normalized to the wavelength, assuming the parameters of the
experimental setup, i.e., A = 1064 nm, R = 0.999 94, L = 90 mm, L,, = 104 nm, andn = 2.17.Itis worth
noting that a nonzero value of the phase ¢ determines a displacement of the pattern along the bisector of the
second and fourth quadrants, and a constant shift of the cavity frequencies.

The optomechanical couplings strength G; are the derivative of the optical mode frequencies with respect to
the position of the jth membrane g;. Defining the scaled dimensionless positions q; = q;/ A\, we can write in

general
OH (274G, 27§
G, = ISR OHtCniy 2m), 26)
A aq;
In the case of a single membrane the single-photon optomechanical coupling has the same structure of
equation (26)
6Hsm 2wq
Gang = TR MMaingCm), 27)

A 04
but with a different dimensionless frequency shift function
T Hiing(27q) = (—1)"arcsin[ Ry, cos(4mg)]. (28)

Taking the derivative one can see that the maximum value of 0Hing(277) /04 is 4y R (halfway betweena
node and an antinode of the field), so that
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Figure 2. Contour plot of the frequency shift function éw = ¢ 6k for even m normalized to the free-spectral-range of the cavity,
FSR = 7c/L, as afunction of the membrane positions q; and g, normalized to the wavelength, due to the presence of the two-
membrane cavity. The parameters used for the numerical analysis are: A = 1064 nm, R = 0.999 94, L = 90 mm, L, = 104 nm,
and n = 2.17. Superimposed the vector plot of the gradient field of the frequency shift, whose components give the two
optomechanical couplings, with the unitindicated on the top-right of the panel. The oblique blue lines (A-F) indicate the
experimental spectra obtained by varying the CoM of the membrane-cavity system for different positions ¢,, and reported in figure 8.
The horizontal red lines (I-VI) indicate the experimental spectra obtained by varying q; for different positions ¢, and reported in
figure 9. The red and blue dots represent the points where the optomechanical coupling was estimated.

FSR
G;;;agx = T 4\/ Rm . (29)

In order to study the enhancement of the coupling (and the associated optical interference effect) due to the

presence of the second membrane, we have to compare the maximum derivative of the function H (274, 274,)

with respect to 4,/R ., . In figure 2 we show the cavity mode frequency shifts, and superimposed the vector plot
of the corresponding gradient field, which gives the values of the two couplings G; and G,. It shows that the
largest optomechanical coupling is achieved simultaneously by the two membranes, and in this case G; = —G,.
At this point the cavity mode frequency is sensitive at first order only to the variation of the distance between the
two membranes, g = g, — ¢, and is not sensitive to shifts of the CoM of the two membranes, Q. This implies
that the coupling of the CoM is zero, G, = 0, while that of the relative coordinate is |G| = |Gj| [5]. In this case,
in order to determine the gain factor we apply the same argument of section I1I of [5] from equations (19)—(23).
Specifically, we find that, for # integer

1Y q ]
JRm + (=1 cos[27 (g, + §,)] |Gmax (30)

G| = :
'j 1 - R, sing

This means that the maximum coupling for both membranes is achieved when (4, + §,) is an integer number
for even ¢, and an half-integer for odd # (and this is visible also from the vector plots in figure 2). Using this
condition equation (30) reduces to

1

1 — (R

In the case of R, = 0.4, asin our experiment, the optomechanical coupling may increase up to a factor ~2.72.
As discussed in detail in [5] (see also [3, 4]), the present treatment based on the assumption k}o) > kg,
allowing to express the frequency shift explicitly as a function of the empty cavity solution (see equation (23)), is

valid provided that the reflectivity R ,, is not too close to one. This fact could be guessed from the fact that
equations (30)—(31) suggest an unlimited value of the optomechanical coupling when R, — 1, whichis
unphysical. In fact, as numerically shown in [5] and could be expected also on physical grounds, when

Rm = R ~ 1(thatis, the membrane reflectivity becomes equal or larger than the cavity mirror reflectivity),
equation (30) is no more valid, and the optomechanical coupling saturates to a value corresponding to that of the
inner Fabry—Perot membrane cavity with length g, |G| = ck / q = 2mc / (Aq). Asunderlined in [5], when
lq/L] < land Ry, ~ R ~ 1,this saturation value would still correspond to the strong-coupling regime where
the single-photon optomechanical coupling is equal or larger than the cavity decay rate, because for aligned
membranes with negligible absorption, the cavity decay rate remains identical to the value of the main cavity

