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Monocytes and macrophages play important roles in health and disease. They have a 
central role in protecting the host, as they clear pathogens and modulate other immune 
cell functions through the production of regulatory molecules. Their functions include 
immune surveillance, bacterial killing, tissue remodeling and repair, clearance of cell 
debris and more. Macrophages can have beneficial and detrimental effects on the out-
come of several diseases depending on the microenvironment and the activation state 
of cells. Over the past few years, there has been an increasing interest in the expression 
and functions of ion channels, in particular of transient receptor potential (TRP) channel 
family in immune cells. The 30 members of mammalian TRP channels are subdivided 
into TRPC, TRPV, TRPM, TRPML, TRPP, and TRPA superfamily, and several members 
of TRP subfamily have been found to be functionally expressed in monocytes and 
macrophages. TRP are cation-selective channels that are weakly voltage-sensitive and  
diversely gated by temperature, mechanical force, electrophiles, ligands, and internal 
cues, such as membrane composition and pH, contributing to immune and inflamma-
tory responses. The TRP channels play major roles in controlling several monocyte and 
macrophage functions such as phagocytosis, production of chemokines and cytokines, 
cell survival, polarization and so forth. In addition, they can also be potential therapeutic 
targets in a variety of inflammatory diseases. Thus, the goal of this review is to describe 
the role of TRP channels in the control of monocyte–macrophage functions in inflamma-
tory and immune-mediated diseases.
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inTRODUCTiOn

Macrophages play a crucial role in defense and disease by triggering immune surveillance, bacte-
rial killing, tissue remodeling, and tissue repair (1–4). Macrophages show beneficial or detrimental 
effects in different diseases depending on their cell activation state and the microenvironment where 
they are present (5).

In the last years, there has been an increasing interest in the expression and functions of transient 
receptor potential (TRP) ion channel family in myeloid cells.
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FigURe 1 | Schematic describing the proposed TRPC1/PKCα/JNK/NF-κB 
axis involved in the dysregulated pro-inflammatory response during bacterial 
infection. From Ref. (21) Copyright 2015 Molecular and Cellular Biology.
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On the basis of amino acid sequence homology, TRP chan-
nels are grouped into different subfamily, called canonical 
(TRPC), melastatin (TRPM), vanilloid (TRPV), ankyrin (TRPA), 
mucolipin (TRPML), and polycystin (TRPP) subfamily (6, 7). 
Structurally they have six transmembrane spanning domains 
(S1–S6) with a pore domain between the fifth (S5) and sixth (S6) 
segment and intracellular C and N termini (8–10). TRP channels 
conduct cations, are weakly voltage-sensitive and non-selective 
for calcium, with a permeability ratio to Na (PCa/PNa) in a range 
between 0.3 and 10.

At present, TRP channel ligands are only partially known, 
although they function as multimodal signal integrators for exog-
enous ligands. The G protein-coupled receptors (Gq/11; linked to 
PLCβ) and tyrosine kinase receptors (linked to PLCγ) potentiate 
the signaling and function of most TRP channels (11). Elements 
of phosphatidylinositol signaling pathway, in particular, PIP2, 
can regulate TRP channels (12). In addition, intracellular Ca2+ 
increases TRP activity and modulates all TRP channels. For 
detailed description of TRP channels, there are many excellent 
reviews (13–16).

Several members of TRP subfamily are expressed in mono-
cytes and macrophages (M/MΦ) (17). In these cells, they can 
recognize exogenous signals, including damage-associated 
molecular pattern molecules from the environment (heat, acidity, 
and chemicals) and endogenous danger signals released during 
trauma/tissue injury (ATP, mechanical, osmotic stress, and uric 
acid). In addition, they sensitize the pattern recognition recep-
tors expressed in myeloid cells to respond to pathogen-associated 
molecular patterns (PAMPs) (18).

