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Critical phenomena in active matter
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We investigate the effect of self-propulsion on a mean-field order-disorder transition. Starting from a ϕ4 scalar
field theory subject to an exponentially correlated noise, we exploit the unified colored-noise approximation to
map the nonequilibrium active dynamics onto an effective equilibrium one. This allows us to follow the evolution
of the second-order critical point as a function of the noise parameters: the correlation time τ and the noise
strength D. Our results suggest that the universality class of the model remains unchanged. We also estimate
the effect of Gaussian fluctuations on the mean-field approximation finding an Ornstein-Zernike-like expression
for the static structure factor at long wavelengths. Finally, to assess the validity of our predictions, we compare
the mean-field theoretical results with numerical simulations of active Lennard-Jones particles in two and three
dimensions, finding good qualitative agreement at small τ values.
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I. INTRODUCTION

Motile cells, living bacteria, synthetic swimmers, a flock of
birds, and a school of fish are only a few examples of active
systems able to give rise to a plethora of fascinating phenomena
that spontaneously arise from their collective behavior [1–3].
In order to reproduce and understand the emergence of coop-
erative dynamics in active systems, several-minimal models
have been put forward, most based on self-propelled agents
and hydrodynamics theories but also on rule-base models
with alignment interactions [4–7]. In spite of their minimal
ingredients, these model systems display a highly collective
behavior that results in large-scale pattern formation [8],
aggregation [9], swarming [5], off-equilibrium order-disorder
transitions [7], peculiar rheological properties, and disordered
arrested states [10–13]. Such a rich phenomenology shares
many similarities with the collective behavior in condensed
matter physics where the emergence of a cooperative dynamics
is intimately related to the concept of phase transitions [14].
The analogy between the collective behavior in condensed
matter and spontaneous aggregation in biological or synthetic
systems suggests that a coarse-grained procedure that neglects
the complexity of active agents could reproduce, at least
qualitatively, the observed phenomenology [2,7].

Notable attempts in this direction have focused on specific
models of isotropic self-propelled particles without aligning
interactions [9,15–18]. The fundamental ingredient that de-
fines these nonequilibrium models is that the random force
acting on each particle is not of thermal origin, i.e., is not a
Brownian noise, but is a self-propulsion force that decorrelates
on a time scale τ . Early theoretical approaches were based
on the idea of recasting the nonequilibrium dynamics in
an effective equilibrium dynamics with a density-dependent
diffusion coefficient [4,9], suggesting a phase transition known
as motility-induced phase separation. Following the same
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idea, some of us have recently shown that the steady-state
distribution of many active particles driven by Gaussian
colored noise can be mapped onto an equilibrium problem
where the noise amplitude and its correlation time play the
role of control thermodynamic variables [15,19–21]. In that
study, the mapping to an effective equilibrium dynamics
was obtained due to the unified colored-noise approximation
(UCNA) [22,23]. In addition, the random driving forces were
modeled by an Ornstein-Uhlenbeck process (OUP), which
gives rise to a self-propulsion that is Gaussian distributed and
exponentially correlated in time. An exponentially correlated
propulsion force characterizes also active Brownian [16,24]
and run and tumble dynamics [25]. The OUP has been shown
to model quite well the behavior of passive tracers in active
suspensions [26,27]. Recently, several research groups have
devoted much attention to modeling active particle systems by
means of the OUP [17,18,28].

Although the Gaussian colored-noise model has been
analyzed at the level of few particles [15], in the case of
a many-particle system it presents the same insurmountable
difficulties as the equilibrium many-body problem. From this
perspective, it would be desirable to develop a coarse-grained
version of the model for studying phase transitions, especially
to understand the effect of the memory of the noise on
phase behavior. To this aim, in this article we propose and
investigate a Gaussian colored-noise-driven field theory based
on the UCNA. In particular, we focus on the effect of colored
noise on a second-order phase transition. In this framework,
we can compute the shift in the critical temperature due to
the finite correlation time of the driving force. The external
parameter τ changes the location of the critical point but
not the universality class of the model. We find a reentrant
behavior of the critical curve in the activity-noise phase
diagram showing that, while for a small value of τ the phase
transition is enhanced by the correlation time of the noise,
at larger τ this tendency is inverted. Moreover, we compute
the Gaussian fluctuations around the mean field, obtaining an
Ornstein-Zernike (OZ) -like expression for the static structure
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factor at short wavelengths. The OZ expression predicts a
power-law divergence of the correlation length at the critical
point. The analytical mean-field predictions are compared with
numerical simulations of a monodisperse active Lennard-Jones
fluid in two and three dimensions, finding good agreement at
small τ values.