1G] = |Ging |- (1)
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Figure 3. Cavity-frequency scan. (a) Experimental setup for cavity frequency-scan. The light of a tungsten lamp transmitted by the
membrane sandwich of length L. at rest, is coupled to a multi-mode optical fiber and collected into a spectrometer for wavelength
analysis. (b) Red line represents the measured light transmitted by the first membrane-cavity, and normalised to the light in the
absence of membranes, I{Y . Blue line is the best-fit obtained with L. = 24.008 &+ 0.004 ym,and L, = 100.0 £ 0.2 nm. (c) Red
and blue line represent data from the second sandwich and best-fit, respectively. The best-fit provides L. = 53.571 £+ 0.009 pm,
and L,, = 106 &+ 1nm.

with length L. In our experiment with commercially available membranes we are far from the condition
Rm = R ~ 1,and therefore equations (30)—(31) can be safely used to describe the results.

3. Membrane-sandwich characterization

In our experiment we used two different membrane sandwiches. The first is constituted of two low-stress SIN
square membranes, with a side of 1 mm, and a thickness of 100 nm. And the second is made of two high-stress
SizN, square membranes, with a side of 1.5 mm, and a nominal thickness of 100 nm. In both cases, one of the
membranes is glued on a piezo, which allows for a scan of the membrane-cavity length, while the whole
membrane-cavity mount is attached to another piezo in order to displace in a controlled way the CoM of the two
membranes.

3.1. Optical properties
Here we report on the characterization of the two-membrane sandwiches in terms of reflectivity R, and cavity
length L, which we have performed before inserting them into the optical cavity. In particular, the membrane-
cavity length L. was determined by illuminating the membrane-sandwich with a tungsten lamp. The transmitted
light was collected by a multi-mode fiber, and finally revealed by a spectrometer. The interference pattern of the
normalised transmitted light is shown in figures 3(b) and (¢), for the first and second sandwich, respectively, and
compared with a best-fit curve obtained from the expression of the transmitted light

Z;

Te= 17 2Fsin(A/2) /7] (32)

where 7, is the input light intensity, A = 47 L./, and F is the finesse of the membrane-cavity. From the
spectrometer data of the first sandwich, figure 3(b), we obtain a best-fit value for the membrane-cavity length
L. = 24.008 + 0.004 pm. Moreover, assuming a finesse given by the equation

6
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Figure 4. Cavity-time scan. (a) Experimental setup for cavity time-scan. A PIN photodiode detects the light transmitted by the
membrane-cavity while the membrane distance is scanned by means of a high voltage (HV) applied to a piezo. Light transmitted by the
membrane-cavity for three different wavelengths, 532 nm (b), 632.8 nm (c), and 1064 nm (d), as a function of the membrane
distance L. + &q. The best-fit values of the membrane-cavity finesse are Fs3, = 1.466 £ 0.002, Fg3s = 2.381 7 £ 0.0007,and
Fioes = 3.20 & 0.03), which correspond to membrane reflectivities R3>* = 0.2050 + 0.0002, R$2% = 0.3137 + 0.0001,and
RIS — 0.3345 4 0.0003, respectively. Blue line represents the voltage applied to the piezo. (e) Variation of the reflectivity of the
membranes as a function of the wavelength. Green triangle, red circle and purple square are the measured reflectivity values at

532 nm, 632.8 nm, and 1064 nm, respectively. The best-fit, blue curve, associated to equation (1), provides a value of the membrane
thickness of L,, = 102.3 £ 0.1 nm. (f) Dependence of the reflectivity of a SisN4 membrane on the thickness (equation (1)), for three
different wavelengths: 532 nm, 632.8 nm, and 1064 nm. Dashed blue line represents the estimated thickness of the measured
substrates [L,, = 102.3 + 0.1 nm].