Aim of this review is to describe the cellular functions medi-
ated by different members of TRP channels in M/MΦ.

eFFeCTS OF TRP CHAnneLS On M/MΦ 
SURvivAL AnD PROLiFeRATiOn

TRPM channels control the survival and proliferation of M/MΦ. 
In this regard, TRPM2 has been found to inhibit reactive oxygen 
species (ROS) generation in phagocytic cells and protect the mice 
from LPS-induced effects. LPS-treated TRPM2(−/−) mice show an 
increased inflammatory response and reduced cell viability with 
respect to wild-type mice. In addition, TRPM2 channels damp 
NADPH oxidase-stimulated ROS generation by phagocytes, 
through the induction of plasma membrane depolarization (19). 
The other TRP family member, TRPM4, controls M/MΦ survival 
in sepsis (20). The knockout of the TRPM4 gene increases the 
mortality in a murine model of LPS-induced sepsis. The lack of 
TRPM4 affects peritoneal macrophage infiltrate and increases the 
monocyte number, and the release of IL-1β and TNFα cytokines. 
Macrophages from TRPM4 knockout mice display reduced Ca2+ 
mobilization that inhibits the Akt pathway, and consequently 
macrophage survival, phagocytosis of bacteria (20).

TRPC1 plays an important role in the protection from 
bacterial infection, through TLR4-TRPC1 activation of protein 
kinase (PK) Cα pathway (Figure 1) (21). Ca2+ entry, induced by 
TRPC1 channel, stimulates the production of pro-inflammatory 
cytokines in murine pneumocytes. The TLR4-dependent TRPC1 
activation triggers Ca2+ depletion from endoplasmic reticulum 

(ER) store. After activation of PLC-γ, TRPC1 mediates Ca2+ 
entry and stimulates PKCα activity, which results in NF-κB/Jun 
kinase nuclear translocation and cytokine release leading to tissue 
destruction (21). The TRPC1(−/−) mice show reduced survival, lung 
tissue damage, and systemic infection. Moreover, bone-marrow 
macrophages from TRPC3(−/−) mice show reduction in basal Ca2+ 
influx, impaired TNFα-induced signal as compared to wild-type 
cells (22).

TRP CHAnneLS AnD inFLAMMASOMe 
ACTivATiOn in M/MΦ
The inflammasomes are multiprotein platforms that mediate pro-
caspase-1 cleavage and promote cytokine maturation (e.g., IL-1β 
and IL-18), in response to microbial and non-microbial stimuli, 
by canonical and non-canonical mechanisms. The activation of 
non-canonical inflammasome is mediated by caspase-11 that 
triggers IL-1β, IL-18, and IL-1α release in a caspase-1-dependent 
and -independent manner. Caspase-11 also promotes pyroptosis, 
a form of genetically programmed cell death (23). TRPC1 rep-
resents a substrate for caspase-11. Defects in TRPC1 expression 
enhance caspase-1-independent IL-1β release or macrophage 
death. Thus, intraperitoneal LPS injection in TRPC1(−/−) mice 
induces higher IL-1β secretion (24). Recently, in human U937 
monocytes exposed to high glucose (HG) condition that induces 
the NLRP3-ASC inflammasome stimulation leading to caspase-1 
activation and IL-1β and IL-18 secretion, TRPM2 regulates the 
thioredoxin-interacting protein-mediated triggering of NLRP3 
inflammasome via interaction with the p47phox protein (25).  
In particular, TRPM2 activation and TRPM2-mediated Ca2+ 
influx represent the critical steps in NLRP3 activation. In response 
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to HG, the reduction of TRPM2 expression reduces ROS genera-
tion and NADPH oxidase activity (25).

In phagocytes, the formation of crystals also induces oxidative 
stress that triggers NLRP3-mediated IL-1β secretion. Recently, 
Zhong et al. have demonstrated that liposomes are required for 
NLRP3 activation (26) and ROS-dependent TRPM2-mediated 
calcium influx (27). Infact, in macrophages from TRPM2 knock-
out mice, neither NLRP3 activation nor IL-1β production, is 
evidenced.