II. MODEL

Critical phenomena are a special example of phase transi-
tions and play a pivotal role in statistical mechanics [14,29,30].
The Landau model is the common starting point to address a
phase transition. In order to extend the Landau theory to active
systems, as the first step we have to fix the universality class
of the problem. Without loss of generality, for the aim of this
paper, we will look at scalar field theory. The scalar theory
can be generalized to another universality class, i.e., we can
include vectorial or tensorial fields with alignment interactions
to study the emergence of nematic order [31–36].

We are interested in the case of a system close to the critical
point and described by a scalar order parameter ϕ(x), e.g.,
the magnetization in the Ising ferromagnet, or the density
difference ρL − ρG in the gas-liquid phase transition. The
thermodynamics can be obtained by considering the equilib-
rium solutions of the corresponding relaxation dynamics [37].
In the case of gas-liquid transition, one should consider the
model B dynamics. However, models A and B share the same
static properties that are related to the Hamiltonian H [ϕ(x)]
as follows:

F(β) = − 1

β
ln Z, Z =

∫
Dϕ(x)e−βH [ϕ(x)], (1)

where β = T −1 and T is the temperature.1 To obtain the
Landau-Ginzburg (LG) theory we perform the saddle-point
approximation in Eqs. (1). The value ϕ = ϕSP is given by the
self-consistency equations

δH

δϕ(x)

∣∣∣∣
SP

= 0,
δ2H

δϕ(x)2

∣∣∣∣
SP

> 0 (2)

and the LG free energy is H [ϕSP ].

A. Model A with exponentially correlated noise

In order to extend such a mean-field picture to the active
counterpart we start by considering the purely dissipative dy-
namics of a zero-dimensional ϕ4 scalar field theory subjected
to an exponentially correlated noise. The equation of motion
for the field ϕ can be written in terms of an auxiliary variable
θ that undergoes an OUP

∂tϕ(t) = −∂H

∂ϕ
+ θ (t),

(3)

∂tθ (t) = −θ (t)

τ
+ D1/2

τ
η(t),

where the zero-mean noise η is δ correlated, 〈η(t)η(s)〉 =
2δ(t − s), and D plays the role of the (effective) temperature

1We use units such that the Boltzmann constant kB = 1.

of the model. The Hamiltonian H is the standard ϕ4,

H [ϕ] = a

2
ϕ2 + b

4
ϕ4, (4)

where a depends linearly on D and changes sign at D0.
The coefficient b is a positive constant. In the white-
noise limit, which is recovered for τ → 0, the steady-
state solution of the Smoluchowski equation associated
with Eq. (3) is the equilibrium distribution function
Peq[ϕ] ∝ exp (−H [ϕ]/D).

The stochastic differential equations (3) can be rewritten as

∂2
t ϕ + 1

τ

[ϕ]∂tϕ = − 1

τ

∂H

∂ϕ
+ D1/2

τ
η(t),


[ϕ] ≡ 1 + τ
∂2H

∂ϕ2
. (5)

The unified colored-noise approximation is obtained by
neglecting ∂2

t ϕ in Eq. (5) [22,23]. The corresponding Smolu-
chowski equation for P [ϕ,t] reads [30]

∂tP [ϕ,t] = ∂ϕ

{

−1[ϕ]

(
D∂ϕ
−1[ϕ]P [ϕ,t]− ∂H

∂ϕ
P [ϕ,t]

)}

(6)

and the steady-state distribution is

Pst [ϕ] = N e−Heff [ϕ]/D,

Heff[ϕ] ≡ H + τ

2

(
∂H

∂ϕ

)2

− D ln |
[φ]|. (7)

From Eq. (7) it follows that Pst has the structure of an
equilibrium distribution in terms of the effective Hamiltonian
Heff .