—1
s 1-R
F = —|arcsin]| ———= , 33

2 ( 2R ) 9

which holds in the case of equal membrane reflectivity, and using the values of the index of refraction provided
by the manufacturer, we find that the corresponding membrane thicknessis L,, = 100.0 & 0.2 nm. From the
data of the second sandwich, figure 3(c), we obtain a membrane-cavity length L. = 53.571 £ 0.009 ym,anda
membrane thickness L, = 106 4+ 1 nm, which is found for the index of refraction of Si;N, given in [25].
Although the membrane-cavity length is well estimated by the peak distances in the interference patterns reported
in figures 3(b) and (c), the membrane thickness, and consequently the reflectivity of the membrane, is badly derived by
the poor visibility of the curves, measured with an apparatus not optimized for this purpose. The membrane reflectivity
R m at specific wavelengths is optimally estimated with a different experiment (see figure 4(a)) exploiting again
equation (32) and (33), but now collecting on a photodiode the light of a laser transmitted through the membrane-
cavity while scanning the cavity length g = L. + g, such that, in this case, we use A = 47 g/ \ in equation (32). For
the first sandwich we use a 1064 nm laser, and the best-fit provides a value of the finesse 7 = 3.26 + 0.02,yieldinga
corresponding value for the reflectivity R ,, = 0.408 =+ 0.002. Such a result is consistent with a membrane thickness
of L,, = 104 £ 1 nm,assuminganindex ofrefractionn = 2.17. Those values are in accordance with the ones
provided by the manufacturer. For the second sandwich we used three different wavelengths, 532 nm, 632.8 nm and
1064 nm, and the corresponding results, obtained while scanning the cavity length, are shown in figures 4(b)~(d). The
best-fit of equation (33) provides a value of the finesse and of the corresponding reflectivity for each wavelength. They
aregivenby Fs3; = 1.466 £ 0.002, Fesp5 = 2.3817 £ 0.0007,and Fipes = 3.20 £ 0.03 with corresponding
reflectivity R2* = 0.2050 + 0.0002, R5*® = 0.3137 + 0.0001,and RI** = 0.3345 + 0.0003,
respectively. In order to estimate the thickness of the membranes these values were fitted according to the relation in
equation (1) (see figure 4(e)). As shown in figure 4(f), we obtain a membrane thickness of L, = 102.3 £ 0.1 nm.
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Figure 5. Experimental setup for characterizing the mechanical properties of the two membranes constituting the membrane-cavity.
A 532 nm laser is sent into a polarization-multiplexed Michelson interferometer. Thermal voltage noise of the two-membrane cavity
is revealed by homodyne detection of the reflected light. HWP denotes a half-waveplate, QWP a quarter-waveplate, and PBS a
polarizing beam-splitter.

This result is estimated by using the values of the refractive index at the three wavelengths reported in [25], which are in
accordance with the ones provided by the manufacturer.

3.2. Mechanical properties

Here we present a study of the mechanical properties of the second membrane-sandwich by usinga 532 nm laserin a
Michelson interferometer, as shown in figure 5 [26] (this kind of study is not possible with the first sandwich due to the
poor quality of the mechanical modes). In figure 6 we show the thermal voltage noise (VSN) of the two-membranes
cavity revealed by homodyne detection of the reflected light, the quality factor Q,,, of the mechanical modes, and the
relative difference between experimental and fitted mechanical frequencies. The membranes are very similar and show
aset of very close resonance peaks. As shown in figure 6(b), we reproduced the mechanical resonance frequencies of
both membranes with an error smaller than 1% assuming rectangular membranes and the nominal values provided
by the manufacturer for the stress, 0 = 0.825 GPa, and for the density p = 3100 kg m—3, and taking the side lengths
as fitting parameters. Best-fit valuesare LY = 1.519 £ 0.006 mm, L}l) = 1.536 £+ 0.006 mm,and

L® =1.522 4+ 0.006 mm, L)(,z) = 1.525 £ 0.006 mm. Figure 6(c) shows that the mechanical quality factor
changes significantly between the modes and that one membrane tends to have lower Q,,, values. We attribute these
scattered values to the effect of clamping which strongly depends upon the shape of the vibrational mode and may be
different on the two membranes with the current mounting.

4. Estimation of the optomechanical coupling strength

In order to estimate the strength of the optomechanical coupling achievable with our system we have inserted
the first sandwich (the one made with the SiN membranes) in a 90 mm-length optical cavity [27, 28], and the
optomechanical system was located in a vacuum chamber evacuated to 5 x 107 mbar (see figure 7).

Our aim is to compare the frequency shift of the resulting cavity modes in the presence of the two-membrane
system, with the one corresponding to the case with a single membrane inside. We note that the results for a
single membrane are obtained using a membrane different form the ones of the sandwich, namely a highly
stressed SiN circular membrane, with a diameter of 1.2 mm, and a thickness of 97 nm [24, 27, 28]. However, the
fact that the membranes have similar size and are made of the same material, makes the comparison that we
report hereafter meaningful.