The NLRP3 inflammasome senses cell swelling and regulatory 
volume decrease (RVD), and the TRPV2 channel has been found 
to control volume regulation (18, 28). The reduction in extracel-
lular osmolarity results in K(+)-dependent conformational 
change of the inactive NLRP3 inflammasome state followed by 
its activation, which is controlled by TRPV2 during RVD (28). 
Moreover, NLRP3-independent activation has been reported in 
human THP-1 macrophages (29). Apoptosis-associated speck-
like protein containing a CARD domain (ASC) is required for 
the inflammatory processes. ASC bring NLRP proteins near to 
procaspase-1 into the inflammasome complex. Under hypotonic 
conditions, in TRPV2-dependent and independently by NLRP3, 
ASC forms specks that are unable to mediate pro-caspase-1 
activation and pyroptosis. However, ASC speck formation lead-
ing to inflammasome and pro-caspase-1 cleavage is increased by 
interaction with NLRP3 (29).

COnTRiBUTiOn OF TRP CHAnneLS  
TO MΦ POLARiZATiOn

Similar to the Th1/Th2 nomenclature (30, 31), in response to 
different cytokines or PAMPs, there are specialized and polar-
ized M1 and M2 macrophages. Activated M1 macrophages are 
induced by IFNγ alone or by microbial stimuli (e.g., LPS) or 
cytokines (e.g., TNF and GM-CSF). IL-4 and IL-13 other than to 
be inhibitors of macrophage activation, can induce the alternative 
M2 phenotype of macrophages (30). Activated M2 macrophages 
include cells exposed to IL-4 or IL-13, immune complexes, IL-10, 
glucocorticoids, or hormones (32). M1 cells secrete high levels of 
IL-12 and IL-23 and exhibit low IL-10 production; they generate 
NO and ROS and produce IL-1β, TNF, IL-6; they participate in 
Th1-polarized responses and mediate increased resistance against 
intracellular parasites and tumors. In contrast, M2 macrophages 
secrete low levels of IL-12 and IL-23 and high levels IL-10. Low 
expression of IL-1β and caspase-1 and high levels of IL-1ra, 
and decoy type II receptor were found in M2 cells (33). M1 and 
M2 cells also have distinct chemokine and chemokine receptor 
repertoire (31). M2 cells cooperate with Th2 cells in promoting 
the killing of parasites (34); they are present in some tumors and 
stimulate tissue repair (35). Moreover, recently, the analysis of 
transcriptomes in human macrophages stimulated with different 
stimuli has revealed the presence of distinct stimulus-specific 
macrophage polarization program and a broader spectrum of 
macrophage activation states, other that M1 and M2 (36).

A number of evidences indicate that the TRP channels regu-
late macrophage differentiation. Thus, gastric inflammation and 
reduced bacterial colonization were observed in Helicobacter 
pylori-infected TRPM2 knockout mice compared to controls (37). 

Loss of TRPM2 in H. pylori-infected macrophages triggers 
an increased production of inflammatory mediators and M1 
polarization. Stimulation of TRPM2-deficient macrophages with 
H.  pylori induces calcium overloading and increase of ERK1/2  
and NADPH oxidase activities respect to wild type cells (37).

The expression and activity of TRPM7 are differentially regu-
lated in bone-marrow derived murine M1 and M2 macrophages 
(38). Unlike M1 macrophages, in IL-4 stimulated M2 macrophages, 
higher TRPM7 current density (about 4.7-fold) was observed, 
whereas TRPM7 mRNA levels remain unchanged upon cell 
polarization. NS8593 and FTY720, two specific TRPM7 inhibi-
tors, block IL-4- and M-CSF-induced macrophage proliferation 
and prevent M2 polarization. Inhibition of TRPM7 expression 
diminishes IL-4-induced arginase-1 mRNA levels and activity and 
completely inhibits the IL-4 or M-CSF mediated effects on TNF 
production in LPS-stimulated macrophages. In addition, TRPM7 
inhibition decreases PI3K and ERK1/ERK2 phosphorylation levels 
and induces apoptosis in rat hepatic stellate cells (32, 39). In addi-
tion, adoptive transfer of macrophages from TRPM8-deficient 
mice, aggravates colitis, and IL-10 overexpression rescues M2 
macrophage subpopulation. Thus, TNFα production in TRPM8-
positive macrophages promotes the M1 macrophage phenotype 
and pro-inflammatory activity (40). Consequently, activation 
of TRPM8 channel in murine peritoneal macrophages triggers 
calcium transient currents in wild type but not TRPM8-deficient 
mice exhibiting defective phagocytosis and increased motility (40).