B. Critical line

The critical line Dc(τ ) is the curve along which the system
undergoes a second-order phase transition. In a standard ϕ4

theory, the location of the critical point is determined by
the coefficient of ϕ2, i.e., the symmetry is spontaneously
broken where a changes sign. In a mean-field model described
by a LG free energy FLG(ϕ) = aϕ2/2 + B(ϕ), the location
of the critical point can be computed by considering the
equation [30]

∂2

∂ϕ2
FLG

∣∣∣∣
ϕ=0

= a + ∂2

∂ϕ2
B

∣∣∣∣
ϕ=0

= 0. (8)

In our case, the LG free energy is Heff and the expression for
Dc(τ ) is given by

∂2Heff

∂ϕ2

∣∣∣∣
ϕ=0

= 0. (9)

Now we write a = a0(D − D0), with a0 a positive constant.
The critical curve satisfies the equation

a(1 + aτ ) − 6τbD

1 + τa
= 0 (10)
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FIG. 1. Phase diagram in the activity-noise plane. (a) The red curve is obtained through Eq. (11) with �Dc = Dc(τ ) − Dc(0) and the
symbols are obtained via numerical integrations of Eqs. (3). (b) The symmetric phase at high D is represented by the quadratic free energy
and the spontaneous symmetry breaking phase at low D by the double well. (c) Here P [φ] is obtained through numerical integration of
Eqs. (3).

and the only real and physical solution is

Dc(τ ) = 1

ε

[
λ

γ
+ γ − α

]
, ε ≡ 3a3

0τ
2,

λ ≡ a4
0τ

2 + 18a3
0bτ 3, α ≡ 2a2

0τ − 3a3
0D0τ

2,

γ ≡
[

2a6
0τ

3 − 108a5
0bτ 4 + 162a6

0bD0τ
5 + �

2

]1/3

,

� ≡ [(
2a6

0τ
3 − 108a5

0bτ 4 + 162a6
0bD0τ

5
)2

− 4
(
a4

0τ
2 + 18a3

0bτ 3
)3]1/2

. (11)

Here Dc(τ ) increases for small τ , reaches its maximum value
D∗ at τ ∗, and decreases to D0 for τ → ∞. As a consequence,
the phase diagram in the (τ,D) plane is reentrant. This is
shown in Fig. 1(b), where the LG free energy is plotted for
increasing τ for D0 < D < D∗. The LG free energy develops
a double well for τ− < τ < τ+ (magenta and yellow curves),
with τ± the solutions of D = Dc(τ ). For τ < τ− or τ > τ+
the system is in the symmetric phase (blue and red curves,
respectively).

It is worth noting that a reentrant behavior of the Boyle
line has been observed in the virial series of many mutually
interacting particles in the presence of correlated noise [19].
The small τ behavior indicates that memory effects in the
dynamics raise the critical effective temperature, suggesting
that the activity promotes criticality.

In order to compare the analytical expression for Dc(τ )
with the true order parameter dynamics, we have solved
numerically the nonequilibrium dynamics. Equations (3) have
been numerically integrated for Nt = 106 steps with �t =
10−3. The parameters of the model are a0 = 4, D0 = 1,2, and
b = 1. From the trajectories ϕ(t) we have computed P [ϕ] =
〈δ[ϕ(t) − ϕ]〉t,ϕ(0), where the angular brackets indicate the
average over both the trajectories and the initial condition.
The critical point has been obtained by fitting the histogram

of P [ϕ] to f (x) = A exp (−ãϕ2 − b̃ϕ4). We have considered
the average over 5 × 102 initial conditions. The resulting
Pst [ϕ] for τ = 0.1 is shown in Fig. 1(c). As one can see in
Fig. 1(a), the theoretical curve �Dc/D0, with �Dc = Dc(τ ) −
Dc(0), reproduces very well the numerical data in a wide
range of τ .