The spectra of the cavity modes reported in figures 8 and 9 are obtained by detecting the light of a laser at
1064 nm transmitted by the cavity while scanning the laser frequency for different positions of the membrane(s).
Thelast panel on the right of figure 8 is equal to the last of figure 9 and they report the results of the single
membrane case. The slope of the corresponding black lines represents the maximum achievable single
membrane optomechanical coupling strength Gie* ~ 27 x 3.47 MHz nm™~". The other panels show the
results with two membranes. In this case there are two degrees of freedom that can be varied,that is,the positions
of the two membranes, g, and g,. Due to the design of our membrane-cavity, we can scan either the CoM, Q, for
different values of the membrane distance g = g, — g,,0r g, for different positions of g,. In figure 8 are reported

8
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Figure 6. Thermal noise measurement of the mechanical modes of the two membranes in a Michelson interferometer. (a) Thermal
voltage noise (VSN) (green curve) with the experimental mechanical resonance peaks highlighted by vertical light-grey lines; red and
blue top lines indicate the mechanical frequencies of rectangular membranes with nominal values for the stress ¢ = 0.825 GPa and
density p = 3100 kg m~3, and best best-fit parameters for the side lengths L{" = 1.519 + 0.006 mm, L},l) = 1.536 £+ 0.006 mm,
and L® = 1.522 + 0.006 mm, LJ(,Z) = 1.525 £ 0.006 mm, respectively. The grey curve is the shot noise, while the black curve the
electronic noise. (b) Relative difference between experimental and fitted mechanical frequencies for the two membranes. (c) Quality
factor Q,, of each mechanical mode.

Vacuum

Laser
PIN
RAMP

Figure 7. Experimental setup for the measurements reported in figures 8, and 9. The light of a laser at 1064 nm wavelength transmitted
by an optical cavity of length L = 90 mm containing the membrane sandwich of thickness L,,, = 104 nm, and distance L. = 24 um
atrest, is revealed by a PIN photodiode (Z2), while the frequency is scanned by applying a ramp signal (RAMP) to the piezo control of
the laser. The positions of the two membranes are controlled by applying high voltage (HV) to the piezos, which move the CoM, Q,
and the cavitylength, g;.

the spectra obtained by scanning the CoM, Q, for different values of the membrane distance g, as indicated by the
lines A—F in figure 2. The blue line on panel D corresponds to the blue circle in figure 2, and it indicates the
highest coupling G5 >~ 27 x 5.67 MHz nm ™" achieved in this case. It corresponds to an increase in the
optomechanical coupling strength of a factor ~1.63 with respect to the single membrane case. In figure 9 we
report the spectra obtained by scanning the position g, for different position ¢,, as indicated by the lines I-VI in
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ofthedistance g = g, — g, asindicated by the lines A~F in figure 2. Panel D shows the position of the highest achievable coupling
G§™ ~ 2m x 5.67 MHz nm™! indicated by the solid blue line. For comparison the single membrane result is added as a dotted black

line, which represents the maximum achievable coupling Gina* ~ 27 x 3.47 MHz nm ™!, shown in the panel on the right.
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Figure 9. Mode frequency shift normalized to the FSR, as a function of the membrane position g;, normalized to the wavelength, for
different values of the position ¢, as indicated by the lines I-VI in figure 2. Panel V shows the positions for the highest coupling
G™ ~ 27 x 8.59 MHz nm ™. For comparison the single membrane result is added as a dotted black line, as in figure 8.

figure 2. The red line on panel V corresponds to the red circle in figure 2, and indicates the highest achieved
coupling G;™* ~ 271 x 8.59 MHz nm ™. In this case the optomechanical coupling strength increases by a
factor ~2.47, which is 9% lower than the expected one, given by equation (31). Such a discrepancy might be
attributed to an imperfect alignment of the two membranes.
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Figure 10. (a) Experimental setup for studying cavity optomechanics with a two-membrane setup within a cavity. A laser probe beam,
frequency modulated by an electro-optical modulator (EOM), impinges on the optical cavity. The reflected beam is split: one
component is detected, demodulated and low-pass amplified for generating the Pound-Drever—Hall (PDH) error signal able to lock
the laser to the cavity; the second component is analysed by homodyne detection in order to detect the mechanical motion. A further
beam, the cooling beam, detuned by A from the cavity resonance, is turned on for engineering the optomechanical interaction, and in
particular realize laser cooling of the mechanical modes. HWP denotes a half-waveplate, QWP a quarter-waveplate, BS a beam-
splitter, and PBS a polarizing beam-splitter. (b) Cavity ring-down measurement for the evaluation of the cavity finesse. Light-violet
data is the normalized transmitted intensity, Z2', through the empty optical cavity; the solid violet line represents the best-fit with
decay time 7, = 4.790 £ 0.002 us, which corresponds to an empty cavity finesse Fy = 77 ¢/L = 50 125 £ 25. Light green data
refer to the case with the membrane-sandwich placed within the optical cavity; the solid green line is the best-fit with decay time

7= 1365 + 0.001 us, correspondingtoafinesse F = 14 287 + 13.