In addition, polarized macrophages from mice with specific 
TRPC3 deficiency show an increased in vitro phagocytic function 
(22). A crosstalk between TRP channels and unfolded protein 
response (UPR) system regulating macrophage polarization was 
also evidenced (41, 42). Thus, in Apoe(−/−) TRPC3(−/−) mice, M1 but 
not M2 macrophages show diminished ER stress-mediated apop-
tosis is reported. The reduced susceptibility of TRPC3-deficient 
M1 macrophages to apoptosis induced by ER stress is associated 
with impaired UPR and down-regulation of pro-apoptotic mol-
ecules as calmodulin-dependent PK II (Figure 2) (22, 42–44).

ROLe OF TRP CHAnneLS in ADHeSiOn 
AnD MigRATiOn in M/MΦ
Macrophage migration and infiltration is a multi-step process 
characterized by cell adhesion to different extracellular matrix 
(ECM) substrates, degradation of ECM proteins, topology 
and pericellular sense, intracellular transport, cell protrusion 
stabilization, and transmigration (45). In this regard, the orga-
nelles appointed to mediate these important functions are the 
podosomes. Recent studies have demonstrated that TRPV2 is 
localized in the podosome, and stimulation by fMLP further 
recruits TRPV2 to this compartment (46). Numerous signaling 
molecules including PI3K, Src, Cas, Pyk2, and Rho GTPases are 
associated with the podosome. TRPV2 may regulate Pyk2 activa-
tion, since TRPV2 knockdown inhibits the phospho-Pyk2 expres-
sion in macrophages. Activation of Pyk2 by ionomycin leads to 
breakdown of the podosome. On the contrary, increase of podo-
some numbers upon Pyk2 blocking by using a dominant nega-
tive variant of PyK2, PRNK, was observed. Gelsolin-assembled 
actin filaments and gelsolin activity are required for podosome 
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FigURe 2 | Complement components, cytokines, pathogen-associated 
molecular patterns (PAMPs), and TRP ion channels regulates macrophage 
polarization. Symbol (+) meaning stimulation, (−) meaning inhibition. Modified 
from (44) Copyright 2014 Front Immunol.
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assembly. It can be suggested that TRPV2, by activating gelsolin, 
promotes the formation of podosome. In murine macrophages, 
TRPV2 also contributes to fMLP-induced Ca2+ entry and migra-
tion (47). Notably, translocation of TRPV2 to the membrane 
induced by fMLP stimulation, is completely abrogated by PI3K 
inhibition or by Gi/0 trimeric G protein, suggesting that traffick-
ing of TRPV2 channel is PI-(3,4,5)-P3 (PIP3)-dependent (46, 47).

Overexpression of mouse TRPM7 channel results in focal 
adhesion (FA) formation, spreading, and adhesion by increas-
ing Ca2+ levels. The transformation of FA into podosomes 
depends by a kinase-dependent TRPM7-mediated activation 
(48). Non-activated TRPM7 channel is not associated with the 
actomyosin protein in the cytoskeleton. Triggering with PLC ago-
nists induces TRPM7-mediated Ca2+ influx and TRPM7 kinase 
activity. Autophosphorylation of TRPM7 protein promotes a 
conformational change in the channel structure that allows 
Ca2+-dependent myosin IIA association, myosin IIA heavy chain 
phosphorylation leading to myosin dissociation and cytoskeletal 
remodeling. Finally, silencing of TRPC6 by siRNA or treatment 
with SKF-96365, a TRP blocker induce cytoskeleton disruption 
in murine podocytes (49).

Cellular migration and contractility are regulated by cytoskel-
eton rearrangements, FA turnover and changes in Ca2+ flux. 
In this regard, a role for TRPM4 as regulator of FA/cytoskel-
eton dynamics, mechanotransduction, and adhesome has been 
reported (50). The mouse TRPM4 channel localizes at FAs, where 
it contributes to FA turnover and disassembly of lamellipodial 
actin cytoskeleton components. Moreover, TRPM4 by regulating 
FAK and Rac GTPase activities modulates cellular contractility 
and migration in M/MΦ (51).