For small τ we can approximate ln 
(ϕ) ∼ Dτ∂2
ϕH , ob-

taining an effective ϕ6 theory. It is well known in the literature
that ϕ6 theory admits a tricritical point where the second-order
phase transition changes in a first-order phase transition [30].
However, in our model the tricritical point is located in an
unphysical region. The effective Hamiltonian reads

H small
eff [ϕ] = ã

2
ϕ2 + b̃

4
ϕ4 + c̃

6
ϕ6,

ã ≡ a(1 + aτ ) − 6Dbτ,

b̃ ≡ b + 4abτ,

c̃ ≡ 3b2τ. (12)

In this case, the critical line Dsmall
c is given by ã = 0 and

satisfies

a(1 + τa) − 6Dτb = 0. (13)

Along Dsmall
c , ϕ0 behaves like ϕ0 ∼ (D − Dc)β with β =

1/2, i.e., the classical mean-field value for the exponent
β [14].

III. NUMERICAL SIMULATIONS

Now we compare the mean-field picture with its finite-
dimensional counterpart. With this aim, we have performed
numerical simulations of N spherical particles interacting
through φ(r) = 4e0[(r/σ )−12 − (r/σ )−6] in two- (d = 2) and
three- (d = 3) dimensional boxes of side L with periodic
boundary conditions. The density of the system is ρm = N/Ld .
The energy is measured in the unit e0 and the density in the
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FIG. 2. Numerical simulations. (a) Blue circles and brown triangles are the critical points of the active Lennard-Jones fluid in two and
three dimensions, respectively. The solid lines are the fit of the data with Eq. (11). The snapshots on the left show two-dimensional numerical
simulations approaching Dc(τ ) (from top to bottom) for τ = 3 × 10−3. Cluster crystallization occurs in the gray region. The snapshot on the
right shows crystal clusters for τ = 1.0. (b) Rescaled structure factor S(kξ ) in two dimensions for D > Dc and τ = 10−3,10−2,10−1(circles,
squares, and triangles, respectively). Symbols represent numerical data and the black curve is obtained by fitting to a Lorentzian distribution.
(c) Plot of P�(ρ) in three dimensions for τ = 3 × 10−2 and Nb = 13; the lines are a guide for the eye. (d) Plot of ξ obtained from fitting S(k)
for small k to A[1 + (ξk)2]−1. The blue line is determined from fitting ξ with (D − Dc)−ν .

unit σ−d . The microscopical model undergoes a gas-liquid
phase separation that is described by a conserved scalar order
parameter ρG − ρL. The nature of the order parameter implies
model B dynamics along the phase separation [37]. However,
the location of the critical point, i.e., the end point of the phase
separation, is a static property of the system. As mentioned
earlier, models A and B show the same static properties: We
will adopt the mean-field scenario emerging from model A to
capture qualitatively the behavior of the critical line in finite
dimension.

The self-propulsion is modeled by means of a random
driving force exponentially correlated in time. The equation of
motion of the particle i, with i = 1, . . . ,N , is

ṙi = fi − μ
∑
j 
=i

φ′(rij )rij /rij , (14)

where μ=1 is the mobility, rij =ri −rj , and rij ≡|rij |. The
noise satisfies 〈f α

i 〉=0 and 〈f α
i (t)f β

j (s)〉=2Dδij δαβe−|t−s|/τ/τ ,
where the greek symbols indicate the Cartesian components.
In this picture the external parameters D and τ can be
independently varied as well as in the Landau model
previously considered. For τ = 0 one recovers the
Lennard-Jones (LJ) fluid in the Brownian regime. We
study the system close to the LJ critical density ρc ∼ 0.4
(N = 2500 in two dimensions and N = 8000 in three
dimensions). Moreover, performing simulations at different
values of ρm,2 we have checked that the value ρc does
not vary with τ , in the range of the motility parameters
explored. The critical values Dc(τ ) have been evaluated by
looking at the intersection points of the Binder cumulant
U� = 1 − 〈δρ4〉�/3〈δρ2〉2

� [38] at different �, with δρ = ρ −

2In two dimensions τ = 0,10−3,3 × 10−3,5 × 10−5,10−1,3 ×
10−1,5 × 10−1,6 × 10−1,0,1,0.3,0.5. In three dimensions
τ = 0,10−4,2 × 10−3,5 × 10−3,8 × 10−3,10−2,2 × 10−2,3 ×
10−2,5 × 10−2,7 × 10−2,0.3,1,10. We have explored ρm ∈ [0.2,0.7].