5. Cavity finesse in the presence of the membrane-sandwich

In the last set of experiments we placed the second membrane sandwich (the one made of Siz;N, membranes) in the
same optical cavity of figure 7 (see also figure 10(a)). Here we report on the analysis of the effects of the membranes on
the cavity finesse. The finesse of the optical cavity, with and without the membrane sandwich, is determined by means
of the ring-down technique, fitting the decay of the normalized transmitted intensity, Z? , after the laser at 1064 nm
is rapidly turned off. In figure 10(b) we show the ring-down results obtained for the empty cavity, and with the
membrane-sandwich placed within the optical cavity. For the former case, the best-fit decay timeis 75 = 4.790 =+
0.002 s, which corresponds to an empty cavity finesse Fy = 77 ¢/L = 50 125 £ 25 [27], while for the latter,

T = 1.365 + 0.001 us, corresponding to a cavity finesse 7 = 14 287 =+ 13. Such finesse corresponds to a cavity
intensity decayrate ks = 7! = FSR/F ~ 27 x 117 kHz, with FSR ~ 27 x 1.67 GHz. The observed reduction
of finesse in the presence of the membrane-sandwich is much more significant than the one occurring in the case of a
single membrane [24, 29] and it can be ascribed to the imperfect alignment of the two membranes [20]. This
misalignment is responsible for an effective cavity loss 1 / bF =1 / F—1 / Fo =~ (\/FT,, Ovwdg / Ogi ) / 21 =~ 50 ppm.
Assuming a coefficient of finesse F,, = 4R,/(1 — Ry)? =~ 3, anda diffraction angle of the gaussian beam

Oue = A/mwy ~ 3 mrad, with wy >~ 112 pum the beam waist of the cavity of our experiment, the misalignment
angle 6,45 between the two non-parallel membranes can then be estimated to be 6,43 ~ 30 prad. The membrane
alignment could be improved either by using pairs of membranes assembled parallel to each other by means of
spacers deposited on one of the chip, as implemented for example in the experiment of [20], or by replacing the single

11
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Figure 11. Thermal voltage (VSN) and displacement (DSN) spectral noise of the membrane sandwich obtained by homodyne
detection of the light reflected by the optical cavity. (a) Only the membrane with lower frequency fundamental mode is coupled to the
optical cavity. (b) Only the membrane with higher frequency fundamental mode is coupled to the optical cavity. (c) The fundamental
modes of both membranes are coupled to the optical cavity. The green feature on the right indicates the beat note added for
calibration. For the left red mode we determine: w,,; = 27 x 235.810 kHz, v,,, = 27 x 1.64 Hz,and g;, = 27 x 0.30 Hz; and for
the right blue mode: w,,, = 27 x 236.580 kHz, ,, = 27 x 9.37 Hz,and g,, = 27 x 0.28 Hz.

piezo, used for the scan of the membrane-cavity, with tilt stages with piezo control, which would allow for scanning as
well as alignment of the membrane-cavity.

6. Tunable optomechanical coupling and laser cooling of the tWwo membranes

Using the same setup of section 5, we finally studied the optomechanical properties of the system. First we show
that the optomechanical interaction of the driven cavity mode with each membrane of the sandwich can be
controlled and tuned by shifting their position along the cavity axis with the piezo controllers. The probe beam
was locked to the optical cavity by means of a Pound—Drever—Hall technique and the thermal voltage spectral
noise (VSN) of the two-membranes cavity is measured by homodyne detection of the light reflected by the
optical cavity (see figure 10(a)). The detected thermal (VSN) is shown in figure 11, which clearly manifests the
possibility to turn on and off the optomechanical interaction in a controlled manner by changing the position of
each membrane (see figures 11(a) and (b)) where only one of the two membranes is positioned in a place in
which it interacts with the cavity light. In figure 11(c) both membranes are instead coupled to the optical cavity.
For the lower frequency mode on the left (red) we measured w,,; = 27 x 235.810 kHz, ~,, = 27 x 1.64 Hz,
while for the mode on the right (orange) we measured w,,, = 27 x 236.580 kHz, v,, = 27 x 9.37 Hz.Such
results are consistent with the measurements obtained with the interferometer (see figure 6). In fact, we used a
probe beam with very low power, and as resonant as possible with a cavity mode in order to avoid any
optomechanical effect, such as cooling or optical spring effect, taking into account that k ~ @, /2 with