TRPM2 is involved in chemokine production from M/MΦ (52). 
The expression of TRPML2 is negligible in resting macrophages, 

but its levels increase in response to TLR4, TRL7, and TLR8 stim-
ulation. In activated macrophages, TRPML2 facilitates the fusion 
of recycling endosomes or plasma membrane, thus promoting 
secretion of specific chemokines and cytokines. Recent data 
(53) demonstrated that CCL2, CCL3, and CCL5 chemokines are 
reduced in TRPML2(−/−) mice. Furthermore, TRPML2 knockout 
mice display impaired recruitment of peripheral macrophages in 
response to intraperitoneal injection of either LPS or live bacteria 
(53). In human U937 monocyte cell line, CXCL8 production 
depends on TRPM2-mediated Ca2+ influx. Monocytes from 
TRPM2 knockout mice exhibit reduced hydrogen peroxide-
stimulated CXCL2 production (52). Activation of TRPM2 in 
human monocytes increases LPS-induced TNFα, IL-6, IL-8, and 
IL-10 production and phagocytosis in vitro (54).

The expression of TRPA1 mRNA in macrophages is upregu-
lated in inflammatory bowel disease patients (55). In colitis, 
human TRPA1 channel activation exerts a mucosal protective role 
by reducing the expression of pro-inflammatory neuropeptides 
(SP, NKA, NKB, and VIP), cytokines (IL-1β, IFN, and TNF α/β), 
and of MCP-1 chemokine (55). Blocking of TRPA1 increases 
IL-10 levels and decreases TNF α secretion and TRPA1 siRNA 
normalizes monocyte IL-10 secretion (56).

COnTRiBUTiOn OF TRP CHAnneLS  
in M/MΦ PHAgOCYTOSiS

Macrophage phagocytosis of pathogens is essential function 
of innate immune responses and depends on a large repertoire 
of receptors capable to recognize different targets. Phagosome 
maturation requires endosomal pathway regulators, including 
the phosphoinositide lipids. Both, PtdIns(3,5)P2 and PIP3, are 
required for phagosome maturation. Inhibition of the lipid kinase 
that generates PtdIns(3,5)P2, PIKfyve, and phosphatidylinositol-
5-phosphate [PtdIns(5)P] blocks phagosome-lysosome fusion 
and abrogates the phagosome degradative capability in RAW264.7 
macrophages. PIKfyve inactivation disrupts membrane recy-
cling by causing lysosome swelling and blocks phagosome and 
endosome maturation (57). In this regard, TRPML1 regulates 
phagosome biogenesis; both particle ingestion and lysosomal 
exocytosis are inhibited by TRPML1 blockers (56, 58). Instead, 
TRPML1 overexpression and TRPML1 agonist stimulation 
trigger lysosomal exocytosis and particle uptake. The particle 
binding stimulates lysosomal PI(3,5)P2 increase that triggers 
TRPML1-dependent lysosomal Ca2+ release, rapidly delivering 
TRPML1 translocation from lysosomal membranes to Lamp1+ 
nascent phagosomes (59, 60). PIKfyve and PtdIns(3,5)P2 trigger 
the TRPML1 channel to mediate phagosome–lysosome fusion. 
Genetic deletion of TRPML1 gene hinders the acquisition of 
lysosomal markers in the phagosomes and reduces their bacte-
ricidal activity. Finally, cytosolic Ca2+ level increases during the 
TRPML1- and PIKfyve-dependent phagocytosis (57).