〈ρ〉, where the average is defined as 〈O〉� = ∫
dρ P�(ρ)O(ρ).

The block density distribution function P�(ρ) ≡ 〈δ(ρ − ρk)〉
is obtained by dividing the simulation box with linear size L

in Nb cells of size � = L/Nb and coarse-grained density ρk

with k = 1, . . . ,Nb [39,40]. The behavior of P�(ρ) in three
dimensions approaching the transition is shown in Fig. 2(c).
In order to evaluate the intersection of U� as a function of
D, we have performed simulations of 52 different D for each
value of τ .

The resulting phase diagram is shown in Fig. 2(a) with
snapshots of the two-dimensional simulations (bottom left
inset). The solid lines are obtained by fitting the data with
Eq. (11), leaving both a0 and b as free parameters. As one can
see, for small τ the theory reproduces quite well the numerical
data. However, with the model simulated we cannot probe the
regime at larger τ values since crystallization occurs at τ > 0.3
[the gray area in Fig. 2(a)]. In order to prevent crystallization,
one can introduce frustration in the microscopical model by
considering, for instance, a binary mixture [41]. Hence, the
existence of the reentrance in the activity-noise phase diagram
remains an open question. It is worth noting that our starting
point is a ϕ4 theory. In such a case we cannot describe a
phase diagram that shows both gas-liquid and gas-crystal
phase transitions. Nevertheless, it is possible to generalize
our mean-field model by considering a different field theory
in order to take into account the presence of a crystal
phase [14].

In the crystal regime, the nucleated liquid droplets re-
arrange into small crystal clusters. The presence of the
crystal clusters is evident in the snapshot shown in Fig. 2(a),
right.

IV. GAUSSIAN FLUCTUATIONS

Let us discuss the effect of the correlated noise on
the Gaussian fluctuations around the mean field [14]. The
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Hamiltonian in d dimensions is

HG[ϕ(x,t)] = 1

2

∫
ddx{[∇ϕ(x,t)]2 + aϕ(x,t)2}. (15)

We will consider both model A and model B dynamics
with exponentially correlated noise. We can rewrite Eqs. (3)
including the spatial dependence in a compact way as follows:

∂tϕ(x,t) = −(i∇)2ψ

(
δHG

δϕ(x,t)

)
+ (−∇)ψθ (x,t),

∂t θ (x,t) = −θ (x,t)

τ
+ D1/2

τ
η(x,t). (16)

The exponent ψ is 0 (model A) or 1 (model B). The
noise is white 〈η(x,t)〉 = 0 and δ correlated 〈η(x,t)η(y,s)〉 =
2δ(x − y)δ(t − s).

Now we introduce the spatial Fourier transform of a field
φ(x) as

φk = 1

(2π )d

∫
ddx e−ix·kφ(x). (17)

We can perform the spatial Fourier transform of ϕ(x,t), θ (x,t),
and η(x,t), obtaining the time evolution of the kth Fourier
component of ϕ in the UCNA, i.e., considering ∂2

t ϕk = 0,
which is governed by

∂tϕk = −
kϕk + Dkηk, 
k ≡ k2ψ k2 + a

1 + τ (k2 + a)
,

Dk ≡ (ik)ψ
D1/2

1 + τ (k2 + a)
, (18)

where k ≡ |k|. Again, the noise ηk is white 〈ηk〉 = 0 and δ

correlated 〈ηk(t)ηq(s)〉 = 2δkqδ(t − s). We can estimate the
critical slowing down exponent by averaging Eq. (18) over the
noise. It follows that 〈ϕk(t)〉 ∝ exp (−t/τk), with τk = 
−1

k .
Introducing ξ 2 = a−1, we can write the relaxation time of the
mode k as τk = ξzf (kξ,τξ−2). The value of the dynamical
critical exponent z = 2(1 + ψ) turns out to be the same as in
the case of equilibrium dynamics [37].