@ = (W1 + wWm2) /2. The corresponding measured single-photon optomechanical coupling rates

8 = ij]-pr ©j, where ijpf = [/ /2m;w{{]'/? is the zero point position fluctuations of the jth mechanical
mode, and ©);is the dimensionless transverse overlap between the jth mechanical mode and the optical cavity
mode, [30] are g, = 27 x 0.30 Hzand g,, = 2m x 0.28 Hz. These values are comparable to those achieved in
asimilar setup with a single membrane [27, 31] because the two membranes were placed out of the region in the
q1> 9> plane where the optomechanical coupling is enhanced due to interference (see figure 2). Within this region
the system was not stable enough and we did not carry out cavity optomechanics experiments.

Finally we show that we can engineer the optomechanical interaction of both membranes with the optical
mode by turning on an additional ‘cooling’ beam with a variable detuning A with respect the cavity resonance.
Here we focus on the case of red-detuned driving which resonantly enhances the beam-splitter interaction
between the cavity mode and the mechanical modes and allows to cool the latter. We observe the simultaneous
cooling [32] of the fundamental modes of the two distinct membranes. In figures 12 and 13 we report the
measured displacement spectral noise (DSN) (left panels) as a function of the detuning A normalized to the
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Figure 12. Laser cooling of the two membranes at low power. (a) Measured displacement spectral noise (DSN) as a function of the
detuning A normalized to the mean mechanical frequency @,, = (w1 + wmy) /2, fora cooling input power P = 130 pW,

Kk = 27 x 83 kHz,and g asin figure 11. The red and orange dashed lines indicate the mechanical frequencies with no cooling.
(b) Theoretical prediction with parameters given in figure 11.
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Figure 13. Laser cooling of the two membranes at high power. (a) Measured displacement spectral noise (DSN) as a function of the
detuning A normalized to the mean mechanical frequency @,, = (W1 + wWmy) /2, for a cooling input power P = 380 W, and

k = 27 X 83 kHz. The red and orange dashed lines indicate the mechanical frequencies with no cooling. (b) Theoretical prediction
with the following parameters: w,,, = 27 x 235.950 kHz, v,,, = 27 x 1.64 Hz,and g,; = 27 x 0.12 Hz; and for the right blue
mode: w,,; = 27 X 236.750 kHz, v, = 27 x 9.37 Hz,and g, = 2m X 0.22 Hz. Note the less effective optomechanical cooling
on the left mode due to lower optomechanical coupling, and also the frequency shift in the moderate resolved-side-band limit.
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Figure 14. Laser cooling of the two membranes at constant detuning. (a) Measured displacement spectral noise (DSN) as a function of
the cooling beam power Pc. The red and orange dashed lines indicate the mechanical frequencies with no cooling. (b) Theoretical
prediction for a detuning A ~ &, with the same experimental parameters as in figure 11.
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mean mechanical frequency @,,, and compare it with the corresponding theoretical prediction (right panels). In
figure 12 we use a lower power of the cooling beam with respect to that used in figure 13, but in both cases the
agreement is very good. In figure 14 instead we report the DSN as a function of the cooling beam power P¢, ata
fixed detuning A ~ @,,.

7. Conclusion

We studied the optomechanical behaviour of a driven Fabry—Pérot cavity containing a two-membrane
sandwich. From the cavity mode frequency shift as a function of the membrane positions, we derived a ~2.47
gain in the optomechanical coupling strength with respect to the single membrane case. This is obtained when
the two membranes are positioned to form an inner cavity resonant to the driving field. We also showed the
capability of the system to be tuned on demand, and the simultaneous optical cooling of the fundamental modes
of the two distinct membranes. Such a configuration has the potential to enable cavity optomechanics in the
strong single-photon coupling regime [3-5], as well as to study the nonlinear dynamics and synchronization of
two distinct nano-mechanical resonators by means of an optical link [12-16].
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