A role of TRPV2 in early phagocytosis was also demon-
strated (61). The chemoattractant-elicited mobility, zymosan 
or  complement-mediated particle binding, and phagocytosis 
are impaired in macrophages from TRPV2 knockout mice. 
The TRPV2 recruitment to the nascent phagosome and plasma 
membrane depolarization increases PIP2 synthesis that triggers 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


5

Santoni et al. Pathophysiological Role of “Immuno-TRP Channels” in Monocyte/Macrophages

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1273

actin depolymerization indispensable for phagocytic receptor 
clustering (61). Moreover, recently recruitment of TRPV2 at cell 
surface, preferential localization in lipid rafts, and calcium influx 
upon P. aeruginosa infection have been reported. Furthermore, 
deregulated TRPV2-signaling in macrophages from cystic fibrosis 
is responsible for their defective phagocytosis and consequently 
chronic infection (62). Moreover, in RAW 264.7 macrophages, 
the TRPM8 activator icilin stimulates cation currents that result 
in macrophage membrane depolarization. It is intriguing to 
hypothesize that TRPM8 alters macrophage efferocytosis by 
inducing actin depolymerization and indirectly influences Ca2+-
dependent macrophage survival or apoptosis by reducing the 
driving force for Ca2+-mediated positive feedback on other Ca2+ 
permeable channels (63).

Finally, Riazanski et  al. have demonstrated that TRPC6 
channel translocation into phagosomal membrane increases 
phagosomal functions. TRPC6 channel restores microbicidal 
function in compromised alveolar macrophages from cystic 
fibrosis patients (64).

Collectively, these findings indicate that TRP expression 
sensitizes M/MΦ to recognize phagocyte bacteria, and defective 
TRP channel expression and function lead to inefficient bacterial 
killing. Thus, TRPV4 mediates LPS-stimulated murine mac-
rophage phagocytosis of Escherichia coli in vitro and opsonized 
particles in  vitro and in  vivo in mice model (65). Intracellular 
Ca2+ is a second messenger in TLR4-dependent recognition and 
signaling (65). In this regard, Ca2+-depletion in TRPV2-deficient 
mice challenged with Listeria monocytogenes induces accelerated 
mortality and greater bacterial organ load (61).

TRPM2 is required for bacterial clearance in E. coli sepsis. 
Thus, during polymicrobial sepsis, macrophages from TRPM2 
knockout mice show inefficient bacterial killing and increased 
infection and death. Disruption of TRPM2 affects phagolysosomal 
acidification, impairs the phagosome-lysosome fusion, impedes 
the phagosome maturation, and increases intracellular Ca2+-
facilitated phagosome maturation in TRPM2(−/−) macrophages 
(66). TRPM2(−/−) mice are also extremely susceptible to Listeria 
monocytogenes infection and exhibit a defective innate immune 
response (19, 67). Similarly, the catalase from Francinella tular-
ensis restricts ROS generation by hindering TRPM2-dependent 
Ca2+ entry in murine macrophages (68). In addition, TRPM2 
disruption reduces heme oxygenase-1 expression and increases 
bacterial-induced macrophage infiltration. Pretreatment of 

macrophages from TRPM2 knockout mice, with heme oxyge-
nase-1 inducer, reduces bacterial burden (69). Finally, suppres-
sion of macrophage activation through inhibition of the TRPC1 
activity has been evidenced in parasites-(helminths) induced 
diseases (70).

COnCLUSiOn

Several evidences suggest the involvement of ion channels, in 
particular of TRP cation channel superfamily, in the pathogen-
esis of immune-mediated chronic inflammatory diseases. In this 
regard, the study of TRP channel functional expression in the 
M1/M2 macrophage polarization is an interesting research field 
to better understand how ion channels might participate in the 
generation of endogenous signaling capable of modifying mac-
rophage polarization and differentiation, in the view to maintain 
health or to induce diseases. Crosstalk between inflammatory 
receptors and ion channels belonging to the TRP channel super-
family and the specific signaling pathway activated upon protein 
to protein interaction have been only partially elucidated and 
the contribution of a single TRP channel in the inflammatory 
response is still lacking. Further studies, both in vitro and in vivo 
aimed at uncovering the direct impact of different members of 
TRP subfamily in inflammatory processes are required. Thus, 
there is the need in the next future to explore and fully char-
acterize the monocyte and macrophage expression of specific 
pattern of TRP channels and their signaling pathways activated 
in different immune-mediated diseases in order to identify new 
molecular targets for therapy of these inflammatory conditions.
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