From Eq. (18) we can compute the stationary fluctuations
〈|ϕk|2〉 = ξ 2g(kξ,τ ) with

g(kξ,τ ) = D

(k2ξ 2 + 1)[1 + τ (kξ )2ψξ−2(1+ψ)(k2ξ 2 + 1)]
.

(19)

When k → 0, 〈|ϕk|2〉 diverges as ξ = a−ν , with the classical
value ν = 1/2. From Eq. (19) it follows that, above the
transition, the static structure factor S(k) for small k is well
described by the usual OZ expression S(k) ∼ (k2ξ 2 + 1)−1.
In Fig. 2(b) we show the rescaled S(k) in two dimensions
for τ = 10−3,10−2,10−1 and D > Dc(τ ). According to the
OZ expression, the rescaled S(k) overlaps on the same master
curve. Moreover, as shown in Fig. 2(d), ξ follows a power
law (D − Dc)−νN , with νN = 0.73 for N = 2500. The value
of the exponent does not depend on τ , i.e., as predicted by
the mean-field picture. Since this is in finite dimension, it
is different from the classical value 1/2 [14]. It is worth
noting that ν has been evaluated for N = 2500. In order to
estimate the critical exponent ν in the thermodynamic limit,
we should take into account the finite-size correction to Dc, i.e.,

Dc(L) = D∞
c + aL−b [42]. This aspect is beyond the scope

of the present paper.

V. CONCLUSION

In this article we have posed a fundamental question about
the influence of self-propulsion on order-disorder transitions.
By means of the UCNA, we have recast the nonequilibrium dy-
namics of models A and B in the presence of correlated noise in
an effective equilibrium theory. In this way we have extended
the static picture of the Landau theory of critical phenomena to
order-disorder transitions in the presence of exponentially cor-
related noise. The location of the critical point is a nonuniversal
quantity because it depends on the correlation time of the noise
τ . Through the effective equilibrium theory we have computed
analytically the critical line Dc(τ ), i.e., the shift in critical tem-
perature due to the activity. Considering the numerical solution
of the nonequilibrium dynamics of the order parameter in zero
dimension, we have observed good agreement between Dc(τ )
and the critical points obtained numerically. Moreover, the
effective theory suggests that the out-of-equilibrium dynamics
does not change the universality class. This finding is in
agreement with previous studies on Ising-like nonequilibrium
models [43–45], where it has been observed that the absence
of detailed balance on the microscopic scale does not change
the universality class of the Ising model.

By performing numerical simulations in two and three
dimensions of active LJ fluid driven by the OUP, we have
obtained that the mean-field scenario can be used to describe
the behavior of the critical line in the small τ regime. However,
the reentrant behavior predicted by the mean-field scenario
does not occur in the considered microscopical model. In
particular, the numerical simulations show a gas-crystal phase
transition at larger τ that cannot be captured by the theory.
With the numerical data presented in this paper we can
conclude that, for small τ and independently of density,
the out-of-equilibrium dynamics gives rise to a second-order
phase transition that has the same properties as its equilibrium
counterpart, i.e., τ = 0.

Finally, we have evaluated the Gaussian fluctuations
approaching the critical point from the disordered phase.
According to the theory, we have demonstrated that the static
structure factor at low k is well described by the OZ expression.
Here we have considered a ϕ4 scalar field theory, however, our
approach can be generalized to other field theories in order to
study the properties of different universality classes under the
effect of self-propulsion.
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(World Scientific, Singapore, 1993).

[30] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena
(Clarendon, Oxford, 2002).

[31] P.-G. de Gennes, The Physics of Liquid Crystals (Clarendon,
Oxford, 1974).

[32] V. Narayan, S. Ramaswamy, and N. Menon, Science 317, 105
(2007).
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